496 research outputs found

    Boundary control of parabolic PDE using adaptive dynamic programming

    Get PDF
    In this dissertation, novel adaptive/approximate dynamic programming (ADP) based state and output feedback control methods are presented for distributed parameter systems (DPS) which are expressed as uncertain parabolic partial differential equations (PDEs) in one and two dimensional domains. In the first step, the output feedback control design using an early lumping method is introduced after model reduction. Subsequently controllers were developed in four stages; Unlike current approaches in the literature, state and output feedback approaches were designed without utilizing model reduction for uncertain linear, coupled nonlinear and two-dimensional parabolic PDEs, respectively. In all of these techniques, the infinite horizon cost function was considered and controller design was obtained in a forward-in-time and online manner without solving the algebraic Riccati equation (ARE) or using value and policy iterations techniques. Providing the stability analysis in the original infinite dimensional domain was a major challenge. Using Lyapunov criterion, the ultimate boundedness (UB) result was demonstrated for the regulation of closed-loop system using all the techniques developed herein. Moreover, due to distributed and large scale nature of state space, pure state feedback control design for DPS has proven to be practically obsolete. Therefore, output feedback design using limited point sensors in the domain or at boundaries are introduced. In the final two papers, the developed state feedback ADP control method was extended to regulate multi-dimensional and more complicated nonlinear parabolic PDE dynamics --Abstract, page iv

    Robust H infinity model reference tracking control of singular systems using T-S fuzzy model and LMI

    Get PDF
    In this study, a Takagi-Sugeno fuzzy model based tracking controller is proposed for nonlinear high index singular systems with a guaranteed H1 model reference tracking performance. A coordinate transformation is introduced, which allows to represent the nonlinear high index singular systems using T-S fuzzy model. This transformation facilitates the specification of a dynamic reference system that satisfies the same constraints as the actual system. Moreover, the proposed transformation relaxes the existence condition of a full order observer for a nonlinear high index singular system. A modification of the existing linear matrix inequality optimization algorithm has been proposed to make the algorithm compatible for singular systems. The proposed approach is general and can be used for designing the tracking controller and defining the dynamic reference model for any singular systems with any index. Without using the exact feedback linearization technique and complicated adaptive schemes, this tracking controller design approach is simple and feasible for practical applications. Finally, two high index singular systems from two different fields are used as examples to demonstrate the proposed design effectiveness

    Green Scheduling of Control Systems

    Get PDF
    Electricity usage under peak load conditions can cause issues such as reduced power quality and power outages. For this reason, commercial electricity customers are often subject to demand-based pricing, which charges very high prices for peak electricity demand. Consequently, reducing peaks in electricity demand is desirable for both economic and reliability reasons. In this thesis, we investigate the peak demand reduction problem from the perspective of safe scheduling of control systems under resource constraint. To this end, we propose Green Scheduling as an approach to schedule multiple interacting control systems within a constrained peak demand envelope while ensuring that safety and operational conditions are facilitated. The peak demand envelope is formulated as a constraint on the number of binary control inputs that can be activated simultaneously. Using two different approaches, we establish a range of sufficient and necessary schedulability conditions for various classes of affine dynamical systems. The schedulability analysis methods are shown to be scalable for large-scale systems consisting of up to 1000 subsystems. We then develop several scheduling algorithms for the Green Scheduling problem. First, we develop a periodic scheduling synthesis method, which is simple and scalable in computation but does not take into account the influence of disturbances. We then improve the method to be robust to small disturbances while preserving the simplicity and scalability of periodic scheduling. However the improved algorithm usually result in fast switching of the control inputs. Therefore, event-triggered and self-triggered techniques are used to alleviate this issue. Next, using a feedback control approach based on attracting sets and robust control Lyapunov functions, we develop event-triggered and self-triggered scheduling algorithms that can handle large disturbances affecting the system. These algorithms can also exploit prediction of the disturbances to improve their performance. Finally, a scheduling method for discrete-time systems is developed based on backward reachability analysis. The effectiveness of the proposed approach is demonstrated by an application to scheduling of radiant heating and cooling systems in buildings. Green Scheduling is able to significantly reduce the peak electricity demand and the total electricity consumption of the radiant systems, while maintaining thermal comfort for occupants

