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Abstract--In this paper a differential phase shift keying 
(DPSK) subcarrier intensity modulated (SIM) free space 
optical (FSO) link is considered in negative exponential 
atmospheric turbulence environment. To mitigate the 
scintillation effect, the selection combining spatial diversity 
scheme (SelC) is employed at the receiver. Bit error rate 
(BER) and outage probability (Pout) analysis are presented 
with and without the SelC spatial diversity. It is shown that 
at a BER of 10-6, a maximum diversity gain 25 dB is 
predicted. And about 60 dBm signal power is required to 
achieve an outage probability of 10-6, based on a threshold 
BER of 10-4. 

 
Index Terms—Free-space optics, DPSK, turbulence, 

spatial diversity, negative exponential distribution, outage 
probability. 

 

I. INTRODUCTION 

In today’s access network, the FSO technology is 
playing an increasing complementary role to the   radio 
frequency (RF) based techniques. This is attributable to 
its fundamental feature of huge bandwidth that is 
comparable to that obtainable from optical fibre but with 
an added advantage of lower deployment cost and time 
[1]. In recent years we have seen a steadily growing 
research interest in FSO systems accompanied by 
successful field trials that is now culminating into 
commercial deployments [1-4]. The earlier scepticism 
about FSO’s efficacy, its dwindling acceptability by 
service providers and slow market penetration are now 
rapidly fading away, judging by the number of service 
providers, organisation, government and private 
establishments that now incorporate FSO links into their 
network infrastructure [5, 6].  

Of course, terrestrial FSO links are not free of 
challenges; the atmospheric constituents (gases, aerosol, 
rain, fog, and smoke) extinguish and scatter photons 
traversing the atmosphere. The most deleterious being the 
thick fog, which could result in up to 270 dB/km 
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attenuation coefficient [1]. This potentially limits the 
achievable link range to less than 500 m during such 
condition [7]. In clear atmospheric conditions, longer link 
ranges are feasible.  However, due to atmospheric 
turbulence effects, small but random changes occur in the 
atmospheric temperature. This by extension, results in 
random changes in the atmospheric index of refraction 
along the path of the optical radiation. This 
metamorphoses into random phase and irradiance 
fluctuations (scintillation) of the optical radiation at the 
photodetector. Detailed study of the atmospheric 
turbulence can be found in [8-10]. The scintillation effect 
can be likened to the random fading effect on radio 
communication caused by the multipath 
propagation/channel frequency selectivity. Channel 
fading just like in RF communications, can cause severe 
degradation in the performance of an FSO link if 
unmitigated.  

Selecting the most appropriate modulation scheme for 
a communication system is important factor which 
determines the overall system performance and cost. The 
requirement would be to have a low BER at low SNR and 
perform well in dispersive environment. In terrestrial 
FSO links; the simple and widely adopted on-off keying 
(OOK) [11] signalling format requires adaptive threshold 
to perform optimally in a fading environments. This 
poses a serious design difficulty that can be circumvented 
by employing the SIM scheme [12]. And for the full and 
seamless integration of FSO into existing networks the 
study of SIM becomes compelling because existing 
networks already contain subcarrier signals. 

In weak turbulence modelled using the tractable log 
normal distribution, the spatial diversity has been studied 
to mitigate turbulence induced irradiance fading [11-13]. 
Likewise, FSO employing various forward error control 
techniques have been reported in literature [14-18] with 
varying degrees of gains and complexity.  In this paper, a 
DPSK pre-modulated SIM terrestrial FSO link is 
presented with the selection combining spatial diversity 
adopted to ameliorate the scintillation effect. DPSK 
offers the advantage of adopting a no-coherent detection 
at the receiver end, thus avoiding the use of more 
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complex synchronization circuitry. In addition to 
mitigating scintillation without introducing additional 
latency into the system, spatial diversity also helps to 
prevent temporary outage/blocking due to birds or other 
small flying object cross the propagation path; it is also 
simpler to implement and very cost effective compared to 
the adaptive optics.  

The rest of the paper is organised as follow: in 
Section II we describe the proposed DPSK-SIM, while 
the system performance analysis with and without the 
SelC spatial diversity is detailed in Section III. In Section 
IV, numerical simulation results are presented and 
discussed. The concluding remarks are then presented in 
Section V.  

