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ABSTRACT 

In this dissertation, novel adaptive/approximate dynamic programming (ADP) 

based state and output feedback control methods are presented for distributed parameter 

systems (DPS) which are expressed as uncertain parabolic partial differential equations 

(PDEs) in one and two dimensional domains. In the first step, the output feedback control 

design using an early lumping method is introduced after model reduction. Subsequently 

controllers were developed in four stages; Unlike current approaches in the literature, 

state and output feedback approaches were designed without utilizing model reduction 

for uncertain linear, coupled nonlinear and two-dimensional parabolic PDEs, 

respectively. In all of these techniques, the infinite horizon cost function was considered 

and controller design was obtained in a forward-in-time and online manner without 

solving the algebraic Riccati equation (ARE) or using value and policy iterations 

techniques. 

Providing the stability analysis in the original infinite dimensional domain was a 

major challenge. Using Lyapunov criterion, the ultimate boundedness (UB) result was 

demonstrated for the regulation of closed-loop system using all the techniques developed 

herein. Moreover, due to distributed and large scale nature of state space, pure state 

feedback control design for DPS has proven to be practically obsolete. Therefore, output 

feedback design using limited point sensors in the domain or at boundaries are 

introduced. In the final two papers, the developed state feedback ADP control method 

was extended to regulate multi-dimensional and more complicated nonlinear parabolic 

PDE dynamics. 
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1. INTRODUCTION

In control theory, the variables under study (temperature, displacement, 

concentration, velocity, etc.) are usually referred to as the states. For these physical 

systems, the state equation may be of one of the following types: ordinary differential 

equation (ODE), partial differential equation, functional differential equation, integro-

differential equation, or abstract evolution equations. Of special interest is the case where 

system dynamics are modeled by partial differential equations (PDE). 

Many different industrial systems are inherently distributed in space and their 

dynamics depend upon spatial position and time; therefore, they are modeled by PDE. 

For example, PDE dynamics can be seen in fluid flows in aerodynamics and propulsion 

applications, plasma in lasers, fusion reactors, hypersonic vehicles, liquid metals in 

cooling systems for tokamaks and computers as well as in welding and metal casting 

processes, acoustic waves and water waves irrigation systems. Flexible structures in civil 

engineering applications including aircraft wings and helicopter rotors, astronomical 

telescopes, and nanotechnology devices such as the atomic force microscope, 

electromagnetic waves and quantum mechanical systems, waves and “ripple” instabilities 

in thin film manufacturing. These devices are all usually referred to as distributed 

parameter systems (DPS). Other examples are flame dynamics, chemical processes and 

internal combustion engines. DPS is in contrast to lumped parameter systems (LPS), 

where the dynamics are described by ordinary differential equations (ODE). 

On the other hand, optimal control, is often seen as a major design approach in 

modern control theory.  Approximate dynamic programming (ADP), as part of optimal 

control, seeks computationally feasible solutions for the cases where the state space is 

considerably large and the dynamics are nonlinear and uncertain. These are common 

problems in DPS control design. 

Generally, the control design methodologies for DPS can be divided into two 

categories: early and late lumping. In the first approach, referred to as early lumping, a 

finite dimensional state representation is first obtained and the controller is designed 

subsequently. Different methods in this category employ model reduction in different 
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ways to extract a finite-dimensional subsystem. This subsystem can be controlled and 

even show a robustness when neglecting the remaining infinite dimensional dynamics in 

the design. The obvious benefit of this approach is the possibility of applying various 

control methods from LPS to DPS. This feature is particularly useful for nonlinear or 

semi-linear PDE, since control design approaches in the late lumping category for 

nonlinear PDE are still in early stages of development.  

In the late lumping methods, however, the controller design is performed in the 

original infinite dimensional domain, and the control input is subsequently approximated 

for implementation. Therefore, the controllers in this category are more accurate even 

though dealing with PDE dynamics in original infinite dimensional domain makes their 

design and performance analysis much more difficult. The control design techniques 

pursued in this research include both methods but with more emphasis on the latter, since 

they have rarely been considered in ADP literature.  

 In another aspect, control of PDE is classified roughly into two types depending 

upon where the actuators are located: “in domain” control, where the actuation penetrates 

inside the domain of the PDE system or is evenly distributed everywhere in the domain 

(likewise with sensing) and “boundary” control, where the actuation is applied only 

through the boundary conditions. Boundary control is generally considered to be 

physically more realistic because actuation is nonintrusive (for example, think of a fluid 

flow where actuation would normally be from the walls of the flow domain). However, it 

is harder from both practical and theoretical points of view since one has at least an order 

of magnitude fewer control inputs than states. 

This dissertation deals exclusively with boundary control. Basically, more than 

one option exists when it comes to boundary actuation. In certain applications, it is 

necessary to actuate the boundary value of the state variable of the PDE which is referred 

to as the Dirichlet actuation. This is the case, for example, in flow control where 

microjets are used to actuate the boundary values of the velocity at the wall. In other 

applications, it is only natural to actuate the boundary value of the gradient of the state 

variable of the PDE which is referred to as the Neumann actuation. This is the case, for 

example, in thermal problems where one can actuate the heat flux or temperature gradient 
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but not the temperature itself. The developed control designs are implemented using both 

Dirichlet and Neumann actuation. 

The PDE control problems are complex enough even in one-dimensional cases, 

such as found in a string, a beam, a chemical tubular reactor, and so on. Each component 

can be unstable with a large number of unstable eigenvalues, and can be highly nontrivial 

for control. However, many physical DPS can evolve in two and three dimensions. It is 

true that a few of them are dominated by phenomena evolving in one coordinate 

direction, while the phenomena in the other directions are stable and slow. However, 

inherent multi-dimensional systems still exist. This is particularly the case with Navier–

Stokes or Burgers equations, where the full realism of turbulent fluid behavior is 

exhibited only in two or three dimensions. In Papers IV and V, we present such 

problems: state and output feedback ADP boundary control design for two dimensional 

nonlinear parabolic PDE equation when the domain shape is square. 

1.1. LITERATURE REVIEW 

The study of optimal control theory for infinite dimensional systems can be traced 

back to the beginning of the 1960s. The main goal of such a theory was either using the 

achieved results from optimal control of LPS through early lumping or to establish the 

infinite dimensional version of the fundamental theory in the late lumping category.  

In the early lumping approaches, either Galerkin [1], [2], or finite difference 

approximation methods (FDM) [3],[4] were used to convert the PDE into a set of ODE.  

In Galerkin methods, which uses proper orthogonal decomposition (POD) or finite 

elements [5], the reduced order model was obtained by transforming the PDE into “weak 

integral form” through appropriate spatial basis functions that approximate the solution of 

PDE. In contrast, in FDM, the reduced order model is extracted by approximating the 

PDE dynamics at specific points in space based on a structured mesh. One of the main 

benefits of using a structured mesh in DPS control is the easy observation of finite 

dimensional states by means of physical sensors in the spatial domain [6]. This is 

generally a difficult task in spectral Galerkin methods [6], [7] . There is extensive 

literature in convergence behavior and applicability of the control approaches developed 

based on these numerical methods for parabolic PDE [9]–[11]. 



4 

In contrast, the promising results gathered from the linear optimal control of LPS 

encouraged researchers in the late lumping category to develop the operator theory [12] 

for optimal control of DPS. This work extended further to boundary control [13] where 

the design was performed in the infinite dimensional setting. However, a closed-form 

solution requires solving the operator Riccati equations in a backward-in- time 

calculation. This process is significantly more time consuming in the infinite dimensional 

state space for DPS.  

Subsequently, various other approaches [14] were proposed. In particular, 

boundary actuation received special attention in the previous decade due to the 

backstepping approach [15]–[17] wherein the controller was developed through 

conventional calculus instead of the operator theory. Although this approach is not 

optimal, it can achieve “inverse optimality” [17].  The backstepping approach further 

enhanced the stability study through conventional calculus in the original PDE domain. 

The advances in ADP and its successful forward-in-time implementation of 

optimal control policy for LPS [18] led to further investigations of its application to 

DPS [19]–[24]. However, as mentioned earlier, due to the difficulty of designing the 

controller in an infinite dimensional domain and with PDE dynamics [24], the DPS 

system was usually discretized into an approximate finite dimensional state space [21]; 

subsequently, the well-developed ADP algorithms [25] were utilized for this reduced-

order model. The benefit of this design approach was the possibility of using either the 

state-of-the-art ADP or other suboptimal feedback control schemes. However, a degraded 

performance was observed due to the reduced order finite dimensional model in the 

control design. 

1.2. ORGANIZATION OF THE DISSERATION 

This dissertation includes five papers which introduce novel state-of-the-art ADP 

control approaches for uncertain parabolic PDE in one and two dimensions. The outline 

of this dissertation is summarized in Figure 1.1.  

The main purpose of the first stage of this research was the design and analysis of 

an online output feedback near optimal boundary controller for DPS in the finite 

dimensional domain. In particular, an ADP-based output feedback controller was 
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designed for DPS modeled by one-dimensional semi-linear parabolic PDE with input 

constraints. The nonlinearity in the dynamics is considered unknown but satisfies the 

locally Lipschitz continuous condition. The FDM is mainly used to find the approximate 

finite dimensional state space. Even reduced order models of the DPS pure state feedback 

control method seem inappropriate for practical applications due to the need for full state 

measurability. Therefore, the output feedback control design methodologies have gained 

considerable attention [26]–[30]. Accordingly, in this paper, an output feedback ADP 

control method with guaranteed closed-loop stability is illustrated for situations where 

very few sensors are available in the spatial domain and system dynamics are uncertain. 

Figure 1.1. Outline of five research stages. 
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In contrast, Stage 2 of this research is introduced in second paper, which shows 

how a new ADP-based boundary control was developed for uncertain DPS described by 

linear parabolic PDEs without model reduction. The boundary control problem is 

specifically examined, and both Neumann and Dirichlet boundary actuation conditions 

are considered. The controller’s development is novel and based on a new definition for 

the value functional as a surface integral. Consequently, the Hamilton Jacobi Bellman 

(HJB) equation and the optimal boundary control policy are derived through calculus in 

the infinite dimensional domain. The value functional is further approximated without 

iteration and as forward-in-time in order to design a suboptimal adaptive controller 

whereas the PDE dynamics are uncertain. The proposed suboptimal boundary controller 

is the first to be designed for a DPS according to the forward-in-time ADP without any 

model reduction and with provision of a closed-loop stability proof. 

Stage 3 of this research is introduced in Paper III, which addresses an output 

feedback boundary control scheme using ADP for uncertain DPS expressed as coupled 

semi-linear parabolic PDE. Once again, model reduction was not necessary. Similar to 

the second stage of research introduced in Paper II, the optimal control problem is 

formulated in the original PDE domain and solved forward-in-time without using any 

finite dimensional model approximation prior to the control design. Moreover, a neural 

network (NN) observer is proposed for the online estimation of states of the coupled PDE 

when the system dynamics are partially uncertain so that the need for availability of 

system states and accurate dynamics are relaxed.   

Stage 4 of this research is introduced in Paper IV, which addresses an ADP-based 

boundary control of two-dimensional (2D) uncertain Burgers equation without using 

model reduction. The optimal control problem again is formulated in the original PDE 

domain and solved forward-in-time without using any finite dimensional model 

approximation prior to the control design.  After defining an appropriate value functional 

for 2D geometry, the HJB equation was derived in the infinite dimensional space and the 

optimal control policy was obtained based on the necessary conditions of optimality.  

The final Paper designs and analyzes an output feedback ADP control method for 

2D uncertain nonlinear reaction diffusion PDE. The design extends the developed 



7 

approach for one dimensional setting which does not utilize model reduction. Hence, the 

HJB is derived and an adaptive algorithm is developed to approximate its solution in the 

PDE domain forward-in-time and without using policy or value iterations. A PDE 

observer is designed to estimate the unavailable state in the two dimensional domain. 

Moreover, the stability analysis is also carried in the original infinite dimensional domain 

using calculus. The boundary control problem which is more theoretically challenging 

and practically relevant is addressed. Since abstract operator theory is avoided, the Paper 

is comprehensible for majority of engineers that are not quite familiar with functional 

analysis. Simulation results confirm that the presented output feedback control method 

has good convergence and control performance on an uncertain unstable 2D diffusion-

reaction process. 

1.3. CONTRIBUTIONS 

Generally, the contributions of this research are two-fold: First and foremost, a 

novel design is presented of an approximately optimal controller based on ADP in 

forward-in-time manner for DPS governed by uncertain parabolic equations without 

model reduction. This further enhances the stability analysis in the original infinite 

dimensional domain where an ultimate boundedness guarantee is obtained for the closed-

loop system. Second, existing ADP approaches [19]–[24] for control of DPS systems rely 

on availability of system states. However, the spatially distributed nature of these systems 

makes output feedback control approaches significantly more useful and practical [26]–

[30]. Therefore, relaxing the requirement of sensing all states in Paper I for early lumping 

and Papers III and IV for late lumping category is another considerable contribution of 

this research. Specifically, the contributions of each Paper are given as follows. 

The main contributions of the Paper I include proposing an output feedback input 

constrained NDP-based optimal control for uncertain high dimensional nonlinear 

continuous-time systems and analyzing its applicability to boundary control of DPS 

modeled as one-dimensional parabolic PDE by using FDM model reduction. 

Accordingly, in Paper II, two novel NN frameworks are proposed for identifying 

the unknown PDE dynamics and approximating the value function in original infinite 

dimensional domain, respectively. The tuning law for the identifier has a special design 
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using basis functions as integral kernels such that the boundedness of identifier 

approximation error in the original PDE domain is guaranteed. This is substantially 

different from ODE-based NN identifiers [31] where stability is solely assured for finite 

dimensional models. In addition, a novel weight update law is proposed for the near 

optimal value function that minimizes the HJB approximation error in a forward-in-time 

manner. This in turn provides the system closed-loop stability in PDE domain, which is 

different from finite dimensional ADP approaches where stability is only guaranteed for 

reduced order models. 

The research introduced in Paper III was motivated by the fact that system states 

are not available in the entire spatial domain and the nonlinearity in coupled PDE 

dynamics can be highly uncertain; hence, an NN observer is proposed to estimate the 

states online when the nonlinearity in the coupled PDE dynamics is unknown. Combined 

with a novel NN adaptive boundary control method that minimizes the HJB 

approximation error forward-in-time in the PDE domain, the proposed observer-

controller framework will again provide the closed-loop stability guarantee in original 

infinite dimensional domain. 

Paper IV emphasizes the importance of higher dimensional PDE in various 

applications such as fluid flow and lack of ADP controllers in literature for these kind of 

DPS. This lack of ADP controllers motivated the authors to solve the boundary control of 

a multi-dimensional nonlinear PDE like 2D Burgers equation with unknown nonlinearity 

in PDE dynamics. Similar to Papers IV and V, the boundary controller is obtained 

without model reduction prior to controller synthesis. 

Finally, the fifth Paper designs the ADP control method for 2D uncertain 

nonlinear reaction diffusion PDE when only output is available. A PDE observer is 

designed to estimate the unavailable two dimensional state. Subsequently, the HJB is 

derived and an adaptive algorithm is developed to approximate its solution in the PDE 

domain. The real-world applications of PDE and in particular nonlinear reaction diffusion 

systems are almost in multi-dimensional domains. Although the design and analysis is 

much more challenging in two or three dimensions, very few ADP approaches were 

designed in these settings. Moreover, since the system is spatially distributed, it is 
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necessary that the controller only rely on availability of few measurable outputs rather 

than the state on whole spatial domain. However, most of developed ADP approaches in 

the literature, design and analyze the controller based on the assumption that state is 

available throughout the space. 
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PAPER 

I. NEAR OPTIMAL CONSTRAINED OUTPUT FEEDBACK BOUNDARY CONTROL 

OF ONE-DIMENSIONAL SEMI-LINEAR PARABOLIC PDE 

 

B. Talaei, H. Xu and S. Jagannathan 

 

This paper develops a novel neuro dynamic programming (NDP) based output 

feedback boundary control of distributed parameter systems (DPS) governed by one-

dimensional semi-linear parabolic partial differential equations (PDE) in the presence of 

control constraints and uncertain system dynamics. First, finite difference method (FDM) 

is utilized to obtain a reduced order model of parabolic PDE. Subsequently, a near 

optimal control scheme is proposed for the reduced order finite dimensional system by 

using neural network (NN) time-based approximate dynamic programming (ADP) when 

only outputs are available for measurement. In other words, the proposed ADP scheme 

relaxes the policy or value iterations and availability of system states. A NN is utilized to 

estimate unavailable states under unknown nonlinear dynamics. Moreover, a second NN 

is proposed to estimate a non-quadratic value function online. Subsequently, by using the 

identified states and dynamics from the observer and estimated value function, the 

optimal control input that inherently falls within actuator limits is obtained. Local 

uniformly ultimately boundedness (UUB) of the closed-loop system is verified by using 

standard Lyapunov theory. The performance of presented NDP control scheme is 

successfully verified by simulation on a diffusion reaction process.  
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1. INTRODUCTION 

 

Distributed parameter systems (DPS) are a major part of dynamical systems with 

wide range of industrial applications such as heat and mass transfer [1],[2], 

bioengineering [3], flexible structures [4],[5] and multi agent systems [6]. Since these 

systems are distributed in space, their states change with both position and time. As a 

consequence, their dynamics in state space are governed by partial differential equations 

(PDE) rather than ordinary differential equations (ODE) that describe the behavior of 

lumped parameter systems (LPS). In particular, parabolic PDEs model a broad range of 

DPS with applications in reaction-diffusion processes[7],[8] and energy management of 

buildings [9].   

In one aspect, depending on the location of actuators, control of DPS can be 

categorized into in-domain and boundary control [10]. Boundary control [11],[12] is 

important in DPS because of lower cost and convenience of actuator placement. In fact, 

in many DPS governed by parabolic PDE, such as heat or fluid flow, placing an actuator 

in the spatial domain is a quite difficult or impossible feat 0.  

From another aspect, the control design methodologies for DPS can be split into 

two general categories: late and early lumping. In the late lumping methods [14]-[18], the 

controller design is performed in the original infinite dimensional domain and the control 

input is approximated afterwards [18] for implementation.  Despite the accuracy of 

control design approaches in this category [17],[18], many of them deal with PDE 

dynamics through abstract representation formulated in functional analysis [19] and 

therefore attract limited interest in engineering practice. The second approach is referred 

to as early lumping [7],[23], [24],[46] where a finite dimensional state representation is 

first obtained and a controller is designed subsequently [20]. The obvious benefit of this 

approach is the possibility of applying various control methods of LPS to DPS. This 

feature is particularly useful for nonlinear or semi-linear PDE, since control design 

approaches in the late lumping category are still in early stages of development [21].  

In the early lumping approaches, either Galerkin [25],[46] or finite difference 

approximation methods (FDM) [27],[33] are used to convert the PDE into a set of ODE.  
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In Galerkin methods, which uses proper orthogonal decomposition (POD) [25] or finite 

elements [26], the reduced order model is obtained by transforming the PDE into “weak 

integral form” through appropriate spatial basis functions that approximate the solution of 

PDE. In contrast, in FDM, the reduced order model is extracted by approximating the 

PDE dynamics at specific points in space based on a structured mesh. One of the main 

benefits of using a structured mesh in DPS control is the easy observation of finite 

dimensional states by means of physical sensors in spatial domain [27]. This is generally 

a difficult task in spectral Galerkin methods [28],[37]. There is extensive literature in 

convergence behavior and applicability of the control approaches developed based on 

these numerical methods for parabolic PDE. See for example [6],[27],[44]-[46],[49] and 

the references therein. 

Optimal control, on the other hand, has emerged [29], and 

remained [14],[23],[30], as one of popular methods of controlling a DPS.  However, the 

real-time computation of optimal control [31] and the curse of dimensionality are 

significantly increased for DPS because of large scale nature of state space 

representation [30],[18].  In the recent decade, neuro-dynamic programming (NDP) was 

proposed [32] and established [41] as a new approach to find approximate but tractable 

solutions for optimal control of large scale and possibly uncertain systems.  The design 

and analysis of NDP based controllers for DPS subsequently appears to be a promising 

field of research [22],[23],[33] with enormous potentials that have yet to be discovered.  

The main purpose of this paper is design and analysis of an online output 

feedback near optimal boundary controller for DPS in the finite dimensional domain. In 

particular, an NDP based output feedback controller is designed for DPS modeled by 

one-dimensional semi-linear parabolic PDE with input constraints. The nonlinearity in 

the dynamics is considered to be unknown but satisfies locally Lipschitz condition. The 

FDM is mainly used to find the approximate finite dimensional state space. Even with 

reduced order models of DPS pure state feedback control method seems inappropriate for 

practical applications due to the need for full state measurability. Therefore, the output 

feedback control design methodologies have gained considerable attention [35]-[39]. 

