4,432 research outputs found

    Guest editorial : In Journal of networks, v.7 n.3

    Get PDF
    Networking of computing devices has been going through rapid evolution and thus continuing to be an ever expanding area of importance in recent years. New technologies, protocols, services and usage patterns have contributed to the major research interests in this area of computer science. The current special issue is an effort to bring forward some of these interesting developments that are being pursued by researchers at present in different parts of the globe. Our objective is to provide the readership with some insight into the latest innovations in computer networking through this. This Special Issue presents selected papers from the thirteenth conference of the series (ICCIT 2010) held during December 23-25, 2010 at the Ahsanullah University of Science and Technology. The first ICCIT was held in Dhaka, Bangladesh, in 1998. Since then the conference has grown to be one of the largest computer and IT related research conferences in the South Asian region, with participation of academics and researchers from many countries around the world. Starting in 2008 the proceedings of ICCIT are included in IEEExplore. In 2010, a total of 410 full papers were submitted to the conference of which 136 were accepted after reviews conducted by an international program committee comprising 81 members from 16 countries. This was tantamount to an acceptance rate of 33%. From these 136 papers, 14 highly ranked manuscripts were invited for this Special Issue. The authors were advised to enhance their papers significantly and submit them to undergo review for suitability of inclusion into this publication. Of those, eight papers survived the review process and have been selected for inclusion in this Special Issue. The authors of these papers represent academic and/or research institutions from Australia, Bangladesh, Japan, Korea and USA. These papers address issues concerning different domains of networks namely, optical fiber communication, wireless and interconnection networks, issues related to networking hardware and software and network mobility. The paper titled “Virtualization in Wireless Sensor Network: Challenges and Opportunities” argues in favor of bringing in different heterogeneous sensors under a common virtual framework so that the issues like flexibility, diversity, management and security can be handled practically. The authors Md. Motaharul Islam and Eui-Num Huh propose an architecture for sensor virtualization. They also present the current status and the challenges and opportunities for further research on the topic. The manuscript “Effect of Polarization Mode Dispersion on the BER Performance of Optical CDMA” deals with impact of polarization mode dispersion on the bit error rate performance of direct sequence optical code division multiple access. The authors, Md. Jahedul Islam and Md. Rafiqul Islam present an analytical approach toward determining the impact of different performance parameters. The authors show that the bit error rate performance improves significantly by the third order polarization mode dispersion than its first or second order counterparts. The authors Md. Shohrab Hossain, Mohammed Atiquzzaman and William Ivancic of the paper “Cost and Efficiency Analysis of NEMO Protocol Entities” present an analytical model for estimating the cost incurred by major mobility entities of a NEMO. The authors define a new metric for cost calculation in the process. Both the newly developed metric and the analytical model are likely to be useful to network engineers in estimating the resource requirement at the key entities while designing such a network. The article titled “A Highly Flexible LDPC Decoder using Hierarchical Quasi-Cyclic Matrix with Layered Permutation” deals with Low Density Parity Check decoders. The authors, Vikram Arkalgud Chandrasetty and Syed Mahfuzul Aziz propose a novel multi-level structured hierarchical matrix approach for generating codes of different lengths flexibly depending upon the requirement of the application. The manuscript “Analysis of Performance Limitations in Fiber Bragg Grating Based Optical Add-Drop Multiplexer due to Crosstalk” has been contributed by M. Mahiuddin and M. S. Islam. The paper proposes a new method of handling crosstalk with a fiber Bragg grating based optical add drop multiplexer (OADM). The authors show with an analytical model that different parameters improve using their proposed OADM. The paper “High Performance Hierarchical Torus Network Under Adverse Traffic Patterns” addresses issues related to hierarchical torus network (HTN) under adverse traffic patterns. The authors, M.M. Hafizur Rahman, Yukinori Sato, and Yasushi Inoguchi observe that dynamic communication performance of an HTN under adverse traffic conditions has not yet been addressed. The authors evaluate the performance of HTN for comparison with some other relevant networks. It is interesting to see that HTN outperforms these counterparts in terms of throughput and data transfer under adverse traffic. The manuscript titled “Dynamic Communication Performance Enhancement in Hierarchical Torus Network by Selection Algorithm” has been contributed by M.M. Hafizur Rahman, Yukinori Sato, and Yasushi Inoguchi. The authors introduce three simple adapting routing algorithms for efficient use of physical links and virtual channels in hierarchical torus network. The authors show that their approaches yield better performance for such networks. The final title “An Optimization Technique for Improved VoIP Performance over Wireless LAN” has been contributed by five authors, namely, Tamal Chakraborty, Atri Mukhopadhyay, Suman Bhunia, Iti Saha Misra and Salil K. Sanyal. The authors propose an optimization technique for configuring the parameters of the access points. In addition, they come up with an optimization mechanism in order to tune the threshold of active queue management system appropriately. Put together, the mechanisms improve the VoIP performance significantly under congestion. Finally, the Guest Editors would like to express their sincere gratitude to the 15 reviewers besides the guest editors themselves (Khalid M. Awan, Mukaddim Pathan, Ben Townsend, Morshed Chowdhury, Iftekhar Ahmad, Gour Karmakar, Shivali Goel, Hairulnizam Mahdin, Abdullah A Yusuf, Kashif Sattar, A.K.M. Azad, F. Rahman, Bahman Javadi, Abdelrahman Desoky, Lenin Mehedy) from several countries (Australia, Bangladesh, Japan, Pakistan, UK and USA) who have given immensely to this process. They have responded to the Guest Editors in the shortest possible time and dedicated their valuable time to ensure that the Special Issue contains high-quality papers with significant novelty and contributions