 

II. DPSK SUBCARRIER INTENSITY MODULATION 

A.  System description 
In SIM, the data of symbol rate Rb is first pre-

modulated on to a RF signal of frequency ωc. The 
modulated subcarrier RF signal is then used to directly 
modulate the irradiance of an optical carrier which can 
either be a light-emitting-diode (LED) or a laser diode. 
The subcarrier modulated signal is DC-level shifted prior 
to modulating the optical source to ensure that the driving 
current of the laser diode is not less than its threshold 
current. 

After traversing the atmospheric channel, the receive 
telescope coated with an optical band pass filter to limit  

the background radiation focuses the received irradiance 
onto the direct detection PIN photodetector, which is 
followed by a trans-impedance amplifier (TIA). The 
electrical band pass filter (BPF) with a centre frequency 
ωc and bandwidth 2Rb allows the SIM signal through, and 
removes any DC component present. Finally, a standard 
DSPK demodulator is then used to recover the 
transmitted data as shown in Fig. 1.  

Here we have assumed that the carrier and the local 
oscillators are both of the same frequency. The sampler 
output is delayed by one bit and is compared with the 
next signal received. The difference in the phase of the 
two sampled signals yk and yk-1 determines the binary 
logic level of the received data. 

The SIM leverages on the availability of stable RF 
oscillators and filters, hence any of the evolved digital 
modulation techniques such as PSK, frequency shift 
keying and quadrature amplitude modulation can in 
principle be used. In this work however, a binary 
differential DPSK is adopted in order to circumvent the 
absolute phase estimation (and its accompanying 
ambiguity) requirement of the coherent demodulated PSK 
[19]. The fact that the atmospheric turbulence channel 
can be rightly assumed to be ‘frozen’ for more than two 
consecutive data symbols makes the implementation of 
the DPSK decoder at the receiver feasible. The ‘frozen’ 
channel assumption is premised on the turbulence 
correlation time, which is known be on the order of a 
hundreds of millisecond [11, 20]. The instantaneous 
photocurrent ir(t) can now be modelled as [21]:

 

 
(a) 

 

 
  (b) 
 

Fig. 1: A schematic system block diagram of an FSO link employing DPSK modulated SIM; (a) transmitter and (b) receiver.  TIP-trans-impedance 
amplifier; TT-Transmit telescope; RT-Receive telescope; T-Symbol duration. 
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where I = Ipeak/2, Ipeak is the peak received irradiance,  R is 
the photodetector responsivity, β is the modulation index 
and ]cos[)()()( θ+ω= tAtgtdtm cc  is the subcarrier 
signal of peak amplitude Ac; d(t) is the input signal, g(t) 
represents the rectangular pulse shape function and the 
additive noise ),0(~)( 2σNtn  is assumed to be white 
Gaussian.  

The condition 1)( ≤β tm  must always be fulfilled 
for the continuous wave optical transmitter to operate 
within its dynamic range. This places an upper bound on 
the amplitude of the subcarrier for a given value of β. 
With the subcarrier pre-modulated using DPSK and 
normalising β to unity, the peak amplitude Ac ≤ 1.  
 

B.  Noise sources 
Background noise: This is due to radiations from both the 
sky and the sun, with their irradiance (power per unit 
area) given, respectively as [22-24]: 
 

Isky = N(λ)Δλπ Ω2/4 ,      (2) 
 

Isun = W(λ)Δλ , 
 
     (3) 

 
where N(λ) and  W(λ) are the spectral radiance of the sky 
and spectral radiant emittance of the sun, respectively, Δλ 
is the bandwidth of the optical band pass filter at the 
receiver, and Ω is the receiver field of view angle (FOV) 
in radian. By carefully choosing a receiver with a very 
narrow FOV and Δλ, the impact of background noise can 
be greatly reduced. Optical BPF in the form of coatings 
on the receiver optics/telescope with Δλ < 1 nm are now 
readily available. Empirical values of N(λ) and W(λ) 
under different observation conditions are also available 
in literature [21-23]. The background noise is a shot noise 
with a variance given by [23]: 
 

)(22
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where B is the system electrical bandwidth. That is the 
bandwidth of the LPF shown in Fig. 1(b). 
 