Accordingly, in this paper, an output feedback NDP control method with guaranteed 
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closed-loop stability is illustrated for situations where only very few sensors are available 

in the spatial domain and system dynamics are uncertain.  

Despite various iterative NDP schemes in the literature [41] to obtain solution to 

the Bellman or Hamilton-Jacobi-Bellman equation, the large number of iterations within 

a sampling interval still makes their online implementation and stability analysis 

difficult [42].  However, in this paper a relatively new NDP scheme is developed based 

on conventional adaptive control method [43]. Moreover, by introducing a non-quadratic 

value function [47], it will be shown that the control design can adapt to actuators with 

magnitude constraints [48].  Boundedness of the error between the proposed control input 

and its truly optimal value will be proven for both state and output feedback schemes 

where this bound can be reduced through design parameters. Simulation results confirm 

that the combination of near optimal update law and the non-quadratic cost function can 

produce a satisfactory boundary control policy for regulation of unstable one-dimensional 

semi-linear parabolic PDE. 

Therefore, the main contributions of the paper include proposing an output 

feedback input constrained NDP-based optimal control for uncertain high dimensional 

nonlinear continuous-time systems and analyzing its applicability to boundary control of 

DPS modeled as one-dimensional parabolic PDE by using FDM model reduction. 

 The rest of the paper is organized as follows. In Section 0 the class of DPS under 

consideration is described and the finite dimensional state space is derived. Subsequently, 

the NN output feedback near optimal controller for the uncertain finite dimensional 

system is designed. In Section 3, the stability of proposed method in the finite 

dimensional domain is addressed. Section 4 demonstrates the simulation results and 

Section 0 provides the conclusions of the paper. 
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2. FINITE DIMENSIONAL REPRESENTATION OF DPS MODELED BY 

PARABOLIC PDE WITH BOUNDARY CONTROL INPUT 

 

In this section, after introducing the class of DPS, the FDM is utilized to obtain 

the reduced order model. 

2.1.  CLASS OF DISTRIBUTED PARAMETER SYSTEMS 

Consider a DPS modeled by one-dimensional semi-linear parabolic PDE with the 

following dynamics [11],[12]
 
given by

 

1 1

2 2

0

( , ) ( , ) ( , )          [0, ]

(0, ) ,

( , ) ,                       - , 1, 2

( ,0) ( )

t zz

M i M

x z t ax z t f x z z l

x t g u

x l t g u u i

x z x z

 

   



   



                                          (1) 

where 2( , ) ( )x z t H   is the system state with 2 ( )H  being the Sobolev space of second 

order on domain , 
tx stands for the derivative of x with regard to t ,

zzx is the second 

derivative of state x with respect to z , [0, )t   represents time, z represents the spatial 

variable and 0l  is a positive scalar. Here, 0a   is the known diffusion constant and

2 1(( ), ) :f H Cx z   represents an unknown nonlinear function with 1C  being the space 

of continuously differentiable functions, ( )iu t ,1 2i  , are the continuous boundary 

control inputs,
1 2,g g  are known constants, 0M  represents the saturation limit for the 

actuators and 2

0 ( ) ( )x z C  is the initial state of the system.  Next, the following 

assumption is necessary to proceed. 

Assumption 1 [50]: The function ( , )f x z  is locally Lipschitz continuous with 

respect to x that is 

1 2 1 2( , ) ( , ) ,ff x z f x z L x x                                                (2) 

where fL  is an unknown Lipschitz constant. This assumption is satisfied by practical DPS 

modeled by semi-linear parabolic PDEs in the literature [6],[17] ,[66].  Next, the finite 

dimensional representation of system will be derived.  

2.2. FINITE DIFFERENCE APPROXIMATE REPRESENTATION  

Keeping the time continuous, a set of points ; 0,...,iz i N in the domain are 

chosen where
0 0z    and

Nz l . The state of the system at these points is shown by vector
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x in this paper. For simplicity, it is assumed that these points are equally spaced along the 

domain. Define
1i iz z z     and 

ix to represent the state of the DPS at all points in the 

local neighborhood / 2( , / 2)i i ix z x z     (1 1i N   ). Substituting the second order 

accurate formula for 
zzx  at ; 0,...,iz i N [27] as  

21 1

2
|

2
( ),

2

i i i
z iz

x x x
x O z

z

  
 


                                                  (3) 

in system dynamics (1) and combining the system of equations in the matrix format, the 

approximated dynamics for the DPS can be obtained as 

1

1
1 2

2

2

2

2 1

2

2

0
2 1 ... 0

1 2 1... 0
0( , ) ,0

0 ... 1 2
0

 
   

                              
             

 
 



g

Ax

n
n

dx

agdt x
zdx

x ua
f x zdt

uz
ag

x
dx z

dt

x                           (4) 

where 1n N  , ( ) nx t   represents the discretized state, x  is its time derivative, n nA  is 

a constant matrix with the special structure as shown above, ( , ) nf x z  is discretized 

version of ( , )f x z [27] and 2ng  .  Therefore, the reduced order model for DPS (1) can 

be represented as 

( , ) ( , ) ,x Ax f x z gu h x z gu                                                     (5) 

where ( , ) ( , ).h x z Ax f x z     

Remark 1: Using Galerkin approach, a finite dimensional approximated dynamics 

for system (1) can be obtained in affine form [56] and be used in the optimal boundary 

control design. The Galerkin approach provides a finite modal space with lower 

dimensions [7]. However, more in-depth knowledge of DPS dynamics is required to 

extract the dominant modes of the PDE which should be obtained either analytically [56] 

or through experiments and simulations [34].  Besides, for the purpose of observability of 

the reduced order model in output feedback control, stronger assumptions are required on 

the number and placement of sensors in Galerkin approach [37]. As described in the next 

section , these assumptions can be relaxed when FDM is utilized for model reduction. 

Considering the size of state space for system dynamics (5) and the cost of sensor 

placement, a practical control approach for DPS should only rely on fewer physical 



16 

 

sensors in the spatial domain. Therefore, in the next section, the proposed output 

feedback NDP controller design will be explained by using the finite dimensional 

reduced order model for situations when all states are not available for measurement. 

Here, the input matrix g  is considered bounded such that Mg g‖ ‖ . Moreover, without 

loss of generality, it is assumed that the chosen mesh size z  is such that the 

controllability of the reduced order system is preserved after approximation, in the sense 

that there exists a continuous control policy within constraint bounds that stabilizes the 

system, with 0x   being a unique equilibrium point on the compact set n  . 

2.3. OUTPUT FEEDBACK CONSTRAINED NDP CONTROL DESIGN 

Consider the following functional over infinite horizon given by 

0

( , ) )) )( (( ,
t

QV x u N u dx t



                                                           (6) 

where ( , )V x u  denotes the cost function, ( )Q x  is a positive definite function penalizing the 

state x and ( )N u  is also a positive definite function that penalizes the control input u . In 

order to take into account input constraints as a priori in the design, if (.)  is a monotone 

saturation function with the bound
M i.e. ( )M M      , ( , )    , ( )N u is defined 

as [47] 

2
1

1 0

) 2 ( ) ,(
iu

i

i

N u r v dv 



                                                            (7) 

where 0ir   for 1 2i   are positive scalars and v is the integral variable. Next, the 

following standard assumption is needed. 

Assumption 2 [40]: It is assumed that saturation function (.) is Lipschitz 

continuous and its inverse function 1(.)  also satisfies the Lipschitz continuous condition 

as 

2

1

1

1 2( ) ,   
u

I

u

v dv L u u                                                       (8) 

where 
IL  is the Lipschitz constant. It should be noted that many saturation functions such 

as tanh(.)  and tansig(.)  that has quick convergence to M  satisfy this condition. The 

objective of the control design is to determine a continuous stabilizing policy that 
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minimizes the value function (6). Under the assumption that V is differentiable with 

regard to x , an infinitesimal equivalent to (6) is given by [53]  

( ) ( , )0 ( ) [ ].T

xQ x h x zN u V gu                                                   (9) 

where
xV is the derivative of V with regard to x . Subsequently, the Hamiltonian is 

expressed as 

2
1

1 0

(( , ) ( ) 2 ( ) [ ], ) ,
iu

T

i x

i

H x u Q x r v dv V x gh z u 



                                         (10) 

and the optimal control policy is obtained by using stationary condition 
i

H

u




 which is 

given by 

* 11
( ) ( ( )) ,

2

T

i i i xu x r row g V                                                      (11) 

where V  represents the optimal value function and ( )T

irow g denotes the i th (1 2i  ) row 

of matrix Tg . Equivalently, by defining the positive definite matrix R as 

1

2

0
,

0

r
R

r

 
  
 

                                                             (12) 

the optimal control input *u can be expressed as 

  * 11
( ) ( ).

2

T

xu x R g V                                                       (13) 

 Note that the non-quadratic value function (6) results in the optimal control 

policy (13) which satisfies the actuator limits. This is completely different from non-

constraint approximate dynamic programming (ADP) control [43] where the control 

constraints are not asserted. Substituting (13) into (10) yields the non-quadratic HJB 

equation in the form 

*
2

1 1

1 0

1
( ) 2 ( ) (, )

2
( ) 0.

iu

T T T

x i x x

i

V Q x r v dv V gz g Vh Rx      



                             (14) 

Before proceeding, the following mild assumptions are necessary. 

Assumption 3 [43],[23]: There exists a Lyapunov function ( )G x  for x   , such 

that 

2*( ( , ) ) ,x xG h x z gu G                                                   (15) 
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where 
xG  denotes the derivative of G  with respect to x  and   is a positive constant. 

Note that since u  makes the system uniformly asymptotically stable, the existence of a 

class Ƙ function ( )x  such that for x    

*( ( , ) ) ( ),xG h x z gu x                                                      (16) 

is guaranteed by Lyapunov converse theorem [64]. Consequently, knowing that every 

Lyapunov function ( )G x  is the value function for some meaningful cost 

function [54],[55], the assumption that (15) holds for ( )G x  can be satisfied by selecting 

appropriate (.)Q  and (.)N  in cost function (6) such that for x   one has 

2*( ) ( ) .xQ x N u G                                                        (17) 

It follows from HJB equation (9) that 

2* *( ( , ) ) ( ) ( ) .x xG h x z gu Q x N u G                                          (18) 

Assumption 4: For x   , ( )Q x in the cost function (6) is Lipschitz continuous 

i.e.  

1 2 1 2( ) ( ) ,QQ x Q x x xL                                                   (19) 

where QL is the Lipschitz constant. It should be noted that ( )Q x with the quadratic or any 

other polynomial structure satisfies this condition. Moreover, the x -derivative of basis 

function ( )x x is also assumed to be Lipschitz continuous for x   , i.e. 

1 2 1 2( ) ( ) ,x xx x x xL                                                      (20) 

where L is the Lipschitz constants. 

Assumption 5: It is assumed that there exists m n  sensors placed in the spatial 

domain and y Cx  where m nC  .  Moreover, the pair ( , )A C  is observable.  

As a practical example, C can be defined as 

1  if 
.

0  otherwise

i j

ij

y x
C


 


                                                           (21) 

The assumption that pair ( , )A C is observable can be justified with following lemma. 

Lemma 1: Suppose that there only exists a sensor present at the boundary
1z . Then 

the pair ( , )A C is observable. 
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Proof: If the sensor is placed at the boundary, the matrix 1 nC   can be expressed 

as 

1

[1,0,...,0].
n

C


                                                                 (22) 

Recalling the structure of matrix A in(4), it will be proven by induction that the 

observability matrix ( , )O A C is lower triangular and therefore has the rank of n . For this 

purpose, it will be shown that for 1 i n  , the i th entry of i th row of ( , )O A C  is nonzero 

and for 1i j n   , the j th entry of the same row is zero and therefore the ( , )O A C  has n  

independent rows. 

Since the i th row of ( , )O A C  is 1iCA  , according to definition of C ,  it is the first 

row of matrix 1iA  .  For 1i  , it is clear that the first element of first row of identity 

matrix I is nonzero and the rest of entries are zero.  Now suppose that the 1i  th row of 

( , )O A C  which is equivalently the first row of matrix 2iA  , namely 2

1{ }iRow A  ,  has its 1i 

th entry as nonzero i.e. 2[1, 1] 0iA i   , and the rest entries on its right hand side i.e. 

2[1, ]iA j  for i j n   are equal to zero. The i th entry of the i th row of ( , )O A C , namely 

1[1, ]iA i , can be calculated as 

1 2 2

1 1

2

2

2

2

[1, ] { } { } { } [0,..., 0 , ,...]

[1, 1] 0.

i i i T

i

i

i

A i row A col A row A
a

z

a

z
A i

  








 


  



                         (23) 

Its j th entry for 1i j n   can be determined as 

1 2

1 2

1 2

2

[1, ] { } { } [..., 0,...,0] [0,...,0, ,...] 0.i i T

j

n i j

n j

A j
a

row A ol
z

c A 

  

 

 


                      (24) 

It follows that the matrix ( , )O A C  is lower triangular for arbitrary value of n  

and subsequently has full rank and therefore the pair ( , )A C is observable. By increasing 

the number of sensors, the chance of full observability of the system increases, and the 

assumption that for a general matrix C , the pair ( , )A C  is observable is reasonable. 

Therefore, in the next section an observer will be developed for the system in the finite 

dimensional setting.  
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2.4. OBSERVER DESIGN 

The objective in this section is to introduce an observer for the estimation of 

system state in the presence of unknown dynamics when very few states are available for 

measurement. The estimated system state and unknown dynamics can be subsequently 

utilized in the controller design.  If the estimation of state vector x  is denoted by x̂ , 

consider the observer with dynamics 

ˆˆ ˆ ˆ ˆ( , ) ( ) ,x Ax f x z y Cx gu                                                 (25) 

where n mR   is the observer gain matrix. Subsequently, ( , )f x z  can be represented in NN 

approximated form on the compact set   as 

( , ) ( , ) ( , ),  T

f f ff x z W x z x z                                             (26) 

where ( , ) :   l

f x z  denotes the bounded and Lipschitz activation function, l n

fW   

represents NN identifier target weight matrix with the bound fMW [61],[62] on compact 

set   , and f is the bounded approximation reconstruction error. The bound and 

Lipschitz constant for f are represented by fM and L , respectively. Therefore, the 

identifier can be introduced with the following structure given by 

ˆ ˆˆ ˆ( , ) ( , ).f ff x z W x z                                                           (27) 

In order to make the NN identifier weight matrix close to its target value, the NN 

tuning law for weight matrix ˆ
fW  is provided as 

ˆ ˆ ˆ( , ) ,T T

f f f fW W x z y J                                                         (28) 

with f  being a design constant and the matrix n mJ R   being introduced to match the 

dimension of output error y  with ˆ
fW . Therefore, the error dynamics for the observer can 

be expressed as 

ˆˆ ˆ( ) ( , ) ( , )

ˆˆ ˆ ˆ( ) ( , ) { ( , ) ( , )} ( , )

ˆ ˆ( ) ( ( , ) ( , )) ( , ) ,

T

f f f f f

T T T

f f f f f f f f f

T T

f f f f f f

x x x A C x W x z W x z

A C x W x z W x z W x z W x z

A C x W x z x z W x z

  

    

   

      

       

     

                (29) 

whereas the error dynamics for the identifier weights, ˆ
f f fW W W  ,  are given by 

ˆ ˆ( , ) .T T

f f f fW W x z y J                                                           (30) 
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Under the update laws (25) and (28) for the observer, it will be shown in Section 

3 that in the presence of bounded inputs, the state estimation error x and weight estimation 

error fW will be uniformly ultimately bounded. In the next section, the output feedback 

optimal control design by using proposed observer will be illustrated by relaxing the need 

for boundedness of the control input.  

2.5. OUTPUT FEEDBACK BASED NEAR OPTIMAL CONTROLLER 

From the control policy (13), it is clear that in order to implement the truly 

optimal controller, the optimal value function ( )V x  should be obtained by solving the 

non-quadratic HJB equation (14). Since solving the HJB equation even for nonlinear 

systems with state measurements is very burdensome, traditional dynamic programming 

based optimal schemes [41] utilize two NNs, one for the value function, referred to as 

“critic” network and the second for the control input referred as “action” network in order 

to provide a near optimal control input [59]. However, in this paper, the NDP control 

scheme is realized online by using only a single NN. 

The value function ( )V x can be expressed by using a NN on the compact set  in 

the form 

( ) ( ) ( ),T

V VV x W x x                                                     (31) 

where r

VW   is the target NN weight vector, ( ) : n rx   is the bounded activation 

function and ( )V x  is the NN reconstruction error.  Subsequently, its partial derivative 

with regard to x is given by 

* ( ) ( ),T

x x V VxV x W x                                                       (32) 

where it is assumed that the NN reconstruction error ( )V x  and its gradient with respect to 

x are bounded above i.e. ( )V VMx   and ( )Vx VxMx  , respectively [59],[60].  Substituting 

the NN approximation of *

xV in the Hamiltonian yields 

*

2
1 1

1 0

0 ( ) ( )[ ( , ) (
1

2 ( ) ( ( ) )
2

( ) ) ] ,
iu

T

i

T

V x x V

i

HVr v dH Q x W x h x Rg g xz Wxv      



      
             

(33) 

where 11
( ) ( ( ))

2
[ ( , ) ( ) ].T

V V

T

H Vx xx R g xh x z x Wg         
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Similar to state feedback method described in [51], the general output feedback 

control framework is to approximate the value function and HJB equation by using the 

state estimation x̂ and approximated dynamics ˆ ˆ( , )f x z , and providing an update law that 

insures closed loop stability of the system. In order to achieve this result, the value 

function can be approximated as 

ˆ ˆˆ ˆ( , ) ( ),V xV x u W x                                                          (34) 

where ˆ r

VW   is the approximated weight matrix and ˆ( ) : n rx   is the bounded 

activation function which depends on state estimation x̂ . Subsequently, by using the 

estimated state x̂ and identified system dynamics ˆ ˆ( , )h x z  the approximated Hamiltonian 

can be expressed as 

ˆ ˆ2

0 0

2
1 1

1 1

1

ˆˆ ˆˆ ˆ ˆ ˆˆ( ) ( )[ ( , ) ] ( )

ˆ

2 ( ) 2 (

ˆ ˆ ˆ ˆ( )[ (

)

1 ˆ( )
2

, ) ( ) ].

i iu u

i i

T

x

i i

T

V

T T

V x x

H Q x V xr v dv r v dvh x z gu Q x

W x h Wx gz Rg x

 

 

 

 



    



  
               (35) 

Since 0H  , Ĥ can be represented as 

*

*

1

ˆ2
1

1

ˆ2
* 1

1

*

ˆ2 ( )

2

ˆˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )[ ( , ) ] ( )

ˆˆ ˆ ˆˆ[ ( , ) ] ( ) ( ) ( ) ( , ) ( ) ( , )

ˆˆ ( ) ( )

( )

ˆ

i

i

i

i

T T

V x V

u

i

i

x

u

T T

V x V x

u T

T T

V x

u

i

V

i

x

H H H Q x Q x W x h x z g W x

h x z g Q x Q x W x h x z W

r v dv u

u r v x h x z

W x g W x

v

u ug

d

 

 





 













      

   







 

 

2

,H

T



              (36) 

where the terms
1T and

2T can be further expanded as 

1

ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) ( , ) { ( ) ( )} ( , )

ˆ( ){ ( , ) ( , )},

T T T

V x V x V x x

T

V x

T W x h x z W x h x z W x x h x z

W x h x z h x z

   



   

 
                      (37)                                                                                                                                        

and 

2
ˆ ˆ( ) { ( ) ( )ˆ ˆ} ) .(T T T

V x V x x V xT W x g W x x g W x gu u u                                        (38) 

Therefore substituting (37) and (38) into (36) and defining

11 ˆˆ ˆˆ ( )( ( ( ) )
ˆ ˆ( , ) )

2

T T

x x Vx g R g Wh z xx       yields 



23 

 

*

ˆ2
1

1

ˆ ˆ 2 ( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , ) { ( )

ˆ ˆ ˆ( )} ( , ) ( ){ ( , ) ( , )} { ( ) ( )}

( ) .