    Robust Adaptive Control of an Offshore Ocean Thermal Energy Conversion System

    Get PDF
    IEEE Boundary control strategy is developed to analyze the vibration problem of the offshore ocean thermal energy conversion (OTEC) system as well as to constrain the bottom tension and top motion. To provide an accurate dynamic behavior for the OTEC system, this distributed parameter system is modeled and formulated with a governing equation and boundary conditions (PDE-ODEs model). Two robust adaptive boundary controllers are designed and disposed at the endpoints of the system, and the stability of the controlled system under unknown disturbances is achieved. After selecting the relevant parameters appropriately, the offset of the offshore OTEC system can be suppressed to equilibrium position. Finally, the effectiveness of the proposed control is illustrated by simulation

    Optimal Control for Automotive Powertrain Applications

    Full text link
    Optimal Control (OC) is essentially a mathematical extremal problem. The procedure consists on the definition of a criterion to minimize (or maximize), some constraints that must be fulfilled and boundary conditions or disturbances affecting to the system behavior. The OC theory supplies methods to derive a control trajectory that minimizes (or maximizes) that criterion. This dissertation addresses the application of OC to automotive control problems at the powertrain level, with emphasis on the internal combustion engine. The necessary tools are an optimization method and a mathematical representation of the powertrain. Thus, the OC theory is reviewed with a quantitative analysis of the advantages and drawbacks of the three optimization methods available in literature: dynamic programming, Pontryagin minimum principle and direct methods. Implementation algorithms for these three methods are developed and described in detail. In addition to that, an experimentally validated dynamic powertrain model is developed, comprising longitudinal vehicle dynamics, electrical motor and battery models, and a mean value engine model. OC can be utilized for three different purposes: 1. Applied control, when all boundaries can be accurately defined. The engine control is addressed with this approach assuming that a the driving cycle is known in advance, translating into a large mathematical problem. Two specific cases are studied: the management of a dual-loop EGR system, and the full control of engine actuators, namely fueling rate, SOI, EGR and VGT settings. 2. Derivation of near-optimal control rules, to be used if some disturbances are unknown. In this context, cycle-specific engine calibrations calculation, and a stochastic feedback control for power-split management in hybrid vehicles are analyzed. 3. Use of OC trajectories as a benchmark or base line to improve the system design and efficiency with an objective criterion. OC is used to optimize the heat release law of a diesel engine and to size a hybrid powertrain with a further cost analysis. OC strategies have been applied experimentally in the works related to the internal combustion engine, showing significant improvements but non-negligible difficulties, which are analyzed and discussed. The methods developed in this dissertation are general and can be extended to other criteria if appropriate models are available.El Control Óptimo (CO) es esencialmente un problema matemático de búsqueda de extremos, consistente en la definición de un criterio a minimizar (o maximizar), restricciones que deben satisfacerse y condiciones de contorno que afectan al sistema. La teoría de CO ofrece métodos para derivar una trayectoria de control que minimiza (o maximiza) ese criterio. Esta Tesis trata la aplicación del CO en automoción, y especialmente en el motor de combustión interna. Las herramientas necesarias son un método de optimización y una representación matemática de la planta motriz. Para ello, se realiza un análisis cuantitativo de las ventajas e inconvenientes de los tres métodos de optimización existentes en la literatura: programación dinámica, principio mínimo de Pontryagin y métodos directos. Se desarrollan y describen los algoritmos para implementar estos métodos así como un modelo de planta motriz, validado experimentalmente, que incluye la dinámica