Thermal noise: This is caused by the thermal fluctuations 
of electrons in the receiver circuit of equivalent resistance 
RL and temperature Te. Its variance is given by: 
 

12 4 −=σ LeTh BRkT      (5) 

 
Noise due to the quantum nature of light, the dark current 
and the relative intensity noise are assumed too small to 
be reckoned with. Hence, the total noise variance is given 
as: 
 

222
ThBg σ+σ=σ .     (6) 

 

From (1) and (6), the electrical signal-to-noise ratio 
(SNRe) can thus be derived as: 
 

2222 2σ= IRASNR ce .    (7) 

 
The work presented in this paper is for a single 
subcarrier, however more than one subcarrier could be 
adopted to modulate the optical carrier irradiance.  
 

C.  Atmospheric turbulence  
For FSO links spanning over 1 km, turbulence 

induced multiple scatterings do take place and the log 
normal turbulence model [9] characterised by single 
scattering event clearly becomes invalid. The strength of 
irradiance fading encountered in atmospheric turbulence 
is often referred to as the scintillation index defined as: 

222 ][/][][. IEIEIEIS −=  ; which is the normalised 
log irradiance variance.  For links covering over 3 km, 
the turbulence effect can easily tend towards saturation; 
in which the S.I. begins to decrease due to multiple 
scattering and it then settles at a value of unity [8, 9]. 
This describes the fully developed speckle regime. In this 
regime, the optical radiation field fluctuation obeys the 
Rayleigh distribution [9] and that means that the 
irradiance fluctuation will follow negative exponential 
statistics as given by (8). The validity of the negative 
exponential irradiance fluctuation is widely 
acknowledged in literature and has also been 
experimentally verified [8]. Other turbulence models 
notably the log-normal-Rician [25], the I-K [26] and the 
gamma-gamma [10] all reduce to the negative 
exponential distribution in the limit of strong turbulence 
as given below:  

 
0),/exp()( 1 >−= −

ooo IIIIIp   (8) 

 
where E[I] = Io is the mean received irradiance. For 
analogue SIM systems such as cable television signal 
transmission over optical fibre links, the average SNR 
suffices as a performance indicator but not for the digital 
SIM systems. Hence, in the next section the BER and the 
outage performance metrics suitable for digital 
communications in fading channel are presented. 
 

D.  Selection combining (SelC) spatial diversity  
For fading channels such as the atmospheric 

turbulence channel, higher transmitted optical power is 
required to maintain the link performance level. 
However, increased power level is an undesirable 
constraint for a number of reasons including, safety and 
cost.    Hence, there is a need to mitigate this deleterious 
atmospheric turbulence induced fading (scintillation) 
effect. Suitable candidates for doing this include: forward 
error control, adaptive optics, and spatial/time diversity 
schemes.  Here, the spatial diversity technique employing 
an array of N-PIN photodetectors is considered.  



Since at the subcarrier level the data is encoded using 
DPSK - a technique that requires no absolute phase 
extraction for its demodulation - then the spatial diversity 
adopted must not require absolute phase extraction as 
well. Hence, the choice of SelC spatial diversity in this 
work. In this diversity scheme, the photodetector with the 
highest SNR is selected out of all the N identical 
photodetectors. The selected branch is also the pupil with 
the highest received irradiance since all the paths will 
experience similar noise levels. 

For fair comparison with a single photodetector case, 
each receiver aperture is made equal to Ap/N, where Ap is 
the receiver aperture for a single receiver system. Without 
any loss of generality, Ap is normalised to unity. In order 
for the signal received by the photodetectors to be 
uncorrelated, the spacing s between any two 
photodetectors  must not be less than the atmospheric 
turbulence correlation distance ρo; a value which only 
measures a few centimetres [13]. 
 

III. PERFORMANCE METRIC ANALYSIS 

A.  Bit-error-rate (BER) 
The generic performance metric of a digital 

communication system is the BER and for a DPSK based 
SIM-FSO link; this metric, conditioned on the received 
irradiance is given by [27]: 

 
)5.0exp(5.0 eec SNRP −=  .    (9) 

 
However, in the face of scintillation the unconditional 
BER given by (9) is averaged over the irradiance 
fluctuation statistics (8) to obtain the following 
unconditional BER. 
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The above expression can be conveniently simplified by 
invoking equation (3.322.2) in [28] to obtain:  
 

( )SNRQ

SNRSNRBER

/

)exp(/ 1

π

×π= −

, 
            
 (11) 

 
where the subcarrier amplitude Ac has been normalised to 
unity and 222 /][ σ= IERSNR .   
 