ˆ

i

i

T T T

V V x V x

u

T T

x V x V x x

u

T

x H

i

i

V

H W Q x Q x W x h x z W x

x h x z W x h x z h x z W x x g

r v

W

d

ug

v

u

x

 

  









 



    

 

 

 

 

            

       (39) 

The objective here is to minimize the estimated Hamiltonian (45) along the 

system trajectory, such that approximate optimality can be achieved. Therefore, the 

update law for tuning the NN weights is found by minimizing Ĥ via normalized gradient 

descent scheme as 

2

ˆˆ ˆ ˆˆ ˆ( , ) ,
ˆˆ(1 )


   

 
V V

V

W H x u W
x W

                                              (40) 

where and are positive design constants. Finally, the control input can be expressed as 

11 ˆˆˆ ( ( ) ).
2

T T

Vxu R g x W                                                            (41) 

The flowchart of proposed output feedback control scheme is shown in Figure 2.1.  

Remark: (State feedback optimal control design) [51]: The state feedback version 

of proposed control approach can also be obtained by making some modifications to 

presented output feedback method. Assuming all system states are measurable, the 

identifier dynamics are provided as 

ˆ ˆ( , ) ( , ).T

f ff x z W x z                                                          (42) 

In order to find the update law for ˆ
fW , the observer (25) is first substituted by the 

following state estimator as 

ˆˆ ( , ) ,x Ax f x z gu Kx                                                        (43) 

where ˆx x x  is the state estimation error, n nK   is a positive definite matrix. The NN 

update law for weight matrix ˆ
fW  is provided by 

ˆ ,ˆ ( , )f f f f

TW W z xx                                                           (44) 

where 0f   is the design parameter. Therefore, the estimated Hamiltonian is expressed 

as 
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Figure 2.1. Flowchart of proposed output feedback controller. 

 

 

 

                   (45) 

where ˆ r

VW   is the estimated weight matrix for value function with the update law for 

tuning the value function NN weights as 

ˆˆ ˆ ˆˆ( , ) ,
ˆ ˆ1

V VT
W H x u W


 

 
  


                                                  (46) 

with 11 ˆˆ ( )( ( ( ) ))
2

ˆ
( , ) T

x

T

x Vx g R gh x Wx z     and  and   being positive scalars representing 

the tuning parameters.  Finally, the actual control input is obtained as 

11 ˆˆ ( ( ) ).
2

T T

x Vu R g x W                                                            (47) 

ˆ2
1 1

1 0

ˆˆ ˆ( ) ( )[ ( , ) ( )
1 ˆ2 ( ]) )
2

,(
iu

T

V x

T

i x V

i

r v dvH Q x W x h x z g xR g W  
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For stability proof of state feedback control design refer to [51].  Next the stability 

analysis for the presented output feedback control policy with proposed update laws is 

introduced. 
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3. STABILITY ANALYSIS 

 

Lemma 2: The matrix
n nA 

 defined as in (4) is negative definite. 

Proof: Refer to Appendix. 

Theorem 1: (Boundedness of observer): Let the initial NN observer error x and 

observer weight estimation error fW be residing in a compact set 
1
 and the proposed NN 

observer and its weight update law be provided as in (25) and (28), respectively. In the 

presence of bounded inputs, there exists a positive definite observer gain  and positive 

tuning parameter 1f  for the observer weight update law such that state estimation error

x  and weight estimation error fW are all uniformly ultimately bounded (UUB). 

Proof: Refer to the Appendix. 

Lemma 3: The following inequality 

1 2 3
ˆ ,H H H Hc x c x c   

                                                    
(48)  

holds where 
1Hc , 

2Hc  and 
3Hc  are positive constants.  

Proof: Refer to Appendix. 

Theorem 2: (Boundedness of closed-loop system states under approximate control 

input): Consider system (5) and let the NN observer, and its weight update law be 

provided as in (25), and (28) and tuning law for value function weights and control input 

be provided by (40) and (41), respectively with 0   and 
0  . Under the Assumptions 

1 to 5, the system state x , state estimation error x and weight estimation errors fW and VW

are all uniformly ultimately bounded (UUB). Moreover, the approximation error between 

the actual control input and truly optimal one is also bounded where the ultimate bound 

depends on estimation errors x and VW and reconstruction error
VM .  

Proof: Refer to Appendix. 
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4. SIMULATION RESULTS 

 

In this section the performance of proposed ADP based NN controller is 

examined by simulation on a semi-linear diffusion reaction process. Consider the plant 

with PDE dynamics given by 

2
0

1

1 ( ) 22

1 42

3 0

,                0 1
1 ( )


 





 
    

 

z z

t zzx x x e x z
z z

                               (49) 

with boundary and initial conditions given by 

1(0, ) 0,           (1, ) ( ),            ( ,0) sin( ).  x t x t g u t x z z                                  (50) 

This example is motivated by chemical reaction-diffusion processes where due to 

effect of the catalyst, the reaction takes place only at a local site [64]. The following 

values are selected as the model parameters: 
1 0.25  , 

2 15  , 
3 4  , 

4 10  , 
1 1g  and 

0 0.5z  . It is also assumed that the control input is subject to hard constraints with 

10 Mu .  For these values, it was verified that open loop system state blows up in 

finite time. In order to find the FDM reduced order state space model of the system for 

control synthesis as explained in Section 0, the spatial domain of system ( [0,1] ) is 

discretized into 10  intervals and therefore 0.1 z . The controller is subsequently 

implemented on the system with 0.05 z  using MATLAB which uses the implicit 

method of lines [63] for numerical solution of one dimensional PDE. The controller is 

updated and applied in real time setting with step size t of 1 msec in order to have 

acceptable performance and computation rate. In the following, the simulation results are 

shown and explained separately for output feedback and state feedback control methods. 

4.1. OUTPUT FEEDBACK CONTROL 

In this section the performance of output feedback controller is evaluated. It is 

assumed that three sensors exist in the spatial domain, two at the boundaries and one at

0.5z  . The observer gain 
20 3  is calculated such that

max ( ) 200A C   . The observer is 

designed with 10f   and 
20 3J 

 in update law (30) is selected as 
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1 6 1 7 1 7

1,...,1 0,..., 0 0,..., 0

0,..., 0 1,...,1 0,..., 0

0,..., 0 0,..., 0 1,...,1

J

   
 
 


 
 
  

.                                                         (51) 

For simulation of optimal control design, the following infinite horizon 

performance index  

1

0 0

( ) ( 2 ( ) ) ,

u

TV x x x v dv dt


                                                      (52) 

is considered where the chosen nonquadratic constrained function for control input is 

expressed as (.) 10 tanh(. /10)  . In order to implement the identifier, the NN activation 

function for ˆ( )kf x (1 )k n   is selected as: 2 3 4

2

0

1ˆ ˆ ˆ ˆ ˆ( , ) ([1, , , , ])
( )

T

k k k k kx z x x x x
z z

 





where

(.) tanh(.)  and 4  . Further, a combination of six radial basis functions (1 6)l l    are 

used to estimate * ˆ( )V x  with the inverse quadratic structure as 

1

1

2
1 2

ˆ ˆ( ),
1 ( )









 


 

 
l

l

n

l i l j

i j j l

x P x
z z

                                                  (53) 

where 3ˆ ˆ( ) { , }l j j jP x x x  ,  0.2,0.5,0.8lz  , {1,3,7,10}l  , 
1 .001  and 

2 30   . 

The parameters for the controller and its update law are chosen as 10 M
, 1   

and 20  . Note that the parameter 
WVb in the proof can be calculated as 5WVb  and 

therefore  WVb .  The initial conditions for observer weights are chosen as

ˆ (0) [1,1,1,1,1] T

fkW  and for value function weights as 2(0) 10 [1,1,1,0,0,0]T

VW   .  Figure 4.1 

shows the performance of controller in stabilizing system state ( , )x z t at origin. The 

control input is also shown in the state trajectory as (1, )x t .  

In order to compare the convergence behavior of HJB error with control input and 

verify the robustness of the controller to design parameters, simulation is repeated for 

different values of gain, control constraint, the robust gain and observer gain.   
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Figure 4.1. Closed loop state history of system under output feedback control law. 

 

 

 

Figure 4.2 shows that increasing the value of  will increase the convergence rate 

for HJB error, but it may result in overshoots in control input. As shown in Figure 4.3, 

reducing the control input constraint would smoothen and decrease the control input peak 

value. However, the smaller the control constraint, the longer it takes for control input 

and HJB error to converge. Subsequently, Figure 4.4 shows that increasing the update 

law parameter would reduce the control input but it has the adverse effect of slower 

convergence rate for HJB error.  

Figure 4.5 shows the robustness of controller to variations in the observer gain   

by depicting the control input and HJB error when   is reduced by half or to 0.1of its 

original value. As shown, decreasing the observer gain would reduce the initial peak 

value of control input and HJB error but it makes the HJB error and control input 

converge slower to zero consequently. It should be noted that faster convergence rate for 

HJB error compared to control input in all simulations confirms the capability of update 

law to obtain local optimality along system trajectories.   

4.2. STATE FEEDBACK CONTROL 

In this section the performance of state feedback controller is studied and 

compared with the output feedback control scheme. The optimal performance cost 

function is selected as to compare with (52) and the parameters for the controller and its 
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update law are also chosen similar to output feedback case. The initial conditions for 

identifier weights are chosen as [1,1,1,1,1] and for value function weights as 

210 [1,1,1,0,0,0]  . The tuning parameters for adaptive update laws are chosen to be 1, 

20  , 10f
 and 100K .  Figure 4.6 clearly shows that the controller stabilizes the 

system state at zero in 200 msec. 

 

 

 

 

Figure 4.2. Effect of design parameters on state feedback control input and HJB error                  

convergence. 

 

 

 

 

Figure 4.3. Effect of control constraint on control input and HJB error. 
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Figure 4.4. Effect of design parameters on output feedback control input and HJB error 

convergence. 

 

 

 

 

Figure 4.5.  Effect of observer gain on control input and HJB error convergence. 

 

 

 

By comparing Figures 4.6 and 4.1, the output feedback control input turns to have 

larger magnitude at the beginning because of observer initial conditions. However, the 

output feedback control policy is able to provide closed-loop performance similar to that 

of the state feedback design afterwards. This indicates the capability of observer in 

providing an acceptable estimate of system state within short period of time. 
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Figure 4.6. Closed loop state history of system under state feedback control law. 
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5. CONCLUSIONS 

 

In this paper, an output feedback ADP near optimal NN boundary controller was 

designed for DPS which is described by one-dimensional semi-linear parabolic PDE with 

control input constraints and unknown nonlinearity in dynamics. For controller synthesis, 

a discretized model of DPS by using finite difference approximation (FDM) appeared to 

provide satisfactory results. The FDM approach lead to an affine nonlinear finite 

dimensional dynamical representation of DPS where the boundary control input could be 

designed based on optimal control method for finite dimensional systems. Then a novel 

ADP scheme was provided by using two NNs to estimate unavailable states under 

uncertain system dynamics and approximate the optimal value function when only a few 

states were available for measurement in spatial domain. Since the input constraints were 

incorporated as a priori in the design, the control input lay inherently within the actuator 

limits. Uniformly ultimately boundedness (UUB) of the closed-loop system was 

successfully verified by using standard Lyapunov theory. Finally, Simulation results 

confirmed the effectiveness of output feedback controller on a diffusion reaction process. 
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APPENDIX 

 

Proof of Lemma 2 

Let 1[ ,..., ] 0T

nx x x  and suppose
ix is its first nonzero element. Subsequently 

1 1

2 2 2

1 1 2 2 2 3 12

( ... 0)
2 2

1 12

( 2 2 2 2 ... 2 2 )

( 2 2 2 ...),
i

T

n n n

x x

i i i i

a
x x x x x x x x x

z

a
x x x

x Ax

x
z





  

 

     


  



 


                                      (54) 

Using young inequality, one can write 2 2

1 12 j j j jx x x x    for 1i j n   . Therefore 

1 1

2 2 2 2 2 2 2 2

12 2
( 2 2 ... 2 ) ,

i ii i n n i

T

i

a a
x x x xx A x x x

z z
x x

 


        
                                

 (55) 

which shows that matrix A is negative definite. 

Proof of Theorem 1 

In order to prove the stability of the observer, consider the Lyapunov function 

given by 

1 1
( ).

2 2

T T

c f fL x x tr W W                                                 (56) 

Subsequently, by taking its derivative cL one has 

ˆ( ) (( ) ( ( , ) ( , ))

ˆˆ ˆ( , )) ( ( ( , ) ))

T T T T

c f f f f f

T T T T T

f f f If If If If

L x x tr W W x A C x W x z x z

W x z x tr W W x z y J

 

   

     

   
                  (57) 

ˆ ˆ( ) ( ( , ) ( , )) ( , )

ˆ( ( )) ( ( , ) ).

T T T T T T

f f If f f f

T T T T

f f f f f f

x A C x x W x z x z x W x z x

tr W W W tr W x z y J

   

 

     

  
 

Since the activation function f  is bounded on   ,  using Cauchy Schwarz 

inequality yields  

ˆ( ( , ) ( , )) 2 .T T

f f f f fMx W x z x z W x                                       (58) 

Moreover, by using Young’s inequality one has 

222 1ˆ( , ) ,
4

T T

f f f fM fM fx W x z x W x W                                      (59) 
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and 

221 1
.

2 2

T

f fM fMx x x                                                      (60) 

Therefore 

2 22 2 2 22
2 2 2

max

2 2 2 2 22 2 2

max

2 22 2
2 2

1 1 1 1 1
( ( )) 2

2 4 2 2 2

1 1
( ( ) 1 (3 ))

2 4

1 1 1 1 1 1 1
( ) ( ) ( )

2 2 2 2 2 2 2


    

   

     

        

       

          

c

c fM f fM f fM f f

f fM f fM fM

f f fM fM f f f c

L A C x x W x W x W

W W y J A C C J

x W W x W .

    (61) 

where
max ( )A C  is the maximum eigenvalue of matrix A C ,  

2 22

max ( ) 1 (3 )      fMA C C J  and 2 21 1 1
( )

2 2 2
    c fM fM fW  .  

Therefore since the system is observable, one can arbitrarily choose  such that

0  . Consequently, by choosing 1f  , the observer dynamics are UUB [64]. 

Proof of Lemma 3 

H  can be expressed as 

1 2

1

3

[ ( , ) ( ) ]

[ ] [ ]

ˆ( ) [

1
(

]

) ( )

ˆ ,

( )
2

T

H Vx x

VxM fM fM fM M M VxM VxM fM fM fM M M

VxM VxM fM fM fM M M

H H

T

V

H

Vh x z g x

A x W g A x

x R g

W g

A x x W g

c

x

x c x c

W  

        

    

   

       

    

  

         (62) 

where 1 ,H VxMc A  2H VxMc A  and 3 [ ]H VxM fM fM fM M Mc W g      . 

Proof of Theorem 2 

If the Lyapunov function
bL is defined as

1
,

2

T

b V VL W W  taking its derivative bL  and 

substituting update law (40) yields 

*

2 2

ˆ2
1

1

ˆˆ ˆ ˆ ˆ( , )
ˆ ˆˆ ˆ

( )

ˆ ˆ ˆ ˆ ˆ[ ( ) ( ) ( ) ( , ) { ( ) ( )} ( , )

ˆ ˆ( ){ ( , )

(1 )

( , )}

(1 )

ˆ 2 ( )

{ ( ) (

i

i

T

T T T V

b V V V V V V

T T T

V V x V x x

u

T T

V x V x

V V

u

i

x

i

W
L W W W W W W

W Q x Q x W x h x z W x x h x z

H x u
x W x

W x h x z h x z x

r

W

W

v dv


  

    

  





  
   

 



   

  

 





 

)} ( ) ( ).ˆ ]T T

V x H V V Vx g W x g W W Wu u     

     (63) 
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Consequently: 

*

ˆ2
1

2 2
1

ˆ{ ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( , ) { ( ) ( )} ( , ) ( ){

ˆˆ ˆ
2 ( )

ˆ ˆˆ ˆ(1 ) (1 )

ˆ

( , ) ( , )}

ˆ{ ( ) ( )} ( ) }

i

i

TT
VV V

b

u

T T T

V x V x x V x

T T T

V x x V x

u

H V

T

V

V

i

iV

WW W
L Q x Q x

W x h x z W x x h x z W x h x z h x z

W x x g W x g W

r v dv
x W x W

u W Wu

   

 


  

  





  



 
   

 

  

   

 

.T

V W

                (64) 

Based on assumption 4 one has 

ˆ( ) ( ) ,QQ x Q x L x                                                         (65) 

and since * ˆ,M Mu u     , based on assumption 2 

*

ˆ2 2
1

1 1

2 ( ) 2 2 . 

 

 
i

iu

i I i i I

i u i

r v dv u L RL r u                                           (66) 

Noting that function (.)  satisfies the Lipschitz condition with Lipschitz constant L and

V VMW W , u  satisfies 

1 1 1

1

1 1ˆ( ( ) ) ( ( ) )
2

ˆ

2

1
( )

2

1ˆ( ) ( ( ) ) ( ).
2

ˆ



 

    

    

  



   

    

T T T T

x V x V V M

T T

V V V M xM Mx Vx V VM

R g W R gx x Wu L R g

W W L R g W L W xx x

                     (67) 

Therefore, 

*

ˆ2
1 1

1

2 (( ) ).   



   
i

i

u

i I

i

M xM V VM VM

u

L R R g W L Wv d xr v L                               (68) 

 

Besides, since (.)x xM  , 

ˆ ˆ( ) ( , ) ( ).T

V x VM xM fM f fMW x h x z W W                                                   (69) 

Further, based on Assumption 3, since (.)x  is Lipschitz one has 

ˆ ˆ ˆ ˆ ˆ ˆ{ ( ) ( )} ( , ) { ( ) ( )} ( , ) ( , )

ˆ ( ) . 

     

 

    

  

T T T

V x x V x x f f f

VM VM fM fM fM

W x x h x z W x x Ax W x z x z

W L A x x W L W x
                  (70) 

Accordingly, 

ˆ( ){ ( , ) ( , )} .T

V x VM xM hW x h x z h x z W L x                                             (71) 

Since ˆ
Mu  , 

ˆ{ ( ) ( )} ˆ .T

V x x VM M MuW x x g W L g x                                               (72) 
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In addition since 

* 1 1 ˆˆ ( ) ( ( )ˆ ) 2
1 1

( ( )) ,
2 2

T T T T
x xV V V Mu u u R x xg W R g W         

                  
(73) 

and alternatively using (67) 

2 1

ˆ( ) ( ) ( ) 2

ˆ ( ).

T T

V x V V x V xM M

V xM M xM V VM VM

MuW x g W W x g W g

W g L R W W

u

L x 

   

  

  

  
                                  (74) 

Therefore, 

  

2 2

1 2 1

2

2 1 2 1

1

ˆˆ ˆ

ˆ ˆˆ
{( ( )

ˆ ˆc

ˆ(1

)

ˆ ˆˆ

) (1 )

c

TT
VV V

b Q VM fM fM fM VM xM h VM M M

M VM H xM VM

T

V

V M VM

VM xM fM f H V xM M VM V xM M M

V

I

x

WW W
L L W L W W L W L g

L R R g L W x L L W W g R x W L A x x

W W x W g L R W g L R

x W x W

L

 

    

 

   



     


 

 

 

    

   




  






 

1 1

3(2 ) ( )}

.

V

xM M M M xM V M VM VM xM fM H

T T

V V V

I IL L

W

g L R R g W L R R g W c

W W W W

   



 



     



 (75) 

Therefore since ˆ ˆˆ ˆ, 11, ,  V Vx W x W  using Cauchy-Schwarz and Young 

inequalities ( 2 21

2 2




 ab a b  ) with 5   yields 

2 2
1 2 2

2

2 22
2 1 2 2 2 2 2 2 1 2

2

5
( ( )

2

5
) ( )

2

5 5 5
( ) ( )

2

ˆ ˆ 1

ˆ

2 2

5

2

ˆ 210(1 )

T

TV V

b V V Q VM fM fM fM VM xM h

VM M M M VM H VM

xM VM M VM xM fM f xM M

T

V

I

V

W W
L W W L W L W W L

W L g L R R g L W c x W L A x

L L W g R x W W g

x W

L

L R W



   

  

 


  









   







 

     

   

 

 




2

1 2 2 2

1 3

2 1 2 2

2 2 22

2

5 5
(2 ) ( )

2

1

2

ˆ ˆ 1

ˆˆ 210(1 )

2

5
( )

2

,

xM M M M xM V H VM xM fM H

xM M VM VM

T

V V

V x Wf f

I

V

WV V b

T

g L R R g W c W c

g L R W

W W
W b x b

L

x
W b W

W





 

 



    

 

 









 


  



   




         (76) 
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where 

1

2 2 2 1 2

2

2 2 2

2 2 1 2 1 2

5
( ( )

2

5 5
) ( ) ( ) ,

2 2

5
,

2

5 5
( ) (2 ) ,

2 2

x Q VM fM fM fM M VM VM xM h

VM M M H VM xM VM M

Wf VM xM fM

WV xM M xM M M M M

I

I x

b L W L W L R R g L W W L

W L g c W L A L L W g R

b W

b g L R g L

L

L R R g

  

   

 

  

 



 



 

 

   





 

    

   



  

                     (77) 

and 2 2 2 1 2 2

1 3

11 11 11
c ( c ) ( ) .

