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ABSTRACT 
This paper presents an alternative approach for signal detection 

and equalization using the continuous wavelet transform (CWT) 

and the artificial neural network (ANN) in diffuse indoor optical 

wireless links (OWL). The wavelet analysis is used for signal 

pre-processing (feature extraction) and the ANN for signal 

detection. Traditional receiver architectures based on matched 

filter (MF) experience significant performance degradation in the 

presence of artificial light interference (ALI) and multipath 

induced intersymbol interference (ISI). The proposed receiver 

structure reduces the effect of ALI and ISI by selecting a 

particular scale of CWT that corresponds to the desired signal and 

classifying the signal into binary 1 and 0 based on an observation 

vector. The simulation results show that the Wavelet-ANN 

architecture outperforms MF receiver even with the filter 

matched to the ISI affected pulse shape. The Wavelet-ANN 

receiver is also capable of providing a bit error rate (BER) 

performance comparable to the equalized forms of traditional 

receiver structure. 

KEYWORDS 
Indoor optical wireless links, adaptive equalization, wavelet 

transform, artificial neural network. 

 

1. INTRODUCTIONS 
Future communication systems with multiple applications require 

huge bandwidths per user that radio and microwave frequencies 

are currently unable to provide. The last mile problem is 

becoming more acute, therefore the need for alternative link 

schemes is increasing. Dropping fibre to homes is a costly 

solution at the present time; however this will reduce over the 

next decade or so. There is an alternative and complementary 

solution based on the OWL that is capable of providing 

bandwidth in excess of 150 Mbps for both indoor and outdoor 

applications, and can readily be linked to the high-speed fibre 

backbone [1-3]. Compared with the RF links, OWL offers a 

number of advantages, including: a huge bandwidth at a single 

wavelength covering a small or large areas (cellular system using 

the same wavelength), rapid installation, security, well defined 

cell pattern, dynamic data rates and user base using multiple 

wavelengths in a single cell and protocol transparency. 

 

The key issues in the indoor OWLs are ocular safety, mobility, 

beam blocking, ambient light noise and multipath induced ISI in 

non-line-of-site (non-LOS) links [4, 5]. Ocular safety could be 

overcome by shifting to a higher wavelength of 1550 nm where 

the eye retina is less sensitive to optical radiation [6] or by 

adopting more power efficient modulation techniques  like pulse 

position modulation. Lack of mobility and blocking is an issue in 

LOS links, thus limiting its application to a specific environment. 

In diffuse (non-LOS) links beam blocking and to a certain degree 

mobility is overcome at the cost of reduced data rate, increased 

path loss and ISI [5]; thus making it more appropriate for portable 

indoor applications. Reduced data rate and increased ISI is 

compensated by employing equalization techniques at the 

receiving end as outlined in  [4, 7, 8]. 

 

The effect of artificial ambient light (AAL) is more severe in 

indoor applications since the average transmitted optical power 

level is limited due to skin and eye-safety considerations. The 

amplitude of the interference is often greater than signal 

amplitude causing severe degradation in performance. Without 

electrical high-pass filtering (HPF), the optical power level 

required at the receiver photodetector for on-off keying (OOK) is  

~16 dBm/cm2  irrespective of the bit rate [9]. An electrical HPF is 

often incorporated in the receiver to cut-off the ALI before signal 

detection is done; however, the use of HPF in OOK systems 

provide insignificant improvements for data rates up to 10 Mbps 

[9]. Some improvement can be achieved in higher data rate 

systems but the HPF introduces a form of ISI known as the 

baseline wonder (BLW), this is more severe for baseband 

modulation techniques with high power spectral density at DC 

and low-frequencies. 

 

In non-LOS links, matched filtering is non-optimal as the power 

penalty would be very high even for a moderately dispersive 

channel. For highly dispersive channels it is impossible to 

improve the performance to an acceptable level even by 

increasing the transmission power. The optimal solution to reduce 

ISI is to use maximum likelihood sequence detection (MLSD), 

but memory requirements, processing delay and the complexity 

associated with MLSD make it a difficult scheme to realise. The 

practical, though sub-optimal, solution is to use an equalizer. 