    Guest Editorial: Nonlinear Optimization of Communication Systems

    Get PDF
    Linear programming and other classical optimization techniques have found important applications in communication systems for many decades. Recently, there has been a surge in research activities that utilize the latest developments in nonlinear optimization to tackle a much wider scope of work in the analysis and design of communication systems. These activities involve every “layer” of the protocol stack and the principles of layered network architecture itself, and have made intellectual and practical impacts significantly beyond the established frameworks of optimization of communication systems in the early 1990s. These recent results are driven by new demands in the areas of communications and networking, as well as new tools emerging from optimization theory. Such tools include the powerful theories and highly efficient computational algorithms for nonlinear convex optimization, together with global solution methods and relaxation techniques for nonconvex optimization

    BER and outage probability of DPSK subcarrier intensity modulated free space optics in fully developed speckle.

    Get PDF
    In this paper a differential phase shift keying (DPSK) subcarrier intensity modulated (SIM) free space optical (FSO) link is considered in negative exponential atmospheric turbulence environment. To mitigate the scintillation effect, the selection combining spatial diversity scheme (SelC) is employed at the receiver. Bit error rate (BER) and outage probability (Pout) analysis are presented with and without the SelC spatial diversity. It is shown that at a BER of 10-6, a maximum diversity gain 25 dB is predicted. And about 60 dBm signal power is required to achieve an outage probability of 10-6, based on a threshold BER of 10-4

    Performance of the wavelet-transform-neural network based receiver for DPIM in diffuse indoor optical wireless links in presence of artificial light interference

    Get PDF
    Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both domains. Applying these signal processing tools for channel compensation and noise reduction can provide an enhanced performance compared to the traditional tools. In this paper, the slot error rate (SER) performance of digital pulse interval modulation (DPIM) in diffuse indoor optical wireless (OW) links subjected to the artificial light interference (ALI) is reported with new receiver structure based on the discrete WT (DWT) and ANN. Simulation results show that the DWT-ANN based receiver is very effective in reducing the effect of multipath induced inter-symbol interference (ISI) and ALI

    Wavelet transform - artificial neural network receiver with adaptive equalisation for a diffuse indoor optical wireless OOK link

    Get PDF
    This paper presents an alternative approach for signal detection and equalization using the continuous wavelet transform (CWT) and the artificial neural network (ANN) in diffuse indoor optical wireless links (OWL). The wavelet analysis is used for signal preprocessing (feature extraction) and the ANN for signal detection. Traditional receiver architectures based on matched filter (MF) experience significant performance degradation in the presence of artificial light interference (ALI) and multipath induced intersymbol interference (ISI). The proposed receiver structure reduces the effect of ALI and ISI by selecting a particular scale of CWT that corresponds to the desired signal and classifying the signal into binary 1 and 0 based on an observation vector. By selecting particular scales corresponding to the signal, the effect of ALI is reduced. We show that there is little variation when using 30 and 5 neurons in the first layer, with one layer ANN model showing a consistently worse BER performance than other models, whilst the 15 neuron model show some behaviour anomalies from a BER of approximately 10-3. The simulation results show that the Wavelet-ANN architecture outperforms the traditional MF based receiver even with the filter is matched to the ISI affected pulse shape. The Wavelet-ANN receiver is also capable of providing a bit error rate (BER) performance comparable to the equalized forms of traditional receiver structure

    Performance evaluation of two-fuzzy based cluster head selection systems for wireless sensor networks

    Get PDF
    Sensor networks supported by recent technological advances in low power wireless communications along with silicon integration of various functionalities are emerging as a critically important computer class that enable novel and low cost applications. There are many fundamental problems that sensor networks research will have to address in order to ensure a reasonable degree of cost and system quality. Cluster formation and cluster head selection are important problems in sensor network applications and can drastically affect the network’s communication energy dissipation. However, selecting of the cluster head is not easy in different environments which may have different characteristics. In this paper, in order to deal with this problem, we propose two fuzzy-based systems for cluster head selection in sensor networks. We call these systems: FCHS System1 and FCHS System2. We evaluate the proposed systems by simulations and have shown that FCHS System2 make a good selection of the cluster head compared with FCHS System1 and another previous system.Peer ReviewedPostprint (published version

    BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence

    Get PDF
    Free-space optical communications (FSO) propagated over a clear atmosphere suffers from irradiance fluctuation caused by small but random atmospheric temperature fluctuations. This results in decreased signal-to-noise ratio (SNR) and consequently impaired performance. In this paper, the error performance of the FSO using a subcarrier intensity modulation (SIM) based on a binary phase shift keying (BPSK) scheme in a clear but turbulent atmosphere is presented. To evaluate the system error performance in turbulence regimes from weak to strong, the probability density function (pdf) of the received irradiance after traversing the atmosphere is modelled using the gamma-gamma distribution while the negative exponential distribution is used to model turbulence in the saturation region and beyond. The effect of turbulence induced irradiance fluctuation is mitigated using spatial diversity at the receiver. With reference to the single photodetector case, up to 12 dB gain in the electrical SNR is predicted with two direct detection PIN photodetectors in strong atmospheric turbulence
    • 

    corecore