4 4 4

1

2
         b H VM xM fM H xM M VM VMW g L R W If 

0 WVb   , define 

0    .  Moreover, consider the Lyapunov function ( )aL G x .  Taking its derivative aL

yields 

 
2*ˆ( ( ) ) ( ) .a x x x x xL G f gu G f gu G gux Gx G gu                                  (78) 

Therefore substituting (67) into (78) and using Young inequality yield 

222 2 2 2 1 2 2

1 2 3

1

22 2
2 1 2 2 2 2 1 2 2

2 3

1 1
( )

2 2

1 1
.

2 2

a x x x x M xM V

M VM M VM

L G G gu G G L R g W

L R g L W x L R g



  

     



 



 

        

 

            (79) 

Taking 
1 2 3      ,  one has 

2 221
,

2
a x WV V x aL G a W a x                                                    (80) 

where 

2
2 1 2 2

1

2
2 1 2 2 2

2

1
,

2

1
,

2



 














WV M xM

x M VM

a L R g

a L R g L W

                                                  (81) 

and 
2

2 1 2 2

3

1
.

2
a M VML R g 



  

Closed loop stability proof: Consider the Lyapunov function: a a b b c cL L L L     , 

where a , b and c are positive constants. Taking the time derivative of L yields 

2

2 22

2 22 2

1

2

1 1
( ) .

2 2

1

2

        

           

       

       

a a b b c c a x a WV V a x a a

b V b x b Wf f b b c c If f c c

L L L L G a W a x

W b x b W x W

          (82) 
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Subsequently, 

2 2

this term should be 0

this term should be<0

this term should be<0

22

2

2 2

2

1

2

[ ]
2

1 1
( )

2 2

4

2

1 1

4

1 1
( )

2 2 2

a b V b V a WV V

c

a x b x

c

f f b Wf f

c
f f

xG W W a W

a b x

W b W

L

W

      

 
 


 






  

  

  

 

  

 .L

                          (83) 

where 
L a a b b c c         .Therefore if

4
 


b a WVa and 

42
max{ [ ], },

( 1)


  

 
 



b Wf

c a x b x

f

b
a b  

the following inequality for L  holds as 

22 2 21

4

1 1 1 1
( ) .

2 2 2 2 2


             c

a x b V c f f LL G W x W                             (84) 

Note that according to Theorem 3, 1f    and 0  . Therefore L  is less than zero  

provided that 

2 L
x

a

G


 
  or 

4

 
 L

V

b

W or 
4

( 1)

L
f

c f

W


 



or 

2 L

c

x


 
 .  

Note also that the bounds for x , VW , fW  and x  can be tuned by changing design 

parameters  ,  (by changing  ), f and   (by changing observer gain  ), respectively. 

Accordingly, the closed loop system is UUB [64]. The simulation results demonstrate 

that the bounds are reasonably small through appropriate selection of these design 

parameters.  Besides, using (67) yields 

1

1

* 1
ˆ ( )

2

4 21
( ).

2

M xM V VM VM

L L

M xM VM VM

b c

u u u L R g W L W x

L R g L W

 

 

 

 
 

   





    

  

                                                (85) 

Consequently, the approximation error between the actual control and truly 

optimal policy is also ultimately bounded with the ultimate bound dependent on 

estimation errors x , VW and reconstruction error
VM . Furthermore, the ultimate bound can 

be tuned by changing the design parameters ,   and by increasing the number of 

neurons.  
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II. BOUNDARY CONTROL OF LINEAR UNCERTAIN ONE DIMENSIONAL 

PARABOLIC PDE USING APPROXIMATE DYNAMIC PROGRAMMING 

 

B. Talaei , S. Jagannathan  and J. Singler 

 

This paper develops a near optimal boundary control policy for distributed 

parameter systems (DPS) governed by uncertain linear one-dimensional parabolic partial 

differential equations (PDE) under Neumann or Dirichlet boundary control conditions by 

using approximate dynamic programming (ADP). A quadratic surface integral is 

proposed to express the optimal cost functional for the infinite dimensional state space as 

extension of its representation for lumped parameter systems (LPS). Accordingly, the 

Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite dimensional 

domain without using any model reduction. Subsequently, a neural network (NN) 

identifier is developed to estimate the unknown spatially varying coefficient in PDE 

dynamics. Novel tuning law is proposed using basis functions as integral kernels to 

guarantee the boundedness of identifier approximation error in PDE domain. Since 

solving the HJB equation for the exact optimal value functional is burdensome, a radial 

basis network (RBN) is subsequently proposed to generate a computationally feasible 

approximate solution for the optimal surface kernel function online and in a forward-in-

time manner. The tuning law for near optimal RBN weights is also newly created such 

that the HJB equation error is minimized while the dynamics are identified and closed-

loop system remains stable in PDE domain. Consequently, the near optimal integral 

boundary control policy is derived. Ultimate boundedness (UB) of the closed-loop system 

is verified by using the Lyapunov theory. The performance of proposed controller is 

successfully confirmed by simulation on an unstable diffusion reaction process under 

various boundary conditions.  
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1. INTRODUCTION 

 

 Distributed parameter systems (DPS) are a major part of dynamical systems with 

wide range of applications [1]–[7]. As the name suggests, DPS arise in environments 

(e.g. heat and mass transfer [1], diffusion-reaction processes [2],[3], flexible structures 

[5], wave equation [6], swarm formation control [7], etc.) where system behavior changes 

continuously throughout the space . Similar to the case of lumped parameter systems 

(LPS), the attributes of a controller design for DPS should include: 1. a simple and 

reliable design; 2. feasible real-time implementation; 3. being robust to disturbances and 

modeling errors; and 4. closed-loop stability. However, the major challenge in the control 

of DPS when compared to a LPS is the infinite dimensional nature of state space modeled 

by partial differential equations (PDE). This characteristic makes control design difficult 

in contrast to a finite set of ordinary differential equations (ODE) in LPS. 

The promising results gathered from the linear optimal control of LPS encouraged 

researchers to develop the operator theory [8] for optimal control of DPS. This work was 

extended further to boundary control [9] where the design is performed in the infinite 

dimensional setting. However, a closed-form solution requires solving the operator 

Riccati equations backward in time. This is significantly more time consuming in the 

infinite dimensional state space for DPS. Subsequently, various other approaches under 

the general category of optimize-then-discretize control [10],[11] were proposed. In 

particular, boundary actuation received special attention in the previous decade due to 

backstepping approach [12]–[14] wherein the controller is developed through 

conventional calculus instead of operator theory. The backstepping approach further 

enhances the stability study through conventional calculus in the original PDE domain. 

The advances in approximate dynamic programming (ADP) and its successful 

forward-in-time implementation of optimal control policy for LPS [15], motivated 

researchers to investigate its application to DPS as well [16]-[21]. However, due to the 

difficulty of designing the controller in infinite dimensional domain and with PDE 

dynamics [21], the DPS system was usually discretized into an approximate finite 

dimensional state space [22] and subsequently the well-developed ADP algorithms [24] 

were utilized for this reduced order model. Design of a controller in a finite dimensional 
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state space is broadly categorized as discretize-then-optimize [23] method. The benefit of 

this design approach is the possibility of using either the state of the art ADP or other 

feedback suboptimal control schemes. However, its limitation is the possible degraded 

performance due to the reduced order finite dimensional model in control design. 

In contrast, in this paper, a new ADP based boundary control of DPS governed by 

uncertain linear parabolic partial differential equations is introduced. The boundary 

control problem is specifically examined and both Neumann and Dirichlet boundary 

actuation conditions are considered. Unlike aforementioned ADP based control methods 

for DPS, no model reduction is utilized prior to the control design. The controller’s 

development is novel and based on a new definition for the value functional as a surface 

integral. Consequently, the Hamilton Jacobi Bellman (HJB) equation and the optimal 

boundary control policy are derived through calculus in the infinite dimensional domain. 

The value functional is further approximated iteration-free and forward-in-time in order 

to design a suboptimal adaptive controller whereas the PDE dynamics are uncertain. The 

proposed suboptimal boundary controller is the first to be designed for a DPS according 

to the forward-in-time ADP without any model reduction and with providing closed-loop 

stability proof. 

Many recent ADP algorithms use policy or value iterations to find the 

approximate optimal control [24]. As their name suggests, these methods begin with an 

initial control policy and reach to the optimal one by iterating value or policy evaluation 

and improvement cycles at each time step. In order to reduce the computational burden, 

new ADP algorithms [25] have suggested adaptive laws to satisfy the HJB equation 

gradually along system trajectories. This advantage comes with the cost of less accuracy 

in finding the optimal control. However, for DPS control design, reducing the 

computations is a major priority since the number of system states is theoretically 

infinity. Therefore, the proposed boundary control policy in this paper is based on an 

iteration-free adaptive scheme with novel update laws that can achieve system stability 

and local optimality along trajectories whereas the computations are significantly 

reduced. Lyapunov analysis demonstrates that provided an initial admissible control 

policy [26], the error between the actual and truly optimal control will always remain 

bounded with tunable bounds whereas all approximation reconstruction errors are 
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considered. Simulation results confirm that the presented approach has good convergence 

and control performance on parabolic PDE dynamics. 

The development of the controller is as follows. First, it will be shown that a 

surface integral is a good representation for the quadratic value functional in PDE state 

space. Accordingly, the HJB equation is formulated in the infinite dimensional setting. 

Subsequently, the optimal boundary control policy is derived by using necessary 

conditions of optimality. Since the system dynamics are continuous, solving the HJB 

equation requires the PDE dynamics to be known [24]. Therefore, a neural network (NN) 

method is proposed based on a PDE state estimator and an unconventional weight update 

law to identify the unknown spatially varying coefficients in the PDE model. 

Subsequently, the surface kernel function is approximated as infinite dimensional array of 

parameters to construct the optimal value functional by using a radial basis network 

(RBN). Consequently, the approximated optimal control policy is derived by using the 

estimation of value functional and identified system dynamics. A diffusion-reaction 

process is considered to assess the performance of control approach through simulation. 

Accordingly, in this paper two novel NN frameworks are proposed for identifying 

the unknown PDE dynamics and approximating the surface kernel function, respectively. 

The tuning law for identifier has a special design using basis functions as integral kernels 

such that the boundedness of identifier approximation error in original PDE domain is 

guaranteed. This is substantially different from ODE-based NN identifiers [19] where 

stability is solely assured for finite dimensional model. In addition, a novel weight update 

law is proposed for the RBN near optimal surface kernel that minimizes the HJB 

approximation error in a forward-in-time manner. This in turn will provide the system 

closed-loop stability in PDE domain which is different from finite dimensional ADP 

approaches where stability is only guaranteed for reduced order model. 

Notations: Throughout the paper, .  stands for Euclidean norm for vectors or 

Frobenius norm for matrices. We recall the inequality 
2. . F  where 

2.  and . F
 

represent the induced 2 norm and the Frobenius norm, respectively. The 
2
 norm is also 

defined as 
1

2 2

2
0

. = ( . )

l

dz . 
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The rest of the paper is organized as follows. In Section 2, the class of DPS under 

consideration is described and the state feedback optimal control approaches are 

explained separately for different boundary conditions. Section 4 demonstrates the 

simulation results and Section 5 provides the conclusions of the paper. 
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2.  APPROXIMATE OPTIMAL CONTROL OF PARABOLIC PDE 

 

In this paper, a DPS governed by an uncertain linear one-dimensional parabolic 

PDE  

2

2

( , ) ( , )
= ( ) ( , ),

x z t x z t
z x z t

t z


 


 
                                             (1) 

is considered, where 
2(., ) [0, ]x t l  is the system state with [0, ]z l  being the spatial 

variable, > 0l , t  representing time and 
2
 being the Sobolev space of second order; 

x

t




 

is the time derivative of x , 
2

2

x

z




 is its second spatial derivative and 

1(.) ([0, ])C l   is an 

unknown spatially varying coefficient with 
1C  being the space of continuously 

differentiable functions. Considering the above PDE dynamics and assuming that 

measurement of system state is available throughout the spatial domain, in the following 

two subsections the ADP controller is designed for Neumann and Dirichlet boundary 

conditions, respectively. 

2.1. NEUMANN BOUNDARY CONTROL 

  Consider the linear DPS (1) with Neumann boundary control at =z l  and general 

Robin boundary condition at = 0z  as  

= =0| = , | = (0),z l z

x x
gu hx

z z

 


 
                                               (2) 

where u  is the control input and ,g h  are known constants. The objective is to design 

a controller to minimize the following infinite horizon cost functional V  given by  

 2

0

( , ) = ( ) ,
t

V x u Q x ru dt



                                                          (3) 

where r  is a positive constant and ( )Q x  is a positive definite function. If the system state 

were a finite dimensional 1n  vector 
fx , it is well-known that ( )fQ x  could be defined in 

quadratic form as  

=1 =1

( ) = =
n n

T

L f f l f f l f
i ij j

i j

Q x x Q x x Q x                                                    (4) 
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where 
lQ  is a positive definite n n  kernel matrix, 

f
i

x  is the i th element of vector 
fx  and 

l
ij

Q  is the entry of matrix 
lQ  at the i th row and j th column. However, in the case of 

DPS, since there are infinitely many states 
0 1[ ( ), ( ),..., ( ),...]T

kx z x z x z  [0, ]iz l  [29] that are 

continuous in the spatial domain, the finite dimensional summations in (4) should be 

substituted by integrals. Therefore, intuitively, taking , [0, ]s z l  as continuous spatial 

variables for a surface kernel function ( , )q s z  which resemble discrete variables ,i j  as 

rows and columns of matrix 
lQ  in ((4)), ( )Q x  for DPS can be specified equivalent to ((4)) 

in the following surface integral form as  

0 0

( ) = ( ) ( , ) ( ) ,

l l

Q x x s q s z x z dsdz                                                 (5) 

where 
2(.,.) ([0, ],[0, ])q C l l  and ( )x z  is short form of ( , )x z t . Note that (.,.)q  is a two 

dimensional continuous kernel function that has the same role of the kernel matrix 
lQ  in 

finite dimensional definition (4). 

Remark 1: In order to further clarify the definition of ( )Q x  in ((5)) as extension of 

finite dimensional definition (4), take 
0 1 10 = ... =n nz z z z l     and 

0 1 10 = ... =n ns s s s l     as two partitions for [0, ]l . Assigning 1= [ ( ),..., ( ),..., ( )]T

f i nx x z x z x z  

as a 1n  finite dimensional subset of x  and defining 
1=i i iz z z    and 

1=i i is s s    for 

1 i n  , one can express ( )Q x  in (5) as  

0 0

=1 =1

( ) = ( ) ( , ) ( )

( , )

l l

n n

f i j f i j
i j

i j

Q x x s q s z x z dsdz

x q s z x s z  





                                                (6) 

where the Riemann approximated definition [37] of integrals is used. By defining 

= ( , )l i j i j
ij

Q q s z s z  , equation (6) can be viewed analogous to definition of 
LQ  in (4). This 

implies that definition of ( )Q x  in ((5)) reduces to (4) for conventional finite dimensional 

state spaces. In order to proceed, the following assumption is necessary: 

Assumption 1: The function (.,.)q  is symmetric, i.e. ( , ) = ( , )q s z q z s , and ( )Q x  is 

positive definite, i.e. 2

2
( ) minQ x q x  with 

min qq b  where 
qb  is a positive constant that will 

be defined later in the paper. 
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Below, an HJB equation is derived for the Neumann boundary control problem 

with cost functional V  as in (3). To our knowledge, thorough results for parabolic PDE 

boundary control problems with the infinite horizon cost functional (3) are not available; 

rigorous results do exist when the infinite horizon cost functional contains an exponential 

weight as in [30] and [31]. Instead of a fully thorough derivation of the HJB equation 

here, we proceed by extending a formal derivation inspired from finite dimensional 

dynamic programming. 

The optimal cost functional is represented by *( , )V x t . Similar to ADP control 

design of linear LPS with quadratic cost function [27], if 
1( , ) ([0, ],[0, ])p s z C l l  is a 

symmetric kernel function, *( , )V x t  can be represented by a surface integral as  

* * *

0 0

1 1
( , ) = ( ( ), ) = ( ( ), ) .

2 2

l l

V x t V x z z dz V x s s ds                                     (7) 

where *

0

( ( ), ) = ( ) ( , ) ( )

l

V x z z x s p s z x z ds  or *

0

( ( ), ) = ( ) ( , ) ( )

l

V x s s x s p s z x z dz . Note that the last 

equality in (7) is obtained by changing the order of integration. 

Remark 2: Although the representation (7) was mainly inspired from finite 

dimensional ADP controller designs, it can also be derived more rigorously using 

operator theory. The optimal cost function * 2: (0, )V l   is known to be expressed as [9]  

*

0
( ) = ( )[ ]( ) ,

l

V x x z x z dz                                                               (8) 

where 2 2:   is a bounded linear operator that solves the operator algebraic Riccati 

equation. If   is a Hilbert-Schmidt operator, there exists a kernel function ( , )p z s  such 

that [38]  

0
[ ]( ) = ( , ) ( ) .

l

x z p z s x s ds                                                             (9) 

Substituting (9) into (8) yields to representation (7) for *( )V x . It has been shown that the 

operator   for the type of control problem discussed here is indeed Hilbert-Schmidt [9]. 

This will further prove the existence of integral boundary control policies derived in the 

following. 

By taking the current time interval [ , )t t t , V  in (3) can be represented in the 

recursive form as  
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 2( , , ) = ( ) ( , , ),

t t

t

V x u t Q x ru dt V x u t t






                                        (10) 

where ( , , )V x u t t  is the cost to go from time t t  to  . Hence, the optimal value 

functional can be represented as  

 * 2( , ) = { ( ) ( , )}.min

t t

u
t

V x t Q x ru dt V x t t






                                        (11) 

Now by invoking the principle of optimality, Equation (11) becomes  

 * 2 *( , ) = { ( ) } ( , ).min

t t

u
t

V x t Q x ru dt V x t t






                                       (12) 

 It is assumed that *( , )V x t  is Gáteaux analytic [32], i.e. its differential with respect 

to infinitesimal change of state x  exists in the direction of system trajectory. If an 

integral functional 
0

( ) = ( )

l

Y x y x dz  with ( )y x  being a function of x , is Gáteaux analytic, 

according to calculus of variations [32], ( )Y x x  with x  being an infinitesimal change 

in x  can be represented by its first order approximation as  

0

( ) ( )

l

xY x x Y x y xdz                                                           (13) 

where =x

y
y

x




. Moreover, according to (7), we get  

* *

( ) ( )

0 0

1 1
( ) = ( ) .

2 2

l l

x s x zV x s ds V x z dz                                                      (14) 

Therefore, revisiting (12), *( , )V x t t  can be expressed in its first order approximation 

form as  

* * *

( )

0

*
* *

( )

0

*
*

( )

0

1
( , ) ( , ) ( )

2

1
( ) = ( , )

2

( ) ,

l

x s

l

x z

l

x z

V x t t V x t V x s ds

V
V x z dz t V x t

t

V
V x z dz t

t

 

 

 

  


 




 









                                             (15) 

where x  is an infinitesimal variation in x  as a consequence of t  change in time, 

*
*

( ) =
( )

x s

V
V

x s




 and 

*
*

( ) =
( )

x z

V
V

x z




 are partial derivatives of *V  with respect to ( )x s  and ( )x z , 



54 

 

respectively and 
*V

t




 is partial derivative of *V  with respect to t . Substituting 

approximation (15) into equation (12) and canceling *( , )V x t  on both sides yields  

*
2 *

( )

0

0 = { ( ) ( ) }.min

l

x z
u

V
Q x ru V x z dz t

t
 


  

                                      (16) 

Dividing through out by t , letting 0t   and substituting dynamics (1) gives 

 

2 *

( )

0

2 *
2 *

( ) 2

0

0 = { ( ) } = { ( )min min

[ ( ) ( , )] }.

l

x z
u u

l

x z

x
Q x ru V dz Q x

t

x V
ru V z x z t dz

tz



 



 
   







                                       (17) 

Since due to the infinite time horizon, the cost functional *V  as defined in (7) is only 

state dependent and not explicitly dependent on time, 
*

= 0
V

t




 [27]. Therefore, the 

Hamilton Jacobi Bellman (HJB) equation can be represented by  

2
* 2 *

( ) 2

0

= 0 = { ( ) [min

( ) ( , )] }.

l

x z
u

x
H Q x ru V

z

z x z t dz


 





                                              (18) 

In [28] a similar result but with using a different approach is derived for parabolic semi-

linear PDE. Subsequently, the Hamiltonian is defined as  

2
2 *

( ) 2

0

= ( ) [ ( ) ( , )] .

l

x z

x
H Q x ru V z x z t dz

z



  

                                        (19) 

Using integration by parts, one has  

2 *

( )

0

2
* 2 *

( ) 2

0 0

*

* *

0

= ( ) [ ( ) ( , )]

= ( ) [ ( ) ( , )]

( , ) ( ,0) (0, ),

l

x z

l l

x z x

l

x

x x

H Q x ru V z x z t dz

x
V dz Q x ru V z x z t dz

z

V x
dz gV x l u hV x x t

z z





 


  



 
  

 



 



                                     (20) 

 where 
*

xV

z




 is derivative of *

( )x zV  with respect to z  defined by  

* **
( ) ( )

0

( , ) ( , )
= .lim

x z x zx

z

V x z z V x zV

z z 

 

 
                                        (21) 
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Based on necessary conditions of optimality, in order for the control input to be 

minimizing for Hamiltonian (20), the Fréchet derivative of this equation with respect to 

u  should be zero [32]. Therefore, the control policy can be obtained as  

* *

( )

1
= 0 = ( , ).