Decision feedback equalizers (DFE) are effective in mitigating 

ISI and their BER performance  is close to that of the MLSD 

[10]. Even in a highly dispersive channel, no irreducible BER is 

observed at 100 Mbps with a DFE [10] . The problem with an 

equalizer in practical implementation is the requirement of the 

channel inversion, which is not always feasible. In addition,  

traditional equalizers based on the finite impulse response (FIR) 

filter suffer from severe performance degradation in time varying 

and non-linear channels [11].  

 

In this work, we propose a receiver based on the CWT and ANN 

to overcome the effect of interference due to AAL and to mitigate 

ISI due to multipath propagation. The fact that digital signal 

detection can be formulated as a pattern classification problem 

[12, 13],  offers the possibility of applying the ANN. On the other 

hand, the wavelet can effectively be used to denoise signal. 
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Hence combination of the wavelet and ANN can be used for both 

reducing the ALI and ISI at the receiver. The effect of 

interference is reduced by properly selecting the wavelet scales 

and ISI is mitigated by training ANN to classify the signal based 

on the received signal sequence. Since no channel inversion is 

necessary, the ANN based receiver can be effective in any 

channel. The BLW effect will not be in the receiver since there is 

no need for the HPF; hence, the proposed receiver has potential to 

provide improved performance in any channel even in the 

presence of the AAL and noise. 

 

The paper is organised as follows: the traditional receiver for 

OOK in LOS and non-LOS channels is discussed in the Section 

2. The proposed receiver model is given in the Section 3 with 

detail descriptions and algorithm of the receiver. The simulation 

algorithm, parameter simplification including sample window 

reduction, wavelet scale reduction and neural network size 

reduction and simulation results with analysis are presented in 

Section 4. Finally concluding remarks are given in Section 5. 

 

2. OOK 
The most simple and common modulation technique for intensity 

modulation and direct detection (IM/DD) is the well known OOK 

scheme, offering bandwidth efficiency and resilience to multipath 

induced ISI, but at the cost of  high average optical  power. A 

block diagram of the unequalized OOK system under 

consideration is shown in Fig. 1. At the transmitter end, the 

electrical signal at the output of the transmitting filter p(t) is 

scaled to make the average transmitted power Pavg. The scaling 

factor is 2Pavg for non-return-to-zero (NRZ) scheme and 4Pavg for 

RZ with a duty cycle of 50%. The receiver end consists of a 

photodetector for optical to electrical conversion and a MF, 

matched to the transmitter filter p(t), a sampler sampling at data 

rate Rb and followed by a threshold detector. This is the optimum 

detection technique for LOS links in which additive white 

Gaussian noise (AWGN) is the only source of noise. 

 

The BER at different received power levels is often used to 

measure the effectiveness of digital modulation techniques. For 

OOK, the BER in AWGN channel is given by: 
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where , Tb is the bit duration, 

No/2 is  a double-sided power spectral density of background 

Gaussian noise and R is the photodetector responsivity. 

 

There are two main factors that limit the link performance of the 

indoor OW system: (a) ambient noise due to AAL and natural 

light and (b) ISI due to the multipath propagation. Background 

radiation is modelled as white, Gaussian and independent of the 

received signal; however, the interference produced by the AAL 

is deterministic and periodic. These periodic interfering signals 

have the potential to seriously impair link performance. The 

interference from a fluorescent light driven by an electronic 

ballast is the dominant cause of performance degradation as the 

interfering signal contains harmonics of the switching frequency 

that can extend into the MHz range [14]. The probability of BER 

in the presence of fluorescent light is given by: 
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where M is the total number of bits over a 20 ms interval and mk 

is the output of the MF due to the fluorescent light interference 

(FLI) signal, sampled at the end of each bit period, given as [15]: 
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where the symbol  denotes convolution, mfl is the photocurrent 

due to the fluorescent light. mfl  comprise of a low frequency 

component and high frequency components details of which can 

be found in [15]. The amplitude of the photocurrent due to  

interference is often larger than that produced by the signal  and 

the optical power requirements are approximately given by the 

inference amplitude [9]. 

 

A combination of band pass optical filter and HPF is used to 

reduce the effect of the AAL at the receiver. Using a HPF 

introduces BLW, which is more severe for modulation techniques 

that contain a significant amount of power located at DC and low 

frequencies. A HPF does not reduce the average power 

requirement at low bit rates; but at high data rates (> 100 Mbps), 

a HPF can effectively reduce the effect of the interference due to 

the AAL interference. However, the ISI due to multipath 

propagation limits the link performance at high data rates. 