However, with the SelC spatial diversity, the SNRe can be 
easily derived as: 
 

)(2 22
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c
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(12) 

 
It should be noted that, the background noise is 
proportional to the receiver aperture area while the 
thermal noise is not. Hence, the unconditional BER with 
SelC is obtainable from: 
 

∫
∞

=
0

max)( dIIpPBER ecSelC , 

 
(13) 

 
where . )5.0exp(5.0 Seleec SNRP −−=  and 

N
iiII 1max }max{ ==  is the strongest of all received 

irradiance from all the N-PIN photodetectors. The 
probability density function (pdf) of Imax, given by 

)}(max{)( 1max
N
iiIpIp ==  is obtained first by finding 

the cumulative distribution function of Imax at an arbitrary 
point and then differentiating. The resulting pdf is given 
by (14) and the detailed proof is presented in Appendix 
A. 
 

.))/exp(1)(/exp()( 1−−−−= N
ooI

N
max IIIIIp
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 (14) 

 
The plot of the pdf of Imax is shown in Fig. 2 for different 
values of N and E[I] = Io = 1. 
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With the SelC spatial diversity the BER is given by: 
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This expression (15), to the best our knowledge has no 
closed form. As such, it can only be evaluated via 
numerical methods. 
 

B.  Outage probability Pout 
The FSO system performance with respect to the 

generic average BER metric is the most reported metric; 
however, a system with an adequate average BER can 
temporarily suffer from an increase in error rate due to 
deep fades and this ‘short outage’ is not adequately 
modelled by the average BER [29]. An alternative 
performance metric commonly used in fading channels is 
the outage probability.  It is defined as the probability 
that the BER is greater than a threshold level  BER*.  This 
is akin to finding the probability that the SNR that results 
in BER is lower than a threshold level SNR* that 
corresponds to the BER*. That is: 
 

)()( ** SNRSNRPBERBERPPout <≡>= , (16) 

 
where SNR* = (RAI*)2/2σ2, and I* which can be obtained 
from the solution of (10) is the receiver sensitivity 
required to attain BER*. 
Combining (7) and (8), it is obtained that the received 
irradiance Io needed to attain an outage probability Pout is: 
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With SelC, the outage probability is the cumulative 
density function of Imax whose pdf is plotted in Fig. 2. 
Thus, combining (7), (12), (14) and (A3) of Appendix A, 
the received irradiance Io-Selc needed to attain a given Pout 
is derived as: 
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From the foregoing, the diversity gain Io/IoSelC can thus be 
obtained. 
 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

The numerical simulations presented in this section 
are based on the parameters of Table I. In Fig. 3, we show 
the BER obtained from (11) and (15) against the receiver 
sensitivity with and without SelC. This plot brings to bare 
the potential gain of SelC in reducing the required 
sensitivity for a given BER. For example, to achieve a 
BER of 10-6 with no diversity, about 23 dBm of received 
irradiance is required while with two photodetectors (N = 
2), about -1.7 dBm is needed to achieve the same level of 
performance. Moverover, as the number of 
photodetectors increases, the attained diversity gain per 
additional detector reduces. For instance, for N = 2, the 

gain per detector at a BER of 10-6 is ~12 dB and this 
reduces to about 5 and 4 dB for N = 8 and 10, 
respectively. This result is summarised in Table II for up 
to 10 photodetectors. 

To consider the outage probability, equations 17 and 
18 are used. In Fig. 4, we plotted the Pout against IoSelC 
with I* = 0 dBm, being the sensitivity value required to 
attain a BER of 10-4 according to Fig. 3(a).  This graph 
shows that for a threshold BER of 10-4, achieving a 
DSPK-SIM with an outage probability of 10-6 or better, 
will require a minimum of 60 dBm received irradiance 
without SelC. This requirement reduces to ~35 dBm and 
~23 dBm, respectively with 2 and 4 photodetectors. The 
inference from Fig. 4 is therefore similar to that of Fig. 
3(b). To further illustrate the gain of using SelC in the 
saturation regime, we show in Figs. 5 and 6 the predicted 
diversity gain at different values of Pout and N. With 2 
photodetectors  and  an  outage  probability of 10-6,  the 

 
 

Table I: Numerical simulation parameters 
Parameter Value 
Symbol rate  Rb 155 Mbps  
Spectral radiance of the sky N(λ) 10-3 W/cm2µmSr 
Spectral radiant emittance of the sun W(λ) 0.055 W/cm2µm 
Optical band-pass filter bandwidth  Δλ @ λ 
=  850 nm 