2
x z

dH
u gV x l

du r
                                              (22) 

Substituting the optimal control (22) in equation (20), one has the HJB equation in the 

form  

* *

0

* 2 *2 *

0

= 0 = ( ) [ ( ) ( )]

1
( ) (0) (0),

4

l

x

l

xz z x x

H Q x V z x z dz

V x dz g V l hV x
r



  





                                        (23) 

where ( , )x z t  and *

( ) ( , )x zV x z  are represented by ( )x z  and *( )xV z  for brevity. This convention 

will be used throughout the paper. Since the reaction coefficient ( )z  in system dynamics 

(1) may be uncertain, the controller should be capable of identifying it online. Therefore, 

in the next section an identifier will be developed for this unknown spatially varying 

coefficient. 

2.1.1.  Identifier Design. Since 
1(.) (0, )C l  , by choosing a set of smooth 

bounded basis functions 
1( ) (0, )i z C l  , 1 i m   the function ( )z  can be represented as 

[39]  

                                     ( ) = ( ) ( )Tz W z z                                                             (24) 

where mW   represent NN identifier target weight vector with bound MW W   and 

( )z  is the approximation error which is also assumed to be bounded such that 

( ) Mz   . The estimation error bound 
M  can be made arbitrarily small by increasing 

the number of basis functions [40]. 

As might be expected, the identifier dynamics can be provided by  

                                     ˆ ˆ( ) = ( ).Tz W z                                                                    (25) 

In order to find the tuning law for Ŵ , a state estimator with following PDE dynamics is 

initially considered as  
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2

2

ˆ ˆ ˆ= ( ) ,

ˆ ˆ
( ) = , (0) = (0),

x x
z x x

t z

x x
l gu hx

z z

 
 

 
 

 


 
                                                     (26) 

where ˆ=x x x  is the state estimation error and   is a positive constant. Accordingly, the 

NN tuning law for Ŵ  is provided by  

0

ˆ ˆ= ( ) ,

l

W W z xxdz                                                               (27) 

where > 0  is the design parameter. 

Remark 3: The second term in update law (27) integrates the PDE state estimation 

error x  with different basis functions 
i  as integral kernels. Therefore, if estimation ̂  

and consequently x̂  in (26) is unacceptable, the second term in (27) will adjust the 

weights associated with 
i s so that estimation error x  is minimized. By using the 

proposed update law, it will be shown in Section 3 that in presence of bounded input, the 

NN identifier weights and PDE state estimate will remain UB. 

Accordingly, the dynamics of x  will be governed by  

2

2

= =0

= ( ) ( ) ,

= 0, = 0,

T

f

z l z

x x
W z x z x

t z

x x

z z

   
 

  
 

 

 
                                          (28) 

where the weight estimation error ˆ=W W W   . Noting that ˆ=W W  , the dynamics of NN 

identifier weight estimation error can be represented as 

  

0

ˆ= ( , ) .
l

W W x z xxdz                                                           (29) 

 

Since an estimate of system dynamics is now available, in the next section the ADP 

approximate optimal control will be addressed. 

2.1.2. Approximate Optimal Control Design. Since solving partial integro-

differential equation (PIDE) ((23)) for the exact *( )V z  is too difficult and time consuming 

[33], the objective is to find a suitable structure for estimation of *( )V z  in (23). Unlike 

ADP control designs in finite dimensions, the continuous function ( , )p s z  in (7) can be 
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interpreted as an infinite dimensional array of unknown parameters to be approximated. It 

is well-known that radial basis networks (RBN) can estimate an unknown continuous 

multi-variable function [34]. ( , )p s z  can be represented in RBN approximated form as  

 

( , ) = ( , ) ( , ),T

V pp s z W s z s z                                                       (30) 

where 
2( , ) :[0, ] [0, ] [ ]

n
ps z l l C    is a vector of 

pn  radial basis functions 

0 0(( , ) ( , )),1j j j ps z s z j n    , 
n

p

VW   and ( , )p s z  is the estimation error. It is assumed that 

the norm of estimation error and its first and second spatial derivatives 
pz , 

pzz  are 

bounded with the bounds 
pM , 

pzM  and 
pzzM , respectively. Note that the estimation error 

p  can be reduced by increasing the number of neurons. Hence, *( , )V x z  can be 

represented in approximated form as  

*

0

( , ) = ( ) ( , ) ( ) ( , )

= ( , ) ( , ),

l

T

V V

T

V V

V x z x s W s z x z ds x z

W x z x z

 





 

                                          (31) 

where ( , )x z  is a 1pn   vector defined as  

0

( , ) = ( ) ( , ) ( ) ,

l

x z x s s z x z ds                                                     (32) 

and 
0

( , ) = ( ) ( , ) ( )

l

V px z x s s z x z ds  . Subsequently, the optimal value functional can be 

expressed as  

*

0

( ) = ( , ) ,

l

T

V UU x W x z dz                                                       (33) 

with 
0

=

l

U V dz  . Consequently, the optimal control policy can be represented as  

                                      * 1
= ( ) ,

2

T

x V uu g l W
r




                                                        (34) 

with 
1

= ( )
2

u V
x

g l
r

 


. Finally, the HJB equation ((23)) can be represented in the new form 

as  



58 

 

*

0

2

0

= ( ) ( )[ ( ) ( )]

1
( ) ( )

4

(0) (0) ,

l

T

V x

l

T T Tx

V V x x V

T

x V H

H Q x W z z x z dz

x
W dz W l g l W

z z r

h W x





 

 
   

 

  



                                         (35) 

where 
H  is derived as  

0 0

2 2 2

= ( )[ ( ) ( )]

1 1
( ) ( ) ( ) (0) (0).

4 2

l l V
x

H V
x

T

V V x V V
x x x

x
z z x z dz dz

z z

g l W l g l h x
r r



  

  





 

   

 
                                (36) 

 

If the value functional is approximated as  

* *

0 0

ˆ ˆ ˆ( ) = ( ) = ( , ) ,

l l

T

VU x V z dz W x z dz                                               (37) 

then the approximated HJB can be represented by  

0

2

0

ˆˆ ˆ= ( ) ( )[ ( ) ( )]

1ˆ ˆ ˆ( ) ( )
4

ˆ(0) (0),

l

T

V x

l

T T Tx

V V x x V

T

x V

H Q x W z z x z dz

x
W dz W l g l W

z z r

h W x

 

 
   

 

 



                                       (38) 

and the control policy would be  

                                                
1 ˆˆ = ( ) .

2

T

x Vu g l W
r


                                                    (39) 

 

In order to update the RBN weights online, the following tuning law is proposed  

2 2

1 2 3 42 2

ˆ ˆ ˆ ˆ ˆ ˆ= ,N

V V V V V

N

W H W W W x W


   


                                     (40) 

where  

0 0

2

ˆ= ( )[ ( ) ( )]

1 ˆ(0) (0) ( ) ( ) ,
2

l l

x

N x

T

x x x V

x
z z x z dz dz

z z

h x l g l W
r

 
 

 
 

    

 
                                             (41) 

 2 2 2

1 2 3 4
2

= (0) ( )N c x c x c x l c     and 1 4,...,c c  and 1 4,...,   are appropriate positive 

design parameters. 
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Remark 4: The first term in update law (40), minimizes the approximated 

Hamiltonian whereas the other terms are necessary to insure the closed loop stability as 

will be explained in the proof. Under an initial admissible control policy, it will be shown 

in Section 3 that the update law (40) and control policy (22) along with developed 

identifier in Section 2.1.1, cause the system state vector x  and the weights estimation 

errors VW , W  to be ultimately bounded (UB). 

Next, the near optimal control design for Dirichlet boundary control condition 

will be illustrated.  

2.2. DIRICHLET BOUNDARY CONTROL 

 Consider the linear DPS (1) but under Dirichlet boundary control at =z l  and the 

same general Robin boundary condition at = 0z  as  

=0( ) = , | = (0).z

x
x l gu hx

z





                                                   (42) 

Using integration by parts twice in this case, the Hamiltonian can be represented as  

2 *

0

*

* *

= =0 =

* 2 *

=0 2

0

= ( ) [ ( ) ]

( ) | (0) | { |

| (0) },

l

x

x

x z l x z z l

l

x x

z

H Q x ru V z x dz

Vx x
V l V gu

z z z

V V
x xdz

z z

 

 
  

  

 
 
 





                                       (43) 

where 
*

xV

z




 and 

2 *

2

xV

z




 are the first and second spatial derivative of *

xV  with respect to z . 

Requiring the Fréchet derivative of this equation with respect to u  equaling zero yields  

* *

*

= =

1
= | 2 = 0 = | .

2

x x

z l z l

V VH
g ru u g

u z r z

 
  

  
                               (44)                      

Substituting the optimal control in equation (43), the HJB equation for DPS ((1)) under 

Dirichlet boundary condition (42) can be represented in the form,  

* * *

=

0

2 * *

*

=0 =02

0

2*

2

=

= 0 = ( ) [ ( ) ( )] ( ) |

(0) | | (0)

1
| .

4

l

x x z l

l

x x

x z z

x

z l

x
H Q x V z x z dz V l

z

V Vx
V xdz x

z zz

V
g

r z




 


 
  

 








                               (45) 
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Similarly, if *V  is represented in approximated form of (31), then the optimal 

control would be 

 

*

=

1
= | ,

2

T

x

z l V uu g W
r z







                                              (46) 

with 
=

1
= |

2
u V z l

xz
g

r
  . Hence, the HJB equation becomes 

 

*

=

0

2

=0 =02

0

2

= =

= ( ) [ ( ) ( )] ( ) |

(0) | |

1
(0) | | ,

4

l

T T

V x V x z l

l T

T T x x

V x z V z

T

T x x

V V z l z l V H

x
H Q x W z x z dz W l

z

x
W W xdz

z zz

W x W g W
r z z






   



  
   

 

 
 

 



                         (47) 

where ( )x z  denotes ( , )x x z  for brevity and 
H  is derived as  

=

0

2

=0 =02

0

2 2 2

= = =

= ( )[ ( ) ( )] ( ) |

(0) | | (0)

1 1
( | ) | | .

4 2

l

H V V z l
x x

l
V V

x x

V z z
x

V VTx x x

z l V z l z l

x
z z x z dz l

z

x
xdz x

z zz

g W g
r z r z z

   

 


 






 
  

 

 
 

  



                           (48) 

If the value functional is estimated as  

* *

0 0

ˆ ˆ ˆ( ) = ( , ) = ( , ) ,

l l

T

VV x V x z dz W x z dz                                       (49) 

the approximated HJB would be  

=

0

2

=0 2

0

2

=0 = =

ˆˆ ˆ ˆ= ( ) [ ( ) ( )] ( ) |

ˆ ˆ(0) |

1ˆ ˆ ˆ| (0) | | ,
4

l

T T

V x V x z l

l

T T x

V x z V

T T

Tx x x

z V z l z l V

x
H Q x W z x z dz W l

z

x
W W xdz

z z

Wx W g W
z r z z




   


 
  

 

  
 

  



                                 (50) 

where the same identifier as in Section 0 is used to find ˆ( )z . Therefore, the control input 

can be represented by  

                                          =

1 ˆˆ = | .
2

T

x

z l Vu g W
r z




                                                      (51) 
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The value functional weight tuning law for Dirichlet boundary control is defined 

as  

2 2

1 2 3 42
ˆ ˆ ˆ ˆ ˆ ˆ= ,D

V V V V V

D

W H W W W x W


   


                                 (52) 

where  

2

2

0 0

= =0 =0

2

= =

ˆ= [ ( ) ( )]

( ) | (0) | | (0)

1 ˆ| | ,
2

l l

x

D x

x

x z l x z z

T

x x

z l z l V

z x z dz xdz
z

x x
l x

z z z

g W
r z z

 
 

 


 
  

  

 


 

 

                                    (53) 

 and 2 2 2

1 2 3 = 4
2

= (0) ( | )D z l

x
c x c x c c

z



  


 with 

1 4,...,c c  and 
1 4,...,   being appropriate 

positive design parameters. The flowchart of proposed control scheme for different 

boundary conditions is shown in Figure 2.1. 

In the next section, the authors will illustrate the ultimate boundedness of the 

closed-loop system with the developed boundary control policies for Neumann and 

Dirichlet boundary conditions, respectively.  
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Figure 2.1. Flowchart of proposed controllers. 
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3. STABILITY ANALYSIS 

 

  System closed-loop stability will be examined by using Lyapunov criterion. 

First, it will be shown in Theorem 1 that in presence of bounded input, the identifier 

dynamics and estimation error will be bounded. In Lemma 1, a bound will be found for 

Hamiltonian reconstruction error 
H  when Neumann boundary control policy is 

implemented. This bound will be used later in closed-loop stability proof. Consequently, 

Theorem 2 will address ultimately boundedness (UB) of all closed-loop states for 

Neumann boundary control condition. Finally, Lemma 2 and Theorem 3 will state similar 

results when Dirichlet boundary control policy is pursued. 

Theorem 1 (Boundedness of NN identifier): Let the initial NN identifier weight 

estimation error W  and state estimation error x  be residing in compact sets 
1
 and 

2
, 

and the proposed NN identifier, the state estimator and NN weight tuning law be 

provided by (25), (26) and (27), respectively. In the presence of bounded inputs, there 

exists a positive constant 
1

>
2

  and tuning parameter > 0  for the identifier weight 

update law such that the state estimation error x  and weight estimation error are all UB. 

Lemma 1: For Neumann control policy, the following inequality  

2 2 2

1 2 3
2

| | (0) ( ) ,H H H Hc x c x c x l                                                (54) 

 holds where 
1Hc , ..., 

3Hc  are positive constants. Moreover | |H NM N    with 
N  defined as 

in update law (40) and 
NM  being a positive constant. 

Proof: Refer to Appendix. 

Theorem 2: Consider the DPS system with PDE dynamics (1) under boundary 

conditions (2). Let NN identifier, the state estimator and NN weight tuning law be 

provided by (25), (26) and (27), respectively. Then, under Assumption 1, an initial 

admissible boundary control and the control policy (39) in order to reduce the infinite-

horizon cost functional (3), and under update law (40) for approximated value functional 

weights with 
10 < < 1 , 

2 3   and 
3

3

N

   where 
2

N

  is a positive constant, the DPS 

system state x  and weight approximation error VW  will remain UB. Moreover, the actual 

control input will be bounded close to its optimal value. 
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Proof: Refer to Appendix. 

Lemma 2: For Dirichlet boundary control policy, the following inequality  

2 2 2

1 2 3 =
2

| | (0) ( | ) ,H H H H z l

x
c x c x c

z



 


                                         (55) 

holds where 
1Hc , ..., 

3Hc  are positive constants. Moreover | |H DM D    with 
D  defined as 

in update law (52) and 
DM  being a positive constant. 

Proof: Refer to Appendix. 

Theorem 3: Consider the DPS system with PDE dynamics (1) and boundary 

conditions (42). Let NN identifier, the state estimator and NN weight tuning law be 

provided by (25), (26) and (27), respectively. Under assumption 1, an initial admissible 

boundary control input and the control policy (51) in order to reduce the infinite-horizon 

cost functional (3), the DPS system state x  and estimation error VW  will remain UB 

under the update law (52) where 
10 < <1 , 

2 3>   and 
3

3
> D

   with 
3

D

  being a positive 

constant. Moreover, the actual control policy will be bounded close to its optimal value. 

Proof: Refer to Appendix. 

Remark 5: The presented control design is also applicable to more general linear 

PDE dynamics such as [12] 

 

2

2

0

( , )
( , ) = ( , ) ( ) ( ) ( , )

( ) (0, ) ( , ) ( , ) ,

x x x z t
z t z t b z z x z t

t zz

c z x t f z w x w t dw




  

 
 

  

                                      (56) 

where 
1(.), (.) ([0, ])b c C l , 

1(.,.) ([0, ],[0, ])f C l l , 0 l   and [0, ]w   is the integral 

variable. The basic PDE dynamics ((1)) are primarily chosen in this paper to simplify the 

illustrations. Moreover, it has been shown [12] that most widely applied DPS modeled by 

linear parabolic PDE are either in the form of or can be transformed into (1). 

In the following section, numerical implementation of the presented controllers 

will be illustrated through simulation on a reaction-diffusion process. 
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4. SIMULATIONS 

 

  In this section, in order to verify the performance of proposed controllers, 

simulation examples are provided for both Neumann and Dirchlet boundary actuation 

conditions. A typical reaction-diffusion system [12] with following linear parabolic PDE 

dynamics was considered:  

2

2 2

( , ) ( , )
= ( , )

1 4( 0.5)

x z t x z t
x z t

t z z

 


   
                                        (57) 

where > 0 , [0,1]z  and control input was only present at =1z . The MATLAB pdepe 

function which uses the method of lines [41] for numerical solution of one dimensional 

PDE was used for simulation of dynamics in a real-time control setting with = 0.05dz .  

4.1. NEUMANN BOUNDARY CONTROL 

In the first simulation the performance of state feedback Neumann controller was 

evaluated. The chosen boundary conditions are expressed as  

0(0) = 0, (1) = ( ,0) = ( ),z zx x gu x z x z                                                   (58) 

and sampling time for updating the control input was chosen as =10st msec . In this 

simulation the chosen process parameters are = 8  and = 1g . By setting = 0u , it was 

verified that the system open loop response is highly unstable and blows up very fast. An 

initial admissible control policy was found to be 
0 = 21u   by using pole placement for 

approximate dynamics obtained from finite difference method. The chosen basis 

functions 
i , 1 5i   to identify ( )z  are expressed as  

2

1
=

1 12( )
i

iz z


 
                                                              (59) 

with {0.1,0.3,0.5,0.7,0.9}iz  . The chosen ( , )q s z  in cost functional ((5)) can be expressed as  

0 0( , ) = ( ( = 0,( , )))jq s z L distance s z l s z                                            (60) 

with (.)jL  being the Landau kernel [36], which is a continuous approximation for Dirac 

delta function, with = 500j , and the function (.,.)distance  calculates the distance between 

the diameter 0 0 = 0s z l   and point ( , ) [0, ] [0, ]s z l l  . The motivation behind choosing this 

( , )q s z  is that it resembles the finite dimensional identity matrix in infinite dimensional 
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cost functional ((5)). Thirty six radial basis functions were chosen as 
i s, 1 36i  , to 

approximate ( , )p s z  with the structure expressed as 

2
( , ) =

1 ( , ) ( , )
i

i i

k
s z

s z s z


 
                                                (61) 

where = 40, = 0.4k  and 
is s and 

iz s were chosen from the set = {0.1,0.25,0.4,0.55,0.7,1}S . 

However, since ( , )p s z  is symmetric, only 21 weights were needed to be updated and 

other weights could be found based on symmetry. The identifier and controller 

parameters were chosen to be =10, =1  , 
1 2 3 4 1= 0.1, = 0.3, = 0.25, = 0.01, = 2c    , 

2 = 0.02c , 
2 3= = 0.01c c  and 

0 36 1= 0.1W Ones  . Note that the necessary design conditions, i.e. 