longitudinal del vehículo, modelos para el motor eléctrico y las baterías, y un modelo de motor de combustión de valores medios. El CO puede utilizarse para tres objetivos distintos: 1. Control aplicado, en caso de que las condiciones de contorno estén definidas. Puede aplicarse al control del motor de combustión para un ciclo de conducción dado, traduciéndose en un problema matemático de grandes dimensiones. Se estudian dos casos particulares: la gestión de un sistema de EGR de doble lazo, y el control completo del motor, en particular de las consignas de inyección, SOI, EGR y VGT. 2. Obtención de reglas de control cuasi-óptimas, aplicables en casos en los que no todas las perturbaciones se conocen. A este respecto, se analizan el cálculo de calibraciones de motor específicas para un ciclo, y la gestión energética de un vehículo híbrido mediante un control estocástico en bucle cerrado. 3. Empleo de trayectorias de CO como comparativa o referencia para tareas de diseño y mejora, ofreciendo un criterio objetivo. La ley de combustión así como el dimensionado de una planta motriz híbrida se optimizan mediante el uso de CO. Las estrategias de CO han sido aplicadas experimentalmente en los trabajos referentes al motor de combustión, poniendo de manifiesto sus ventajas sustanciales, pero también analizando dificultades y líneas de actuación para superarlas. Los métodos desarrollados en esta Tesis Doctoral son generales y aplicables a otros criterios si se dispone de los modelos adecuados.El Control Òptim (CO) és essencialment un problema matemàtic de cerca d'extrems, que consisteix en la definició d'un criteri a minimitzar (o maximitzar), restriccions que es deuen satisfer i condicions de contorn que afecten el sistema. La teoria de CO ofereix mètodes per a derivar una trajectòria de control que minimitza (o maximitza) aquest criteri. Aquesta Tesi tracta l'aplicació del CO en automoció i especialment al motor de combustió interna. Les ferramentes necessàries són un mètode d'optimització i una representació matemàtica de la planta motriu. Per a això, es realitza una anàlisi quantitatiu dels avantatges i inconvenients dels tres mètodes d'optimització existents a la literatura: programació dinàmica, principi mínim de Pontryagin i mètodes directes. Es desenvolupen i descriuen els algoritmes per a implementar aquests mètodes així com un model de planta motriu, validat experimentalment, que inclou la dinàmica longitudinal del vehicle, models per al motor elèctric i les bateries, i un model de motor de combustió de valors mitjans. El CO es pot utilitzar per a tres objectius diferents: 1. Control aplicat, en cas que les condicions de contorn estiguen definides. Es pot aplicar al control del motor de combustió per a un cicle de conducció particular, traduint-se en un problema matemàtic de grans dimensions. S'estudien dos casos particulars: la gestió d'un sistema d'EGR de doble llaç, i el control complet del motor, particularment de les consignes d'injecció, SOI, EGR i VGT. 2. Obtenció de regles de control quasi-òptimes, aplicables als casos on no totes les pertorbacions són conegudes. A aquest respecte, s'analitzen el càlcul de calibratges específics de motor per a un cicle, i la gestió energètica d'un vehicle híbrid mitjançant un control estocàstic en bucle tancat. 3. Utilització de trajectòries de CO com comparativa o referència per a tasques de disseny i millora, oferint un criteri objectiu. La llei de combustió així com el dimensionament d'una planta motriu híbrida s'optimitzen mitjançant l'ús de CO. Les estratègies de CO han sigut aplicades experimentalment als treballs referents al motor de combustió, manifestant els seus substancials avantatges, però també analitzant dificultats i línies d'actuació per superar-les. Els mètodes desenvolupats a aquesta Tesi Doctoral són generals i aplicables a uns altres criteris si es disposen dels models adequats.Reig Bernad, A. (2017). Optimal Control for Automotive Powertrain Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90624TESI

    Analytical and Numerical Methods for Differential Equations and Applications

    Get PDF
    The book is a printed version of the Special issue Analytical and Numerical Methods for Differential Equations and Applications, published in Frontiers in Applied Mathematics and Statistic
    corecore