1 nm 

PIN photodetector field of view FOV 0.6 rad 
Radiation wavelength λ 850 nm 
Number of Photodetectors N 1 ≤  N  ≤ 10 
Load resistance RL 50 Ω 
PIN photodetector responsivity R 1 
Operating temperature Te 300 K 

Electrical low-pass filter bandwidth 155 MHz 
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Fig. 3: The graph of BER against the receiver sensitivity in saturation 
turbulence regime for N = [2, 4, 6, 10] 

 
Table II: Gain per photodetector at a BER of 10-6 

N 1 2 4 6 8 10 
Sensitivity 

(dBm) 
23.1 -1.7 -12.5 -15.2 -16.2 -16.7 

Gain (dB) 
per N      

0 12.4 8.9 6.4 4.9 4.0 

 



 
maximum predicted gain per detector is about 14 dB as 
depicted in Fig. 5. This predicted gain is observed to be 
even higher at lower values of Pout. This makes sense as 
the use of diversity in a fading channel increases the 
received signal strength and by extension a lower Pout. 
And in Fig. 6, it is clearly shown that the gain (dB) per 
detector peaks at N = 2 and then decreases thereafter.  
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Fig. 4: Outage probability against the received irradiance with I* = 0 
dBm for N = [1, 2, 4, 6, 10]. 
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Fig. 5: Predicted SelC diversity gain (dB) per photodetector against Pout  
for N = [1, 2, 4, 6, 10]. 
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Fig. 6: Predicted SelC diversity gain (dB) per photodetector against N 
for Pout = [10-6, 10-3, 10-2]. 

 
It should be noted that up to 10 photodetectors has 

been considered in the results presented, this is mainly for 
illustration purpose. The use of such a large number of 
detectors will pose serious implementation difficulties. 
An interesting point to note from these results however, is 
that unlike in weak turbulence regime/short range links 
where previous studies [13] [27] revealed that SelC 
should not be used; SelC is highly recommended here as 
it results in a significant reduction in the required receiver 
sensitivity especially when the photodetector is kept to a 
maximum of four. An explanation for this is as follow. 
The irradiance fading in a fully developed speckle regime 
is dominant over the reduction in the received irradiance 
due to the reduction in the receiver aperture area. Any 
scheme that thus mitigates this dominant irradiance 
fading will clearly result in an improved performance.  

The predicted sensitivities and diversity gains 
presented in this paper are valid for as long as the 
photodetectors receive independent irradiances. That is, 

Ls Do ϑ≤<ρ  where Dϑ is the divergence angle of the 
optical source in milliradian and L is the link length in 
kilometre. For s < ρo, the received irradiances are 
correlated, thus a reduced diversity gain. 
 

V. CONCLUSIONS 

The performance of a DPSK-SIM optical wireless 
communication link has been presented in fully 
developed speckle environment. Expressions for the BER 
and Pout performance metrics have been presented with 
and without the SelC spatial diversity. In the saturation 
regime under consideration, the fading is so strong that 
huge receiver sensitivity is usually required to achieve an 
acceptable level of performance. At say a BER of 10-6, 
about 23 dBm of irradiance is required at the receiver 
while achieving a corresponding outage probability of 10-

6 will require about 60 dBm sensitivity. These values are 
prohibitive and any technique such as the spatial diversity 
that mitigates the channel fading will hence result in huge 
gains. Results show that with two PIN photodetectors, a 
maximum gain of about 25 dB is predicted at a BER of 
10-6.  

This implies therefore that the SelC spatial diversity is 
a potent technique for mitigating scintillation in the fully 
developed speckle regime as it results in a significant 
improvement in link performance especially when the 
photodetector is kept to a maximum of four. 

 

APPENDIX A 

Assumption 1: Let the number of independent 
photodetectors be N. 
 

       
N
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N
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arbitrary received irradiance I, it then follows that  
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The following therefore gives the cumulative distribution 
function (CDF) of Imax for N-independent received 
irradiances: 
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Assumption 2: The received irradiances are identically 
distributed as negative exponential distribution. 
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The required pdf )( maxIp  is now obtained by 
differentiating (12) once with respect to the irradiance I. 
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With N = 1, (A4) gives the negative exponential 
distribution as will be expected. 
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