2 3>   and 
4 4

2

3 2 23
1

> = 0.2
8

lN
g

c r



   are satisfied for these parameters. As Figure 4.1 

confirms, the controller was able to stabilize the system without any overshoots. Figure 

4.2 shows that the control input was smooth. Moreover, HJB error converged faster than 

control input and increasing 
1  would accelerate its convergence rate. This shows that 

update law ((40)) was effective in finding a near optimal controller. Finally, Figure 4.3 

shows the estimated ˆ ( , )p s z  at the end of simulation.  

 

 

 

 

Figure 4.1. Closed loop state evolution under Neumann boundary condition. 
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Figure 4.2. Control input and HJB error for Neumann boundary controller. 

 

 

 

 

Figure 4.3. Estimated ˆ ( , )p s z  for Neumann boundary controller. 
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4.2. DIRICHLET BOUNDARY CONTROL 

 In this case, the boundary and initial conditions are expressed as 

(0) = 0, (1) = , ( ,0) = ( ).x x gu x z sin z                                                (62) 

For this example,   was chosen to be 17  and = 1g . The sampling time for 

updating control input was = 2st msec . The initial admissible control policy was chosen to 

be 
0 = 7.8u  . The function ( , )q s z  was expressed as in ((60)) and the identifier basis 

functions 
i , 1 5i   and value function basis functions 

j s 1 36j   were chosen so as 

to compare with ((59)) and ((61)), respectively. The update law parameters were 

expressed as =10, =1  , 
1 2 3 4 1= 0.1, = 0.2, = 0.1, = 0.01, = 2c    , 

2 = 0.02c , 
2 3= = 0.01c c  

and 
0W  was a random vector with positive entries. It can be easily verified that the 

necessary design conditions, i.e. 
2 3>   and 

4 4

2

3 2 23
1

> = 0.08
8

lzD
g

c r



   are satisfied for 

these parameters. Figure 4.4 shows the performance of controller in regulation of the 

DPS state. The smoothness of control input and fast convergence of HJB error are also 

shown in Figure 4.5. In addition, similar to Neumann boundary controller, increasing the 

update law parameter 
1  would speed up HJB error convergence rate. Figure 4.6 shows 

the estimated ˆ ( , )p s z  at the end of simulation. Finally, Figure 4-8 depicts the control gain 

kernels for Neumann boundary condition ˆ( ) =| ( , ) |T

uN VK s W s l  and Dirichlet boundary 

condition 
=

( , )ˆ( ) =| | |T

uD V z l

s z
K s W

z




, 0 s l   corresponding to estimated ˆ ( , )p s z  as shown in 

Figure 4.3 and Figure 4.6, respectively. Qualitatively, Figure 4.7 shows that feedback 

from the middle of spatial domain is significantly more important for system stabilization 

than places near the boundaries.  

 

 

 



69 

 

 

Figure 4.4. Closed loop state evolution under Dirichlet boundary condition. 

 

 

 

 

Figure 4.5. Control input and HJB error for Dirichlet boundary controller. 

 

   



70 

 

 

Figure 4.6. Estimated ˆ ( , )p s z  for Dirichlet boundary controller. 

 

 

 

 

Figure 4.7. Feedback gain kernels a) 
uNK  for Neumann boundary condition, b) 

uDK  for Dirichlet boundary condition. 
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5. CONCLUSIONS 

 

  This paper developed an ADP-based near optimal boundary control scheme for 

DPS governed by uncertain linear one-dimensional parabolic PDE under both Neumann 

and Dirichlet actuation conditions without any finite dimensional model approximation 

prior to control design. By defining the value functional as the extension of its definition 

from linear LPS optimal control design, the HJB equation was derived in original infinite 

dimensional state space. The proposed identifier was effective in estimating the unknown 

coefficient over the space in system dynamics. Based on defined structure for the value 

functional as a surface integral, a RBN was proposed to estimate its unknown parameters 

as a continuous two-variable kernel function. The update law for RBN unknown weights 

was defined to reduce the HJB error effectively and insuring system stability whereas 

PDE dynamics was uncertain. Ultimate boundedness of the closed-loop system was 

verified by using the standard Lyapunov theory with consideration of all approximation 

reconstruction errors. Since model reduction was not utilized in control development, the 

design is more reliable and can be applied to achieve accurate control and closed loop 

stability of the original infinite dimensional system. The performance of proposed control 

method was successfully verified on a diffusion reaction process. 
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APPENDIX 

 

In order to avoid long derivations in the proof, we first define =z

x
x

z




, 

2

2
=zz

x
x

z




, 

=x
x





, = x

xz
z





, 

2

2
= x

xzz
z

 



, =

V
x

V
xz z







 and 

2

2
=

V
x

V
xzz z







. First the proof for Theorem 

1 will be provided: 

Proof of Theorem 1: In order to prove stability of state feedback identifier, 

consider the Lyapunov function  

2

0

1 1
= ,

2 2

l

T

c c cL x dz W W                                              (63) 

 where 
c  is a positive scalar. Taking its derivative 

cL  and substituting error 

dynamics (28) and (29) yields  

0

2

0

0 0 0

0

= ( ( ) ( ) )

ˆ( ( ) ) =

( ) ( )

( ) ( ) .

l

T

c c zz
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T

c c

l l l

T

c zz c c

l

T T
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L x x W z x z x dz

W W z xxdz x dz

xx dz x z dz xW z xdz

W W W W z xxdz

  

   

  

     

   

    

    

   

  

  

  

  



 

  



                            (64) 

Taking integration by parts and substituting PDE dynamics (28) for state estimation error 

x  yields  

2

= =0

0 0

2

0

= ( ) (0)

= 0.

l l

zz z z l z z z

l

z

xx dz x l x x x x dz

x dz

 



 

                                   (65) 

Therefore, using Young’s inequality ( 2 2

1 2 1 2

1

2 2


   


 )  

22

2

1 1
( ) ,

2 2
c c c cL x W                                          (66) 

where 2 21
= .

2 2
c c M c M

l
W        Therefore by selecting 

1
>

2
 , the identifier dynamics are 

UB. 
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Proof of Lemma 1: Using integration by parts one will get 

 

=
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1
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Therefore  

0 0

2 2

0 0

2
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1
| ( ) ( ) | | ( ) |
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1
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                                       (68) 

According to Hölder’s inequality [37] (
2 2

( ) ( )a z b z dz a b )  

2
0

( ) .

l

x z dz l x                                              (69) 

Thus, according to Young’s inequality  
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Consequently,  

2 2 22 2

2 2 2

1
| |

4
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where 
M  is maximum of continuous function (.)  over [0, ]l  and 

2
l  is abbreviation 

for 
2

( , )s l . Hence, 2

1
2

1 2
= ( ( ))

4
H pM M pM l Vc l g W

r l
      

2 21 1
(| | )

2 2
pzzM pzM pM pzMl l l h        and 2 3

1
= =

2
H Hc c . 
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Moreover, recalling 2 2

1 2
2

= (0)N c x c x   2

3 4( )c x l c  , | |H  can be expressed as  

2 21 2
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where 31 2

1 2 3

= max{ , , ,1}HH H

NM

cc c

c c c
 . 

Proof of theorem 2: Consider the following Lyapunov function  

*

0

1
= ( ) ,

2

l

T

a V V c

L
a L

b

L W W V x dz L                                           (73) 

where 
a  is a positive tuning constant and ˆ=V V VW W W . Note that the first term 

aL  is 

added to insure the boundedness of value functional weight estimation error whereas the 

second term 
bL  is added to guarantee the boundedness of system state x . Since * = 0H , 

Ĥ  can be represented according to (47) and (50) as 
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Therefore, taking the derivative of 
aL  and using update law (40) yields  
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subsequently, expanding 
2

ˆ ˆT

V V VW W W  and using Young’s and Cauchy-Schwarz 

inequalities yields  
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According to Young’s Inequality  
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Moreover,  
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By multiplying the terms in (75) and using (76)-(79), 
aL  can be derived as  
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By observing the fact that 
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minq  is defined in Assumption 1. By using Cauchy-Schwartz inequality, one has  
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Combining 
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 Therefore L  is always less than zero if 
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. Consequently, 

the closed-loop system is UB. 
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Moreover, since  
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and 
2

x , VW  are proven to be bounded, the error between the actual and truly optimal 

control inputs is also UB where the bound can be reduced by increasing 
minq  as defined in 

Assumption 1, weight update parameters 
2 , 

3  and 
1c  and decreasing 

pM  by selecting 

large enough set of basis functions. 

Proof of Lemma 2: | |H  for Dirichlet boundary control condition can be derived 
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Proof of Theorem 3: Consider the same Lyapunov function as in Theorem 2. If 

update parameters satisfy 
10 < <1 , 
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Similarly, taking the derivative of Lyapunov function and combining 
aL , 

bL  and 
cL  yield  
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Consequently, the closed-loop system is UB. 
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III. OUTPUT FEEDBACK BOUNDARY CONTROL OF COUPLED SEMI-

LINEAR PARABOLIC PDE USING NEURO DYNAMIC PROGRAMMING 

 

B. Talaei, S. Jagannathan, and J. Singler 

 

In this paper, neuro dynamic programming (NDP) based output feedback 

boundary control of distributed parameter systems (DPS) governed by uncertain coupled 

semi-linear parabolic partial differential equations (PDE) under Neumann or Dirichlet 

boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) 

equation is formulated in the original PDE domain for such systems and the optimal 

control policy is derived using the value functional as the solution of the HJB equation. 

Subsequently, a novel observer is developed to estimate the system states given the 

uncertain nonlinearity in PDE dynamics and measured outputs. The sub-optimal 

boundary control policy is obtained by forward-in-time estimation of the value functional 

using a neural network (NN) based online approximator and estimated state vector 

obtained from the NN observer. Novel adaptive tuning laws in continuous-time are 

proposed for learning the value functional online to satisfy the HJB equation along 

system trajectories while ensuring the closed-loop stability. Local ultimate boundedness 

(UB) of the closed-loop system is verified by using Lyapunov theory. The performance 

of proposed controller is verified via simulation on an unstable coupled diffusion reaction 

process. 
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1. INTRODUCTION 

 

Significant number of industrial processes are inherently distributed in space so 

that their behavior depend upon spatial position and time [1],[2]. These systems are 

usually described by a set of partial differential equations (PDE) with homogenous or 

mixed boundary conditions. In particular, coupled semi-linear parabolic PDEs represent a 

wide range of industrial distributed parameter systems (DPS) such as reaction-diffusion 

processes [1] and fluid flow [2].  

 Control of DPS modeled as single PDE by using operator theory has been 

extensively studied in the literature [3]. The results were also extended to boundary 

control [4] which is mathematically more involved and physically more practical and 

relevant. However, in many DPS processes, there are interactions between different 

components and therefore it is desirable to simultaneously control a set of variables with 

dynamics that are modeled by coupled PDE equations.  

In [5], boundary control of coupled PDE using operator theory has been studied in 

detail with particular attention to parabolic-hyperbolic coupling arising in acoustics. After 

the development of backstepping as a new approach for boundary control of PDE in the 

last decade [6], control of higher dimensional coupled PDE dynamics using this method 

was also studied in recent years [7],[1]. In [7], the linearized model of thermal-fluid 

convection has been treated by combining backstepping and Fourier series methods and 

in [1], the stabilization of n coupled linear diffusion reaction processes was studied. 

Following the introduction [8] and development [9] of neuro dynamic 

programming (NDP) to solve optimal control problems in real-time for systems with 

large dimensional state spaces, NDP based control schemes were also developed for DPS. 

However, since dealing with PDE dynamics and infinite dimensional state spaces were 

difficult, the conventional method usually included extracting a finite dimensional space 

prior to the NDP-based controller design [10]-[11]. Moreover, existing NDP approaches 

[10]-[11] for control of DPS systems rely on availability of system states. However, 

spatially distributed nature of these systems makes output feedback control approaches 

significantly more useful and practical [12]-[14]. 
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This paper addresses output feedback boundary control scheme using NDP for 

uncertain DPS expressed as coupled semi-linear parabolic PDE without using any model 

reduction. In contrast to previous NDP control designs for DPS [10]-[11], the optimal 

control problem is formulated in the original PDE domain and solved forward-in-time 

without using any finite dimensional model approximation prior to the control design. 

Moreover, a neural network (NN) observer is proposed for the online estimation of states 

of the coupled PDE when the system dynamics are partially uncertain so that the need for 

availability of system states and accurate dynamics are relaxed.   

Traditionally, formulating the HJB equation for online control of DPS seemed 

impractical. The complexity of dynamics and large scale of system state space made the 

required time for finding a solution extremely lengthy, a problem commonly referred as 

curse of dimensionality. In order to avoid this difficulty, NDP approaches were proposed 

to find approximate but tractable solutions for optimal control problem [15].  Many 

recent NDP algorithms use policy or value iterations to find the approximate optimal 

control [16]. Although these algorithms attain the optimal control over time, they still 

have considerable computational cost which is inappropriate for DPS online control since 

the size of state space is large.  

Therefore, the proposed boundary control policy in this paper is based on an 

iteration-free adaptive scheme with novel update laws that can achieve system stability 

and local optimality along trajectories whereas the knowledge for system states or 

dynamics is relaxed. Lyapunov analysis demonstrates that provided an initial admissible 

control policy, the error between the actual and truly optimal control will always remain 

bounded whereas all approximation reconstruction errors are considered. Simulation 

results confirm that the presented output feedback control approach has good 

convergence and control performance on an uncertain unstable coupled diffusion-reaction 

process. 

In order to find the boundary control law, after defining an appropriate cost 

functional, the HJB equation is derived in the infinite dimensional space and the optimal 

control policy is obtained based on necessary conditions of optimality. Subsequently, 

motivated by the fact that the system states are not available in the whole of spatial 

domain and the nonlinearity in coupled PDE dynamics may be highly uncertain, a NN 
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observer is proposed to estimate the states online when the nonlinearity in the coupled 

PDE dynamics is unknown. Consequently, by approximating the optimal value functional 

based on a novel adaptive framework, the actual control policy is derived.  

The observer has a special design such that the boundedness of observer 

approximation error in original PDE domain is guaranteed. This is considerably different 

from ordinary differential equation (ODE)-based NN observers [17] where stability is 

solely assured for finite dimensional model. Combined with a novel NN adaptive 

boundary control method that minimizes the HJB approximation error forward-in-time in 

the PDE domain, the proposed observer-controller framework will provide the closed-

loop stability in original infinite dimensional domain which is different from finite 

dimensional NDP approaches where stability is only guaranteed for reduced order model. 

Notations: Throughout the paper, .  stands for Euclidean norm for a vector or 

Frobenius norm for a matrix. We recall the inequality 
2

. .
F
 with 

2
.  being the induced 

2 norm. We also define for
2[ (0, )]L nx l , 

2

1
2

2

2

0

( ( ) )
L

l

x x z dz .  

The rest of the paper is organized as follows. In Section 2, the class of DPS under 

consideration is described and the output feedback optimal control approaches are 

explained separately for different boundary conditions. Section 3 addresses the closed-

loop stability of system under the proposed boundary control framework. Section 4 

demonstrates the simulation results and Section 5  provides the concluding remarks. 
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2. NEURO DYNAMIC PROGRAMMING BOUNDARY CONTROL 

 

The class of DPS considered in this paper is described by following semi-linear 

coupled parabolic PDE dynamics as 

2

2

( , )
( , )

( ),               [0, ]

)

 

,

 

(

 
z l

x z t
A f x z

z

x z t

t

x
Gu t z l

z

                                           (1) 

0

0

0

(0, ) 0,         ( ,0) ( ),  

( ) ( ) ( , ) ,     

z

l

x
Px t x z x z

z

y t C z x z t dz

 

where Neumann boundary control at z l  is primarily chosen for convenience. Here, 

1( , ) [ ( , ),..., ( , )]T

nx z t x z t x z t X  is the state vector, 
2[ (0, )]nX lH  is the solution space of 

PDE with
2H being the  Sobolev space of second order, t  represents time, [0, ]z l  is the 

spatial variable, 0l , n nA  is a constant diagonal matrix with 

, 0,i i iA a
1( , ) [ ( , ),..., ( , )] [ (0, )]T n

nf x z f x z f x z lC  is an unknown Lipschitz continuous 

nonlinear vector function,
x

t
 and 

2

2

x

z
denote the time and second spatial derivatives of 

state .x  Here [0, )t  and [0, ]z l , the PDE domain is [0, ) [0, ]nD l . Moreover 

1( ) [ ( ),..., ( )]T n

nu t u t u t  is the vector of boundary control input signals, n nG  is a 

known constant matrix, n nP  is a diagonal negative definite matrix and 
0 2( ) (0, )x z lC  

represents the initial condition of the state with 
2C  being the space of second order 

differentiable functions. In addition, 
1( , ) [ ( , ),..., ( , )]T

ny z t y z t y z t  represents the measured 

output and 
2 2 2( ) :[ (0, )] [ (0, )]n n n nC z l lL H H  is a diagonal linear operator with

2

( ) 0iiC z
L

, 

1 i n .  

Assumption 1: the function (., )f z  is Lipschitz continuous with Lipschitz constant 

fL  described by  

 
1 2 1 2( , ) ( , ) .ff x z f x z L x x                                        (2)  

 The goal is to provide a continuous control input that minimizes the cost 

functional over infinite horizon given by 
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0

0( , , ) ( ( ( , )) ( ) ( )) ,T

t

V x t u Q x z t u t Ru t dt                                   (3) 

where n nR  is a positive definite matrix and ( )Q x is an integral functional with a 

nonlinear integrand function 
2 1:[ [0, 0 ]] ] [ ,nq l C lH  expressed as 

0

( ) ( ( , ), ) .

l

Q x q x z t z dz                                                (4) 

It is assumed that ( )Q x  is also positive definite i.e. 
2

2

min( )Q x q x
L

with
min 0q  and 

locally Lipschitz continuous. In contrast to finite dimensional systems where the state is 

denoted by a vector, there are infinitely many states ( , )ix z t  in DPS for 0 z l  at each 

instant of time t  that are continuous on the domain [0, ]l . Therefore, integral functional 

such as (4) is necessary [3] for definition of ( )Q x  instead of finite dimensional 

summations in conventional optimal control [17]. 

If the optimal cost functional is represented by * ,V  it can be expressed as  

0

*

0( , ) min ( ) ,T

tu
V x t Q x u Rudt



 
                                                  

 (5) 

Let H be the Hilbert space of square integrable vector functions 
2[ (0, )]nL l  with 

inner product defined as 

0
( , ) ( ) ( ) .

l
T

Hx y y z x z dz                                                           
 (6) 

Also, let 
1[ (0, )]nW H l , the Hilbert space of

2L functions with 
2L  derivatives with inner 

product is defined as 

0
( , ) ( ) ( ) ( ) ( ) .

T
l

T

W

y x
x y y z x z z z dz

z z

 
 

                                                (7) 

We assume that * :V H R  is Frechet differentiable everywhere with respect to x  

[18]. Denote the x -Frechet derivative of *V  at w  evaluated at y  by *[ ( )]xV w y . Since *( )xV w  

is a bounded linear functional on H , the Riesz representation Theorem [19] guarantees 

that there is a unique k H  such that 

*

0
[ ( )] ( , ) ( ) .

l
T

xV w y k w z y z dz                                                  (8) 

where k H . We also make an additional assumption that k W .   By taking the time 

interval [ , )t t t , *( ( ), )V x t t  in (3) can be expressed in the recursive form as 
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*

*

( ( ), ) min{ ( )

( ( ), )},

t t
T

u t
V x t t Q x u Rudt

V x t t t t                                          (9)
 

Take 0t , and use ( ) ( ) ( / )x t t x t t x t  and the definition of the Frechet 

derivative of *V with respect to x  to obtain 

*
*0 min{ ( ) [ ( ( ))] } ( ( ), ).T

x
u

x V
Q x u Ru V x t x t t

t t
                        (10) 

Since the actual cost function does not depend on t , 
*

0
V

t
. Next, use (8) and 

PDE dynamics (1) to obtain the HJB equation as 

2

2
0

0 min{ ( ) ( , )( ( , )) }.
l

T T

u

x
Q x u Ru k x z A f x z dz

z
                             (11) 

Integrating by parts in the second order term gives  

0

0 min{ ( ) ( , ) ( ,0) ( ,0)

( , )( ( , ) ) }.

T T T

u

T
l

Q x u Ru k x l Gu k x Px t

k x
x z f x z A dz

z z

                              (12) 

By completing the square, it can be shown that the minimum is achieved for 

*u u where 

* 11
( , ).