 

The multipath channel is model using the ceiling bounce model in 

which the channel impulse response is given by:  
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where u(t) is the unit step response, cHa /2 , H is the height 

between transmitter-receiver (Tx/Rx) and ceiling, and c is the 

speed of light. The parameter „a‟ is related to RMS delay spread 

Drms given by: 
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And in the shadowed link,  
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where s is related to the ratio of the distance between the receiver 

transmitter and a diagonal that intersects them both and extends 

to the walls of the room under consideration. 
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Figure 1. Block diagram of the unequalized OOK system. 



The optical power penalty due to multipath propagation increase 

exponentially with increase in normalised delay spread DT 

(Drms/Rb). For higher values of delay spread (DT > 0.5), there is an 

irreducible BER regardless of transmitted power.  An equalizing 

filter with impulse response inverse to the channel is often 

incorporated at the receiver. A bit rate of 100 Mbps is achievable 

using a DFE even on the worst channels, though the normalized 

power requirements can reach 7.1 dB and 9.1 dB for shadowed 

diffuse and LOS channels, respectively [10]. Unlike the 

unequalized OOK, there is no simple relation to predict the power 

penalty and the error probability in equalized systems. However, 

the trend of power penalty can be approximated by [10] : 

 

Power penalty (ZF-DFE) = 3(c0
-1-1)                            (7) 

 

where co  is LOS component at the output of MF. 

 

 

3. WT-ANN BASED RECEIVER MODEL 
The block diagram of the OOK Wavelet-ANN receiver is shown 

in Fig. 2. It can be seen from the figure that from a schematic 

point of view, the model is similar to the MF system. The unit 

energy MF in Fig. 1 is replaced with a feature extraction and 

pattern classification module composed of the WT and ANN 

units. However, the model operates in an entirely different 

manner. The wavelet section collects the incoming signal samples 

and sorts them into overlapping W-bit samples as shown in Fig. 3. 

It is the centre position of the window that will ultimately be 

detected by the receiver. The rationale behind this being that the 

ANN is able to extract further information from the W-bit 

window to help it make the correct decision. This may be 

particularly important under the influence of multipath dispersion 

where previous bits interfere with the present bit. In all 

simulations the incoming data is sampled at 1 ns intervals and 

assumes perfect timing alignment, all the samples being passed 

on to the ANN.  

 

The CWT is used to obtain the wavelet coefficients from sample 

set where the mother wavelet used is the „Symlet 2‟.  The CWT 

would potentially provide all wavelet coefficients up to some 

arbitrary maximum, producing a large number of coefficients. 

This would greatly increase computational burden and ultimately 

slow the detection process to a point of being unfeasible even for 

simulation proposes. The changes in the value of the coefficients 

between one scale to the next are potentially very small and in the 

majority of cases can be considered redundant, where the 

redundancy could span many scales. The wavelet section 

calculates the coefficients at some pre-determined scales that are 

considered to contain significant information. Unfortunately, a 

technique for detecting redundancy, or more importantly 

significance of a particular scale needs to be developed. In this 

work the scales are selected by visual inspection of 2 and 3 

dimensional time-scale-amplitude plots. It is sometimes useful to 

note the difference between plots of the noise free and noisy 

signal, this visual technique can afford the opportunity to select 

scales that are less affected by interfering sources. 

 

The schematic of information flow is shown in Fig. 4, where the 

incoming data stream is decimated into 5 bit windows as 

previously described. Each window is processed by the CWT to 

produce wavelet coefficients, which are then sorted into a two 

dimensional matrix or array where each column contains the 

coefficients that relate to a single „window‟. For example a data 

rate of 2.5 Mbps and sample interval of 1 ns would produce 400 

coefficients for each scale used. Each column is passed to the 

ANN section for subsequent classification. 

 

The ANN consists of a small 2 layer feedforward, back-

propagation ANN. Back-propagation is applied to multi-layer 

networks with non-linear differentiable transfer functions. Input 

vectors and the corresponding target vectors are used to train a 

network until it can approximate a function, associate input 

vectors with specific output vectors, or classify input vectors in 

an appropriate way as defined by the user. Each neuron has an 

associated activation function that is constant for a particular 

layer. In this case a two layer network, where the first layer 

employs a sigmoid activation function and the second layer a 

linear function can be trained to approximate any function (with a 

finite number of discontinuities) arbitrarily well [16]. There are as 

many inputs to each neuron in the first layer as there are scales in 

each column. The ANN processes its inputs in a manner that 

enables it to classify them into particular types. In this case ANN 

output is close to zero to signify OOK RZ binary „0‟ or „space‟, 

and close to one to signify binary „1‟ or „mark‟. The actual output 

from the final layer varies between something less than zero to 

something more than one, and in a pure digital sense the 

information is of little use. A threshold device or „slicer‟ is 

therefore employed to force the output to a binary state. 