2

Tu R G k x l                                                   (13) 

Let 
1: (0, )l H l  be the Dirac delta operator at x l . According to Riesz 

representation Theorem [19], there exists a unique function 
1d H  such that for 

all
1(0, )f H l ,   

1
( ) ( ) ( , ) .l Hf f l f d                                                    (14) 

This implies that the optimal control *u can be represented as 

* 11
( ),

2

Tu R G Bk x
                                              

 (15) 

where the operator ( )Bk x is expressed as  

1 11( ) [( ( ), ) ,..., ( ( ), ) ] .T

H n HBk x k x d k x d                                  (16) 
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Defining 1( ) ( )Th x GR G Bk x , one has 

1 1

1

* *

1

(0, )

1

0
1

0

1
[( ( ), ) ,..., ( ( ), ) ] ( )

4

1
( )( ( ), )

4

1
( ( )[ ( , ) ( ) ( , ) ( )])
4

( , )

T

H n H

n

i i H l

i

nl
i

i i

i

l

u Ru k x d k x d h x

h x k x d

k d
h x x z z k x z d z dz

z z

r x z dz

                        (17) 

Substituting the above representation in (5) results 

*

0 0
( ) ( , ) ( , ) ,

l

V x q x z r x z dzdt                                     (18) 

which by switching the order of integration and using (8) gives 

* *

0
( ) ( , ) ,

l

V x V x z dz                                                (19) 

where *( , ) ( , )xV x z k x z .  

Note that since A is a diagonal matrix TA A . Taking T TE G A  and substituting 

the optimal control (13) in (12), leads to the HJB equation representation given by 

*

*

0 0

* *1*

0 ( ) ( , )

1
( ) ( ) (0) (0),

4

l l T

T

x

T T

x x x

x

T

x

z z

ER

V
H Q x V f x z dz A dz

V l V l V PE Ax

                        (20) 

where *( , )xV x z  is represented by *( )xV z for brevity. 

Since the system state x  is necessary to implement the control policy (13), it is 

necessary to introduce an observer prior to control synthesis. Therefore, assuming that the 

system is observable [20], in the next section the design of a NN observer will be 

explained. 

2.1. NEURAL NETWORK OBSERVER DESIGN 

The objective in this section is to introduce an observer for the estimation of 

system states in the presence of unknown dynamics when states are available for 

measurement only in limited locations in spatial domain or at boundaries. The estimated 

states and approximated system dynamics can be subsequently used in the controller 

design. In order to proceed, the following assumption is introduced. 
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If the estimation of state x  is denoted by x̂ , consider the observer with dynamics 

0

2

2

ˆ ˆ ˆ( , )
ˆ

ˆ( ) ( ( ) ),

ˆ ˆ
ˆ( ) ,        (0) (0),

l

Tx
C z y C z xdz

t

x x
l G

x
A f x z

Px

z

u
z z

                              (21) 

                             
0

ˆ ˆ( ) ( ) ( , ) ,    

l

y t C z x z t dz      

where f̂ is the NN approximation of f , ŷ  is the estimated output y , and n n  is a 

diagonal positive definite gain matrix. 

Since f is a function over [0, ] [ (0, )]nX l lC , there exists a compact set 

[0, ],X l  such that for ( , )x z by choosing a set of smooth bounded and Lipschitz 

basis functions 
2:[ [0, ]] (0, )][n

f

m

i l lH C , the function ( , )f x z  can be represented as [23] 

( , ) ( , ) ( , ),T

f f ff x z W x z x z                                           (22) 

where m n

fW  represents NN identifier target weight matrix with bound 
f fMW W , the 

uniform bound of
f
is denoted by

fM
and ( , )f x z  is the approximation error which is also 

assumed to be bounded above such that ( , )f fMx z  for all x  and z . The estimation 

error bound
fM

can be made arbitrarily small by increasing the number of basis functions 

[24].  

Remark 1: Existence of compact set  can be deduced from the fact that as long 

as the domain D of PDE (1) is a bounded set satisfying the cone condition, any 
2L  

bounded and closed set in the solution space X of PDE forms a compact set according to 

compact embedding theorem [25].  

As may be expected, the approximated dynamics can be provided by 

ˆ ˆˆ ˆ( , ) ( , ).T

f ff x z W x z                                                    (23) 

Subsequently, the NN tuning law for ˆ
fW  is provided by 

   
0

ˆ ˆ ˆ( , ) ,f f

T

l

f fW dx yz zW                                              (24) 

where 0f  is the design parameter and
0

( )

l

y C z xdz . The second term in (24) integrates 

the output estimation error y  with different basis functions fi (1 )i m  as integral 
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kernels. Therefore, if estimation f̂ and consequently x̂  in (21) is unacceptable, the second 

term in (24) will adjust the weights associated with
fi
close to their desirable value. 

Define the state estimation error ˆx x x  and its dynamics will be governed by 

0

2

0

2

ˆ ˆ( ,

( ) ( ) ,

0,          

) ( ( , ) ( , ))

( ,

  (0)

)

 ,

T

f f f f

l

z

f

l

f

T

z

x

t

C z C z xdz

x x

x
A W x z W x z x z

z

P
z z

z

x

x                               (25) 

where weight estimation error is given by ˆ
f f fW W W . Noting ˆ

f fW W , the dynamics of 

NN identifier weight estimation error can be represented as 

ˆ ( , ) .f f f f

TW W x z y dz                                                 (26)  

Assumption 2: There exists a diagonal positive definite matrix such that for x  

satisfying error dynamics (25), the quadratic term in terms of y satisfies 

2

2
2 .Ty y x

L
                                                    (27) 

where
fL  with  0 . 

The above assumption helps to prove a smaller less conservative bound for 

observation error. This assumption will not hold generally for all
2[ (0, )]nx lH but can be 

justified for estimation error of parabolic PDE as long as the nonlinear 

dynamics ( , )f x z and initial condition
0 ( )x z are smooth enough. Since an estimate of system 

states is now available, in the next section the NDP approximate optimal control will be 

addressed. 

2.2. NDP CONTROLLER DESIGN 

By a simple study of equations (15) and (20), it would be clear that in order to 

find the optimal control policy, *( , )xV x z  should be found by solving equation (20) and 

then substituted in the control input.  Equation (20) is generally a nonlinear quadratic 

partial integro-differential equation (PIDE) and therefore it has no closed form solution. 

Consequently, the objective is to find a suitable structure for estimation of *( , )V x z . For 

this purpose, since *( , )V x z  is an integral functional over
12[ [0,] ] [0, ]n l lCH , there exists a 

set of smooth bounded basis functions 
2 1:[ [0, ] [0, ]]i

n l lCH , such that  
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*( , ) ( , ) ( , ),T

VV x z W x z x z                                               (28) 

where rW  is the target NN weight vector with 
MW W  and the uniform bound of 

(.,.)   is denoted by
M

. It is assumed that the uniform norm of derivative of 

approximation error with respect to x , i.e. 
Vx

 and its second and third derivatives with 

respect to z , i.e. Vx

z
and 

2

2

Vx

z
 are bounded by

VxM
, 

VxzM
 and

VxzzM
[24], respectively. 

The estimation error
V
 can be also made arbitrarily small by increasing the number of 

basis functions. 

Assumption 3: The function (., )x z is Lipschitz continuous with Lipschitz 

constant L  i.e.  

2
1 2 1 2( , ) ( , )x xx z x z L x x

L
. 

Therefore, the optimal control input can be represented as 

* 11
) ,

2
( ,T

x

T

ux l Wu R E                                      (29) 

where 11
( , )

2

T

u VxR E x l . Consequently, HJB equation can be represented in its 

approximated form as 

*

0

1

0

( ) ( )

( ) ( )

(0

0 ( )

1

4

(0) ,)

l

T T

x f f

T T T Tx

x

l

H

x

T

x

W z W z

x
W A W l ER E l W

z z

H Q x d

d

W PA

z

z

x

                            (30) 

where ( )z and ( )f z are the abbreviation for ( , )x z  and ( , )f x z , respectively and 
H

 can 

be derived as 

0

1

0

0

1

( ) ( , )

1

4

1
(0)

( ) ( , )

( ) ( )

( ) (0).
2

( )

T T

H Vx x f

T

T TVx

Vx Vx

T T T

l

x V Vx

l

l

x

W z x z

x
A l ER

z f x z dz dz

dz

PA

E l
z z

W l ER xE l

                          (31) 

Since the state vector is unavailable for measurement, and if *( , )V x z  is estimated 

by 
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*ˆ ˆ ˆ( , ) ( , ),TV x z W x z                                              (32) 

the approximated HJB can be represented as 

0

1

0

ˆ ˆˆ( , ) ( )

ˆˆ ˆ ˆ( , )

ˆ ˆˆ ˆ( , ) ( ,0

ˆ ˆ( )

)

1

4

ˆ(0).

T T

x f f

T Tx

x

T T T

l

x

l

x

H Q x dz

dz

W x z W z

x
W A W x l ER

z z

E x l W W x PAx

                                       (33) 

The control policy becomes 

11

2
ˆˆ ˆ( , ) .T

x

Tu x lR E W                                                 (34) 

The value function NN weight tuning law is chosen as 

2

1 2 32
ˆ ˆ ˆ ˆ ˆ ,N

N

W H W W W                                        (35) 

where
0 0

ˆˆˆ ˆ( , ) ( ) ( , )

l

T x

N

l

x f f

x
x z W z x z A

z
dz dz

z

1 ˆˆ ˆ ˆ( , ) ( , )
1

ˆ(0)
2

( ,0)T T

x xx l ER E x l W x PA ,

2

2

1 2

ˆ
ˆ

N

x
c

z
cx

L
L

3c and 
1,  2 ,  

3 ,  1,c  
2c  and 

3c  are suitable positive design 

constants. Here the first term in tuning law (35) reduces the approximated Hamiltonian 

while the other two terms are necessary for the stability of the system based on Lyapunov 

criterion that will be demonstrated in the proof. Under proposed control policy and 

adaptive tuning laws, it will be shown in Section 3 that closed-loop system will be 

ultimately bounded (UB). 

The presented output feedback controller can be extended to the case of more 

involved Dirichlet boundary condition. This will be explained in the next section. 

2.3. DIRICHLET BOUNDARY CONTROL 

If the boundary conditions for PDE (1) is modified to 

0

(0, ) , (0, ) 0,
z

x
x t Gu Px t

z
                                  (36) 

where matrices G  and P are defined in the same manner as Neumann boundary control, 

the control policy (15) and HJB equation (20) should also be changed accordingly. The 

following assumption is necessary before proceeding. 
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Assumption 4: |z l

x

z
 is available. Equivalently, the domain that output is 

measured includes the vicinity of boundary z l .  

In order to find the Hamiltonian, consider equation (11) and take integration by 

parts twice to obtain 

0

* *

0

* *

*

2

*

0

2

( ) ( , ) ( , )

( ,0) (0) (0)

,

l

T T

x x

T

T

z l

x x

z l z

T

T

x

T

x

l

x
u Ru

z

A A
z z

H Q x V f x z dz V x l A

V V
V x APx Gu

V
A zx

z

x

d

                          (37) 

where 
*

xV

z
  and 

2 *

2

xV

z
 are the first and second spatial derivatives of *

xV  with respect to z . 

Similar to Neumann boundary control, the Fréchet derivative of this equation with 

respect to control policy u  should equal to zero. Therefore, 

* *

* 11
2 0 .

2

x x

z z l

T

l

TV V
Ru G A u R G A

z z
                           (38) 

Substituting the optimal control in (37), the HJB equation for DPS  under 

Dirichlet boundary condition  can be represented in the form 

*

*

0 0

* * *

*

*

2

2

1

0

0 ( ) ( , )

1
( ) ( ) ( , )

4

( ,0) (0) (0)

x

T

l l T

z l

x

T

x

T T

xz xz x

T

T

x z

Ax
z

x

V
H Q x V f x z dz dz

V l V l V x l A

V
V x APx

ER E
z

A
z

x

                             (39) 

Analogously, if *V  is represented in approximated form of (28), the optimal 

control would be 

* 1 ,
1

2

T

x

z l

T

uu R E W
z

                                            (40) 

where 11
( , )

2

T

u VxzR E x l . The following assumption is equivalently to Assumption 2 for 

Neumann boundary control and necessary. 

Assumption 5: The function x

z
 is Lipschitz continuous with Lipschitz constant 

zL  i.e.  
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2

1 2

1 2

( ) ( )x x

z

x x
L

z
x x

z L
.                                       (41) 

 Accordingly, the HJB equation becomes 

2

*

1

2

0

0

0

0 ( )

1

4

(0)

(0

( )( ( ))

(0) ( )

) ,

T T

x f f

T

T T Tx x x

z l z l

T T

x x l

T

l

l

H

z

x

z

W z W z

W Ax W ER E W
z zz

x
W

H Q x dz

PA W l
z

W A
z

dz

x A

x

                        (42) 

where
H

 is derived as 

2

1

0

1

0 0

2

( ) ( , )

1

4

1
(0) (0)

) ( , )

2

(T T

H Vx x f

T T T

TVx Vx Vx

z l z l

T T T

l l

l

x Vx

z l z l Vx

W z x z

Ax ER

z f x z dz dz

d E
z zz

W ER E
z z

z

PAx

                               (43) 

0) ( )( .0
T

T Vx

Vx z l z

x
x

z z
l A A   

If the value functional is estimated as 

*ˆ ˆ ˆ( , ) ( , ),TV x z W x z                                               (44) 

the approximated HJB would be 

2

1

2

0

0

0

ˆ ˆ( , )( ( ))

( , ) ( , )ˆ

ˆ ˆ( )

ˆ ˆ1
ˆ

4

ˆ
ˆ ˆ(0)

ˆˆ
ˆ ˆ(

ˆ

( , ) ˆ ˆ ( ,0)

( , )ˆ ˆ( , ) 0),

T T

x f f

T T Tx x

z l

T

Tx

z l x

T

T x

x z l z

l

l

W z W z

z z
W A W ER E

zz

z
W W PA

z

z
W

Q x x dz

x x
xdz

x

z W A
z

x x

x
A

z

x
x x

                         (45) 

where x̂ is the estimated state described in Section 2.1. Therefore, the control input can be 

represented by 

1 ( ˆ )

2
ˆ .ˆ

,1 T

T

x

z l

x
u R E

z
W

z
                                            (46) 
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The value functional weight tuning law for Dirichlet boundary control is defined as 

2

1 2 32
ˆ ˆ ˆ ˆ ˆ ,D

D

W H W W W                                      (47) 

where 

0

1

0

2

2

0

ˆ( , )ˆˆ ˆ( , ) ( )

ˆ ˆ( , ) ( , ) ˆ

ˆ
ˆ ˆ ˆ( ,0)

1

( , )

ˆ( ,

2

(0)

(
)

0)

T x

D x f f

T

Tx x

z l z l

x x z

T

l

l

x

z

l
x z

x z W z Ax
z

x z x z
ER E W

z z

x
x PAx x l

z

x z
A

z

dz dz

A

x

                              (48) 

and
2

2

1 2 3

ˆ
ˆ

z lN

x
c c c

x
x

z zL
L

 with 
31,...,c c   and 

21 3, ,  being appropriate positive 

design parameters. 

In the next section, the ultimate boundedness of the closed-loop system with the 

developed boundary control policies will be illustrated for Neumann and Dirichlet 

boundary conditions, respectively. 
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3. STABILITY ANALYSIS 

 

System closed-loop stability will be examined by using Lyapunov criterion. First, 

it will be shown in Theorem 1 that in presence of bounded input, the observer dynamics 

and estimation error will be bounded. In Lemma 1, a bound will be found for 

Hamiltonian reconstruction error
H

when Neumann boundary control policy is 

implemented. This bound will be used later in closed-loop stability proof. Consequently, 

Theorem 2 will address the ultimate boundedness (UB) of all closed-loop states for 

Neumann boundary control condition. Finally, Lemma 2 and Theorem 3 will state similar 

results when Dirichlet boundary control policy is pursued. 

Theorem 1 (Boundedness of NN observer): Let the initial NN identifier weight 

estimation error 
fW and state estimation error x  be residing in a compact set 

1
 and 

2
, 

and the proposed NN observer and NN weight tuning law be provided by (21) and (24), 

respectively. In the presence of bounded inputs, there exists a positive definite observer 

gain matrix  and tuning parameter 0f
for the identifier weight update law such that 

the state estimation error x  and weight estimation error
fW are all UB. 

Proof: Refer to Appendix. 

Lemma 1: For Neumann boundary control policy, the following inequality  

2

2

1 2 ,H NM N H H

x
c x c

zL
L

                                (49) 

holds where
1Hc , 

2Hc   and 
NM

  are positive constants depending on approximation 

reconstruction errors. 

Proof: Refer to Appendix. 

Theorem 2 (Performance of the output feedback NN controller for Neumann 

boundary condition): Consider the DPS given by (1) and let the proposed NN observer 

and NN weight tuning law be provided by (21) and (24), respectively. Moreover, let 

control policy and tuning law for value function weights be provided by (34) and (35), 

respectively where 10 1  , 2 3  and 
33

N  with 
3

N  being a positive constant. 

Consequently, provided an initial admissible control, the system state x , state estimation 

error x  and weight estimation errors 
fW  and W  are all UB. 
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Proof: Refer to Appendix. 

Lemma 2: For Dirichlet boundary control policy, the following inequality  

2

2

1 2H DM D H H

x
c x c

zL
L

                                    (50) 

holds where
1Hc , 

2Hc   and 
DM

  are positive constants depending on approximation 

reconstruction errors. 

Proof: Refer to the Appendix. 

Theorem 2 (Performance of the output feedback NN controller for Dirichlet 

boundary condition): Consider the DPS given by (1) and let the proposed NN observer 

and NN weight tuning law be provided by (21) and (24), respectively. Moreover, let 

control policy and tuning law for value function weights be provided by (46) and (47), 

respectively where 
10 1  , 

2 3
 and 

33

D  with 
3

D  being a positive constant. 

Consequently, provided an initial admissible control, the system state x , state estimation 

error x  and weight estimation errors
fW  and W  are all UB. 

Proof: Refer to the Appendix. 

In the next section, the performance of proposed NDP based NN controller is 

examined by simulation on a semi-linear diffusion reaction process. 
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4. SIMULATIONS 

 

The controller developed in Section 0 was simulated using MATLAB on a 

diffusion reaction process to verify its performance. Next, Simulation results will be 

presented in separate parts for Neumann and Dirichlet boundary conditions. 

4.1. NEUMANN BOUNDARY CONTROL 

 Consider the nonlinear coupled semilinear reaction-diffusion system given by 

1

1

1

2

/ (1 )1 1

2

/(1 )

2

1

22 2

0

2

22 2

1

0 1

22 2

0

( )
5 ( ,0)

1 ( )

1

, ( ,
2

( )

,0)

x

T

x

T

z z

x
e x

t

x
e x

t

sin zx x
x z u x z

z

x
x

z z z

x
x

z z

z

z
                                   (51) 

where 
1 2[ , ]Tu u u  is the control input that exists only at the boundary 1z . Comparing 

(51) to dynamics (1) it will be deduced that 
2 2A G I  and 

2 25P I  . The following 

values were given to process parameters:
1

15,T
 

2
20,T

 
1

8,  
2

12, 5.0 , 4  

and 
0 0.5.z  It was verified that the open loop system was highly unstable when these 

values for system parameters were used.   

The cost functional that should be minimized was chosen to be 

1
2

0 0
( ) { } .TV x x xdz u dt                                                (52) 

The system output is defined as 
1

0
( ) ( ) ( , )y t C z x z t dz  where ( )C z  is a diagonal 2 2  

matrix with , ( ),i iC z 1,2i  defined as 

0 0

,

( )        if {0,0.5,1}
( ) .

0   Otherwise                
i i

z z z
C z                                        (53) 

In order to estimate the states, the observer gain matrix is chosen as
2 2100I . 

The NN activation functions for identifying ( , )f x z  were chosen as  

2

1
ˆ ˆ( , ) ( )

1 ( )
k j

i

x z x
z z

,1 18k                                    (54) 
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with {0.2,0.5,0.8},iz  1 3i , 4 , 2 2

1 2 1 21 21, , , , ,( ) ({ }),j x x x xx x x  1 6j , and 

(.) tansig(.) . The identifier update parameter was chosen as 10f
. Fifteen basis 

functions were chosen to approximate *V  with following structure 

2
ˆ ˆ( , ) ( )

1 ( )

0.5

i

k j

i

x z x dz
z z

                                       (55) 

where 1 15k ,  2 4 2 4 2 2

1 1 2 2 1 2( ) ({ , , , , })j x x x x x x x , 1 5j , {0.2,0.5,0.8},iz  

{(0,0.35),(0.35,0.65),(0.65,1)},i
 1 3i  and 8 .  