 

Figure 2. OOK RZ Wavelet-ANN receiver schematic. 

 

 

Figure 3. The 5 bit sliding window. 

Figure 4. Schematic of wavelet and ANN section 

information flow. 



 

For ANN to produce meaningful outputs they must be trained. 

Although various training algorithms are available the underlying 

principles for their implementation is similar. Each input to the 

network produces an output that is compared to the 

corresponding value of the target set. The training algorithm then 

modifies the weights associated with the neuron inputs in an 

effort to minimise the difference between the input and target 

vectors. This process may continue many times until a desired 

error value is attained. An interesting but undesirable property of 

ANN is that they can be over-trained, here the network 

effectively „tunes‟ itself to the training inputs and loses its ability 

to generalise. In such a case the network would yield minimal 

errors between its training and target vectors, however, a new set 

of input and target vectors would produce significant errors. It is 

therefore important to adopt a training scheme that minimises the 

effect of over training. In this work interest in ANNs is primarily 

confined to its pattern recognition capability that is used to detect 

a pattern from imperfect data, corrupted by noise and dispersion. 

 

There are two types of training: supervised and unsupervised. 

This work focuses on supervised training where the ANN is 

presented with a particular input vector of data to be classified 

and a target vector corresponding to the correct output. Together 

these two vectors are referred to as the training pair and are used 

in conjunction with a training algorithm to modify the behaviour 

of the ANN in such a manner that it is able to classify an input it 

has never seen before. 

 

Training consists of the transmission of a pre-determined signal 

stream sampled by the ADC to give: 
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where k = kTb. 

 

Another major consideration when using a feedforward back-

propagation network is the selection of training algorithm. A 

number of well-established algorithms exist and are available in 

the Matlab™ simulation package, see Table 1. A number of these 

algorithms were tried, however, the most successful was the 

conjugate gradient with Powell/Beale Restarts [17] and this was 

used throughout the work contained in this paper. 

 

In these simulations a training length of 1000 or 1500 OOK-RZ 

symbols (bits). In a practical system this would not be a huge 

burden since the transmission of 1000 bits at 2.5 Mbps would 

theoretically only take 400 μs. Obviously the training process 

may take longer depending on the architecture and performance 

of the receiver processor. However, the indoor diffuse IR channel 

is slow moving and does not suffer from fade; therefore the 

number of training (redundant) bits to sustain a given BER may 

well turn out to be very low compared to the number of potential 

information bits. For this model training is confined to signals 

with particular SNR figures, rather than a training signal for 

every SNR subsequently simulated. The network was therefore 

trained with SNRs of 11 dB, 12 dB and 13 dB. These values were 

empirically selected to be near the noise value corresponding to a 

BER of approximately 10-6. 

 

Table 1: Training algorithms. 

 Algorithm 

1 Levenberg-Marquardt 

2 BFGS Quasi-Newton 

3 Resilient Backpropagation 

4 Scaled Conjugate Gradient 

5 Conjugate Gradient with Powell/Beale Restarts 

6 Fletcher-Powell Conjugate Gradient 

7 Polak-Ribiére Conjugate Gradient 

8 One-Step Secant 

9 Variable Learning Rate Backpropagation 
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Figure 5. Flowchart for simulation model shown in Fig. 2. 

 

 



4. RESULTS AND DISCUSSION 
The proposed receiver based on the Wavelet-ANN for OOK RZ 

scheme with a duty cycle „γ‟ of 0.5 is simulated in Matlab using 

the flowchart given in Fig. 5. The effect of the FLI and ISI due to 

multipath propagation is dealt separately. In all simulation, it is 

assumed that background interference with an average 

photocurrent IB of 200 A is present. The channel impulse 

response is normalized to 1 so that total energy of the system is 

conserved. The first task in the design is to optimise the system 

parameters in order to reduce complexity and maximised the 

performance. Since no definitive method exists to optimum 

structure of ANN or the window size for equalization, the 

parameters are using the simulations and results are present as 

follows. 

 

4.1.  Window Sizes 
Window size and the number of scales employed directly affect 

the computational burden imposed by the CWT process. The 

effects of window size on Wavelet-ANN receiver performance is 

explored using simulations. The CWT with „Sym2‟ wavelet with 

scales from 2 to 74 in steps of 2 is used for feature extraction. 

The model employs a ANN trained with 1500 symbols with 

varying noise values added, providing SNRs as follows: 12 dB in 

the first 3000 symbols, 6 dB in the second 3000 symbols and 15 

dB in the third 3000 symbols, 9 dB in the forth 3000 symbols and 

18 dB in the last 3000 symbols. This strategy is aimed at reducing 

the training burden of the simulations by finding a near optimum 

BER for a given SNR using only one training set. However, as all 

the simulations adopt the same strategy, a like for like 

comparison of results is still valid. The network is trained with 

1500 samples before classification of unknown data begins. The 

multipath distortion induced normalised delay spread DT of 0.819 

is adopted in the simulations. 

 

The simulation result for the BER against the SNR for a range of 

window size is depicted in Fig. 6. It is immediately apparent from 

observation that a single bit window is significantly inferior to 

multiple windows requiring additional 4.5 dB of SNR at a BER 

of 10-3. This may indicate that the ANN is indeed extracting 

information from previous and following bits to make a decision. 

However, employing multiple bit windows shows little 

significant variation in performance. Given these results, all later 

simulations for OOK RZ will be based on a 3-bit window with 

centre bit detection to reduce computational effort.  

 

4.2. Wavelt-ANN Scale Reduction 

It is a relatively simple process to visually select the scales that 

cover as many signal features as possible; under the correct 

conditions this would allow perfect synthesis of the original 

signal. Such a brute force method would give confidence that the 

ANN section was passed near optimum time-scale information 

for classification purposes. However, such methods impose two 

costs, that of CWT complexity and the subsequent level of 

numerical calculations required to be undertaken by the ANN. 

We briefly investigtes the effect of reducing scales to those which 

visually encompass the major features of the signal as seen on a 

time-scale plot. These are scales 2 and 7, scales 2, 7 and 14 and 

scales 2, 7 and 40. Using Figs. 2 and 5 the BER against SNR for 

100Mb/s OOK RZ with 3 bit window is illustarted in Fig. 7. 

When compared with Fig. 6, the simulation results indicate that 

considerable reduction in the number of scales can be made 

without significant reduction in system performance.  

Selection of scale in presence of the FLI should be made in such 

a way that the effect of the FLI is minimal while making the 

decision using the ANN. The scales are selected manually by 

visualizing the CWT in 3-D and the selection scales for different 

data rate is given in Table 2. 

Table 2. Wavelet scales for different data rates. 

Data Rate (Mb/s) Scales 

2.5 250, 750, 1000, 1250, 1500 

5 45, 160, 320, 550 

10 100, 230, 380, 780 

25 70, 150, 250, 300, 550 

50 16, 32, 48, 64 

 

4.3 Reduced Neurons 
A further contributor to computational complexity is the size of 

the ANN. Given that all scales from the CWT section are passed 

to all neurons in the input layer further reduction in 

computational burden can be made by reducing the size of the 

network. No definitive method exists to determine the optimum 

size of a feed-forward back-propagation ANN and „network 

pruning‟ is sometimes employed. In this section a simulation 

model derived from the previous two simplifications is used. The 

model utilises a 3-bit window where the CWT section processes 
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scales of 2, 7 and 14. Four simulations were executed with the 

only variation being the size of the first processing layer, or 

„hidden layer‟ in the neural network. Simulation runs for a first 

processing layer of 30, 15, 5 and 1 neurons were made.  

 

The results, shown in Fig. 8, indicate little variation between 30 

first layer neurons and 5 first layer neurons. However, the results 

from 1 first layer neuron model show a consistently worse BER 

performance than other models, whilst the 15 neuron model 

shows some behaviour anomalies from a BER of approximately 

10-3. Whilst not exhaustive the results indicate that a substantial 

reduction in network complexity can be made without 

excessively compromising receiver performance providing a 

further minimisation of computational effort. 

 

4.4 Performance in LOS links in presence 

of FLI 
With the optimised parameters (window size of 3, number of 

neurons 5 and reduced scale), the performance of the Wavelet-

ANN receiver is simulated for different data rates in the presence 

of the FLI. The normalised optical power penalty for the 

Wavelet-ANN receiver, for both the perfect channel and that 

subjected to FLI is depicted in Fig. 9. The optical power penalty 

due to the FLI without any HPF is very high in the case of MF 

detection with a value of  ~ 18 dB irrespective of data rate [9, 18]. 

Compared to the MF receiver, the Wavelet-ANN receiver is far 

less susceptible to performance degradation due to the influence 

of FLI. There is less than 1 dB optical power penalty over the 

non-interfering channel using the Wavelet-ANN receiver, which 

is a significant performance improvement compared to the MF 

architecture. The improve performance can be explained by 

exploring roughly the inversion relation between the frequency 

and scale. In frequency (scale) terms, the FLI lies far away from 

the actual signal. Selecting a scale of wavelet transform is 

equivalent to choosing a particular band of frequency that relates 

to the signals data content thus removing the scales that 

corresponds to interference and is analogous to filtering out the 

interference. Hence, by selecting the appropriate wavelet scales 

the effect of the FLI can be reduced in the receiver.  

 

4.5 Performance in diffuse links 
The performance of different receiver architectures in a diffuse 

channel with normalised delay spread of 0 - 0.7 is shown in Fig. 

10. The results indicate that for ISI channels the inclusion of the 

minimum mean square error (MMSE) equalizer with a MF and 

Wavelet-ANN receiver significantly improves the receiver 

performance. In contrast with the results of the traditional system 

(using MF filter only) the performance curves do not diverge as 

rapidly and offer broadly similar performances for both the ISI 

and non ISI case up to a DT of approximately 0.25. For higher 

values of DT the curves diverge more noticeably. Irreducible 

BERs were not reached over the range of normalised delay spread 

DT simulated; however, a power penalty that increases with DT is 

observable. The Wavelet-ANN architecture does not incorporate 

any equaliser algorithm; instead it relies on the feature extraction 

of the CWT section and the classification of the ANN. It can be 

seen that the Wavelet-ANN receiver shows compatible to 

marginally better performance over the traditional-MMSE case. 

For DT of 0.2 the equalised and Wavelet-ANN systems provide a 

power advantage over the unequalized ISI case of a little less than 

3 dB. At a DT of 0.25 the power penalty incurred by the 

unequalized ISI case has risen to just over 3 dB; however, the 

curves are diverging and further simulations for the unequalized 

ISI case reveal irreducible BERs for DT figures a little in excess 

of 0.25. At high levels of DT there is an approximately 2 dB 

penalty for the equalised ISI case over the non ISI case. 

 
Figure 9. Normalised optical power penalty versus data 

rate for OOK RZ with and without FLI for a Wavelet -

ANN receiver at a BER of 10-5. 
. 
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equalization at a BER of 10-6. 
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Figure 8. BER against SNR for Wavelet-AI detection of 

100Mb/s OOK RZ with 3 bit window, scales of 2, 7 & 14,  

reduced neurons and single training session 
. 

 



5. CONCLUSIONS 

The paper presented a new receiver architecture based on the 

CWT and ANN for reducing the effect of artificial light influence 

and ISI at the receiver for indoor optical system. The Wavelet-

ANN architecture does not incorporate any equaliser algorithms 

and HPF; instead it relies on the feature extraction of the CWT 

and the classification of the ANN. By selecting a particular scale 

that corresponds to the signal, the effect of AAL interference is 

reduced. We showed that there is little variation between 30 first 

layer neurons and 5 first layer neurons, with one layer ANN 

model showing a consistently worse BER performance than other 

models, whilst the 15 neuron model showed some behaviour 

anomalies from a BER of approximately 10-3. Whilst not 

exhaustive the results indicate that a substantial reduction in 

network complexity can be made without excessively 

compromising receiver performance providing a further 

minimisation of computational effort. The concept of signal 

classification is implemented using ANN to effectively 

compensate for the multipath induced ISI. The new architecture 

showed a < 1 dB variation between the ideal and ISI cases at a 

delay spread of 0.3 and < 2 dB at a delay spread of 0.5. We 

showed that there hardly any improvement in the BER 

performance for the Wavelet-AI detection when employing a 

window size larger than 3-bit. Simulation results showed that the 

performance using CWT-ANN is comparable to the equalized 

forms of the traditional receiver structure employing MF.  
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