The value functional update parameters were chosen to be
1 0.9,  

2 0.2,  

3 0.15 , 
3 1c  and 

1 2 0.2c c . The initial admissible control was chosen as 45, 2
T
.  

Note that design conditions are satisfied with these parameters, i.e. 
2 3

 

and
33 0.1N . The controller was subsequently implemented on the system using 

MATLAB with spatial step size of 0.05dz . The NN weights were updated and the 

controller was applied in real-time setting with step size of 1 msec in order to have a 

convincing performance and computational rate.  

As shown in Figure 4.1.a the proposed controller can stabilize the system to zero 

in less than 50 milliseconds. The control inputs which were the spatial derivatives of the 

states at the boundary 1z are shown along with HJB error in Figure 4.2.  Since the 

system was unstable, its regulation required a considerable control effort at the beginning 

of simulation. Moreover, faster convergence of HJB error to zero compared to control 

input verifies that the adaptive law (35) is capable of reducing the HJB error. Finally, 

Figure 4.3 shows the performance of observer for different values of . As shown, 

increasing the observer gain reduce the bound 
2 2

ˆ
L L

e x x .  

4.2. DIRICHLET BOUNDARY CONTROL 

Consider the same reaction-diffusion system (51) but with boundary conditions: 

0 1

      5 ( ,0),     
z z

x x
x z u

z z
                                           (56) 

The process parameters were chosen as 
1

15,T
 

2
20,T

 
1

12,  
2

15, 5.0 , 4  

and 
0 0.5.z  It was verified that with these parameter values the system is still highly 

unstable under Dirichlet boundary control condition. 
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Figure 4.1. State profile history. a) Profile history of states
1x and 

2x for Neumann 

boundary control condition. b) Profile history of states for Dirichlet boundary control 

condition. 

 

 

 

 

Figure 4.2. Convergence of control inputs and HJB error for Neumann boundary 

control. 
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Figure 4.3.  Performance of observer for different values of gain . 

 

 

 

The cost functional was expressed so as to compare with (52). The same update 

parameters were chosen for the observer as in Neumann boundary control. The basis 

functions for approximating *V  were chosen so as to compare with (55). The value 

functional update parameters were accordingly chosen to be 
1 0.3,  2 0.2,  

3 0.1, 

3 1c , 
1 0.2c , 

2 0.02c . The initial admissible control was chosen as 8.5, 0.2
T
.  Note 

that design conditions are satisfied with these parameters, i.e. 
2 3

 and
33 0.04D . 

As shown in Figure 4.1.b, the proposed controller is capable of stabilizing the 

system to zero in less than 50 msecs. The time profiles of control inputs and HJB error 

are depicted in Figure 4.4. Similar to Figure 4.2 for Neumann boundary control, the HJB 

error converges more rapidly to zero when the update parameter 
1
 is increased.  
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Figure 4.4. Convergence of control inputs and HJB error for Dirichlet control. 
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5. CONCLUSIONS 

 

This paper developed a novel NN-based output feedback near optimal boundary 

control scheme for DPS governed by semi-linear coupled parabolic PDE under Neumann 

boundary control condition without any model reduction prior to control design. By 

defining an integral cost functional and formulating the HJB equation based on calculus 

in infinite dimensional state space, a closed-form of optimal control policy was derived. 

The proposed adaptive NN framework made online approximation of optimal control 

policy along system trajectories possible when the PDE dynamics were partially 

unknown. Lyapunov stability analysis indicated that the error between approximated and 

truly optimal weights and state trajectories would remain UB. The performance of 

proposed observer and controller in estimating states, stabilizing the system and reducing 

the HJB error was successfully verified on a coupled semi-linear diffusion process. 
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APPENDIX 

 

In order to avoid long derivations in the proof, we first define 
z

x
x

z
, 

2

2zz

x
x

z
, 

x
x

 , x

xz
z

, Vx

Vxz
z

 and 
2

2

Vx

Vxzz
z

.  First the proof for Theorem 1 will be 

provided. 

Proof of Theorem 1: In order to prove stability of state feedback identifier, 

consider the Lyapunov function 

0

1 1
( ),

2 2

l

T T

c c c f fL x xdz tr W W                                  (57) 

where 
c
 is a positive scalar. Taking its derivative 

cL   and substituting error dynamics 

(25) and (26) yields 

0 0

0 0

0

( , )

ˆ( , ) ( ( , )

ˆ( , )) ( ( ))

( ( , ) ).

l l

T T T

c c c zz c f

l l

T T T T

c f f c f f

T

f c f f f f

l

T

c f f

L y y x Ax dz x x z dz

x W x z dz x W x z

x z dz tr W W W

tr W x z y dz

                          (58) 

Taking integration by parts, substituting PDE dynamics (25) for state estimation 

error x  and using Poincare inequality ( 2 2 2 2

0 0

2 (1) 2

l l

zw dz lw l w dz ) yields 

2

2

0 0

2

min max

0

1
(0) (0)

4

1
( ) ( ) (0) .

2

l l

T T T

zz z z

l

T

z

x Ax dz x APx x Ax dz
l

x Axdz A x AP x
L

                          (59) 

Note that matrix AP  is negative definite. Moreover, using Young’s inequality 

( 2 2

1 2 1 2

1

2 2
) yields 

2 2

21

0

2

1

( , )
2

2

L L

l

T

c f c fM c

c fM

x x z dz l x x

l
                               (60) 
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and 

2

2

0

2 2 22

2

ˆ( ( , ) ( , )) 2

2
.

2

l

T T

c f f f c

fM fM c c fM fM

x W x z x z dz l x

l
W x W

L

L

                                (61) 

Moreover, 

2

2 22

0

1 1
( ( , ) ) .

2 2

l

T

c f f c f c fMtr W x z y dz W l y
L

 

 

Therefore,  

2 2

2

2

21 2

min min2

22 2

max min

2
2 2 2

1 2

2 22

1 1
( ( ) ) ( )

2 24

1
( ) (0) ( )

2

1 2

2 2

1 1
,

2 2

c c z

c f f c

c f f c fM c fM fM

c f c fM

L A x A x
l

AP x W y

l l
W W

W l y

L L

L

L

                    (62) 

Therefore choosing 2

min

1
( )

2
fMl , 1f

, 1 2 min2

1
( )

2
A

l
  and defining 

1 2

1 min2

1
( )

28
A

l
,  2 1f , 3 min

1
( )

2
A , 

4 max ( )AP     one has 

2 2

22 2

1 2 3

2

4

1 1

2 2

(0) ,

L Lc c c f c z

c c

L x W x

x

                                (63) 

where 2 2 2 2

1 2

1 2
.

2 2
c c f fM c fM c fM fM

l l
W W  Therefore the identifier dynamics are UB. 

Remark 2: The aforementioned bound
c
can be made smaller if Assumption 2 

holds. Accordingly, instead of equations (60) and (61) we have: 

2

2

0

ˆ{ ( ( , ) ( , )) } .
L

l

T T

c f f f f c fx W x z x z dz L x                          (64) 

Therefore, by combining the terms, instead of (62) we have 
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2 2

2

2

2

min min2

22 2

max min

22 22

1 1
( ( )) ( )

28

1 1
( ) (0) ( )

2 2

1 1 1
,

2 2 2

c c z

c f f c

c f f c f c fM

L A x A x
l

AP x W y

W W l y

L L

L

L
                           (65)

 

Therefore, choosing 2

min ( ) fMl , 1f
,   and defining 

2

1 min ( )
8

A ,  
2 1f

, 

3 min

1
( )

2
A , 

4 max ( )AP     one has 

2 2

22 2

1 2 3

2

4

1 1

2 2

(0) ,

L Lc c c f c z

c c

L x W x

x

                                    (66) 

where 21
.

2
c c f fMW   

Proof of Lemma 1: Using integration by parts, one has 

0

1

0
0

0

1

(( ) ( , )

( ) (0)

1 1

4 2

(0) (0).

) ( , )

( ) ( ) ( ) ( )

T T

H Vx x f

T T T

Vxzz Vxz Vxzz l z

T T T T

Vx Vx x Vx

l l

l

Vx

W z x z

A A A

l ER E l W l ER E l

z f x z dz dz

xdz x l x

PAx

                                   (67) 

Therefore, 

0

0
0

1

0

1

( ) ( , )

(

( ) ( , )

( ) (0)

1 1

4 2

(0) (0

) ( ) ( (

)

) )

.

T T

H Vx x f

T T T

Vxzz Vxz Vxzz l z

T T T T

V

l l

l

x Vx x Vx

Vx

W z x z

A A A

l ER E l W l ER E l

z f x z dz dz

xdz x l x

PAx

                                (68) 

According to Hölder’s inequality
2 2

( ( ) ( ) )
L L

a z b z dz a b  

2

0

( ) ,
L

l

x z dz l x                                                    (69) 

where 
2

1
2

2

2
. ( . )
L

dz . Therefore, using Cauchy’s, Young’s and Hölder’s inequalities 

yield 
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2

2

2

1 2 3 4

( )

(0) (0)
4 2

( ) )

1

(0

1

,

L

L

H VxM fM fM VxM fM fM M xM

VxzzM VxzM VxzM

VxM xM VxM VxM

H H H

M

H

l W

x l

x W x

l l W

l A x A

l x

PA

x x

A

                             (70) 

where 1 TER E , 1H VxzzMl A  , 
2H VxzM A ,  

3H VxzM VxMA PA  and 

 
4

2

( )

1 1

4 2

H VxM fM fM fM fM M

M

xM

VxM xM VxM

l W l

W

W

                                  (71) 

Moreover, recalling 
2 2

(0) , ( ) ( )
L Lzx x l k x x , 0k   

H
 can be expressed as 

2

2

2 2 2 2

2 2

1 2 3

2 3 4

1 2 3

1 2

( )

( )

ˆ ˆ( ) ( )

L

L

L L L L

L L

H H H H

H H z H

H H z z H

NM N H H z

k k x

k k x

c x x c x x c

c x c x

                             (72) 

where 
1 1 2 3H H H Hc k k , 

2 2 3H H Hc k k ,  
3 4H Hc  and 31 2

1 2 3

max{ , , }HH H

NM

cc c

c c c
 .   

Proof of Theorem 2: First, Consider the Lyapunov function 

1
,

2

T

aL W W                                                             (73) 

where ˆ .W W W  Taking its derivative
aL  yields 

2

31 22
ˆ ˆ{ ˆ ˆ }.

T

TN

a

N

WH W
W

L W W                                 (74) 

Since * 0H  , *ˆ ˆH H H  and it can be represented in the following form 

0

0

0

0

1

1

ˆ ˆˆ( , ) ( )

ˆ ˆ ˆˆ ˆ ˆ( , ) ( , )

ˆ ˆ( ,0

ˆ

) ( )

( ( )

ˆ( )

1

4

ˆ(0) (

) ( )

( ) (0) ) .

)

1

4

(0

T T

x f f

T T T T

xz z x x

T T

x x

T T T

f f xz z x

T T T

x x

l

l

l

l

H

H Q x dz

dz

x Q x

dz

W x z W z

W Ax W x l ER E x l W

W x PA W z

dW z W z

x

Ax W l

ER E l W W PA

                                (75) 
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Since 
2

ˆ( ) ( ) ,QQ x xQ x L
L

 and 

0 0

ˆ ˆ ˆ( , ) ,) ( ,

l

T T

xz

l

z xz zdzW x z Ax W x z dAx z  

0 0

0

ˆ ˆ( , ) ( , )

ˆ ˆ( ( , ) ( , )) ,

T T

xz

l l

l

z xz z

T

xz xz z

W x z Ax W x z Ax

W x z x z Ax

dz dz

dz

                             (76) 

and 

1

exp and

1

1

ˆ ˆ( ) ( , ) ( , )( )

( , ) ( , )

ˆˆ ˆ ˆ( , ) (

1

4

1

4

1
, ) ( , )

2 4

1

T T

x x

T T T

x x

T T T T

x x x

x l ER E x l

W x l ER E x l W

W x l ER E x l W W

W

x

W W W

l

 

1

1 1

ˆ ˆ( , ) ( , )]

ˆ(
1

, ) [ ( )
4

, ( , )

T T

x x

T T T T T

x x x

x l ER E x l W

ER E x l W W x l ER E x l
                             (77)

 and 

ˆ(0) (0)

ˆ(0) (0)

ˆ(0)

ˆ ˆ( ,0) ( ,0)

ˆ( ,0) ( ,0)

ˆ( ( ,0) ( ,0))

T T

x x

T T

x x

T

x x

x x

x

W x PA W x PA

W x PA W x x

x

PA

W x x PA

                                   (78) 

Combining all the terms and using Cauchy Schwartz inequality yield 

2 2

2 2 2

1 2 3 4

2

5 6 7 8

(0ˆ )

ˆˆ(0)

T

N z

z f

H W

x

b x b x b x b

x b x x b W b W b

L L

L L L

                               (79) 

where 2

1 ( )
1

2
Q M fM xM f fM xM Mb L W W l L l L L W

1Hc  , 2 2M xzM Hb lW A c , 

3 M xMb W PA , 
4 M xMb W PA , 

5 M xzMb lW , 6 M xM fMb lW , 2

7

1

4
xMb  and 

8 NM Nb .  

Subsequently, expanding 
2

ˆ ˆTW WW  and using Young’s and Cauchy-Schwarz 

inequalities yield 
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2

4 2 4

6

ˆ ˆ ( )( )

1 1 81
( )

4 2 4

1
.

2

T T TW W W W W W

W

W W

W

W W W W                                       (80) 

Consequently 
aL  can be derived as 

2 2

2 2 2

1 2

2

1 2 3

4 5 6

2

3

2

7 8

(0){

ˆ(0)

} (

ˆ

ˆ ˆ .)

L L

L L L

T

TN

a N

N

T T

z

z f

b x b x b x

b x b x x

W

b W

b W b W

W

W W W W

L

x

W

                              

 

(81) 

Therefore, according to Young’s inequality and since 

2 2

ˆ ˆ1, ,N N zx x
L L

 where 
1 2 3

1 1 1
max{ , , }N

c c c
, we have   

2

2 2

2

2

1 1 2

4 4

22 2

1

2 22 2 2 2 22 2
2 43

22 2
2 2 2

5

2

3

2

6 7

3 322
4

9

9 99 (0)

9 9

( )
49

4 4 4

4 4 4

9
( )

4 2 4

9

2

T
N

N

N z NN

N
N

f

NM

T

N

a

N

b x

b x b k

W

xb x

b

W
L

W
x b b

W
c

W W

L

L L

L

                                  (82) 

2 4 63 32
81

2 4 2
.W W W   

 If 
2 3

, 
33 2

3

2

79N

c

b
 define 2 3

1
( )

2
. If 

10 1   then 

2 2

2 22 2 2 2 2 2 22
1 5 4 2 3

2 2

2 4

1 1 1 22

2

2
6

9( ) 9 9 (0)

9

(1 )

4 4 4

,
4

L L

T

N

T

N

a

N

N

a

N N z

N

f

b b kb x

W W
L

b x b x

b
W

W W‖ ‖ ‖ ‖

                          (83) 

where 2 229

4 2
a NM MW   4 63 381

4 2
M MW W  . 
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Defining *

0

( )

l

bbL V x dz   and taking its derivative 
bL  yield 

* *

0 0

* * *

0 0 0

* * *

( , )) ( , )

( , )

( ) ( ) (0

(

(0))

l l

b x b x

l l l

b x zz b x b xz z

b x b x

b zz

z

L V f x z dz V f x z

V x dz V f x z dz V x dz

V l GA

x

u u V x

                                 (84) 

2

*2 1

* 1

1

1
ˆ( ) ( , )

2

1
ˆ( ) { ( , ) ( , )}

2

1
( ( ) ( )) ( ).

2

T T

b min b x x

T T T

b x x x

T T

b x Vx Vx

q V l ER E x l W

V l ER E x l x l W

l W l ER E l

x
L

 

By using Cauchy-Schwartz and Young inequalities one has 

2

* 1

22

1

1
ˆ( ) { ( , ) ( , )}

2

1

4
,

T T T

b x x x

b M

V l ER E x l x l W

W b x
L

                                (85) 

where 2 2

1

21
( )

4
b xM VxMMW Lb . And 

2*

2
2 4

2

2

11 1
ˆ( ) ( , ) (

( )

)
2 8

1
,

2

T T

b x x b VxM

b xM xM

V l ER E x l W W

W

                      

 

(86)

 

where 4 2

2

21

2
( )xM xMb  . Moreover, 

11
( ( ) ( )) ( )

2

T T

x Vx Vxl W l ER E l  

1
.

2
( )xM VxM VxMW                                             (87) 

Therefore 

2 2

2 2

1

2

2 ,

b b min

b

b

b

L q x b

b

x

W

L L

‖ ‖
                                         (88) 

where 

 

2 221 1 1
( )

8 2

) .

(
4

b M b VxM b xM

VxM VxM

b W W

W

                           (89) 
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Closed loop stability proof: In order to prove the overall closed loop stability of 

the system, Consider the Lyapunov function L  defined by .a b cL L L L  Taking its 

derivative L yields       

   

2 2

2

2

2 2

22 2

1 2 3

22 2 2 2

1 5 42

4

22 2 22 2 2 2
2 3 6

2

2 1

4

22 2

1 1

2 2

9( )
(0)

9 9 (0)

4

4 4 4

9

b min

c c f c z

N

c

N z N N

f

b b

L x W x

b b kb x
x

b x b x b

x

W

W q Wb b x

L L

L

L

L L
‖ ‖ ‖ ‖

                           (90) 

where 
a b c

.  Therefore, choosing 
2
2b b

 and 

2 2 2 2 2 2 2 2 2 2

1 5 4 1 2 3 6

1 1 3 4 2

9( ) 9 9 9
max{ , , , }

22 4

N N N N

c

bb b kb b b b b
L  is always less than zero if 

2

minb

x
qL

 or 
2

W‖ ‖ or 
2

1

2

c

x
L

or 
2

4
f

c

W  and the closed-loop system 

is UB.  

Aside from increasing number of neurons to reduce the bound , the bounds for 

x , x  and fW  can be arbitrarily reduced by increasing 
minq ,  in 

1
 and 

f
 in 

2
. 

Proof of Lemma 2:  
H

 for Dirichlet boundary control condition can be derived 

as 
2 2

1 2H DM D H H zc x c x
L L

  where 1 ( )H VxzzM VxM VxzMc l A k PA A  , 

2 ( )H VxM VxzMc k PA A ,  
3H VxMc A  and 31 2

1 2 3

max{ , , }HH H

DM

cc c

c c c
.  

Proof of Theorem 3: Consider the same Lyapunov function as in Theorem 2. If 

update parameters satisfy
2 3

, 
3

8

3 2

4

29

4

D

c

b
 and 

10 1 . Define 2 3

1
( )

2
 

and
1 2 3

1 1 1
max{ , , }D

c c c
. Similarly, taking the derivative of Lyapunov function and 

combining
aL  , 

bL  and  
cL  yield, 
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2 2
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1 4 5 62
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 where 
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2 2

2 2

34 6

1 1 1
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8 2
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4 2

81
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4
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4 2
,
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1 4,...,  are defined as in proof of theorem 1 and 

1 ( )Q M fM xM f fM M xzzMb L W W l L l L lW A 2

1

1

2
xzM M HL W c ,

2 2Hb c , 

3 M xMb W PA M xzM AW , 
4 M x M xzb W L PA W L A , 

5 M x Ab W L , 

6 M xzzb lW L A ,  
7 M xM fMb lW , 2 2

1

21
( )

4
Vb xz MM zxzMW Lb , 2 4

2

2( )
1

2
xzM xzMb . 

Therefore, choosing 1

22
b

b
 and 

2 2 2 2 2 2 22 2

1 4 5 6 1 32

1 1 3 4

9( ) 99
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2
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2 4

bD DD

c

b b b b b bb
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6

2

9
, }Db
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2
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x
qL
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2
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2

2

1

2

c

x
L
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2

2

3

4
z

c

x
L

or 
2

4
f

c

W‖ ‖ . 

Consequently, the closed-loop system is UB. 
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IV. BOUNDARY CONTROL OF TWO DIMENSIONAL BURGERS’ PDE USING 

APPROXIMATE DYNAMIC PROGRAMMING 

 

B. Talaei, S. Jagannathan, and J. Singler 

 

An approximate dynamic programming (ADP) based near optimal boundary 

control of distributed parameter systems (DPS) governed by uncertain two dimensional 

(2D) Burgers equation under Neumann boundary condition is introduced. First, 

Hamilton-Jacobi-Bellman (HJB) equation is formulated without any model reduction and 

optimal boundary control policy is derived in terms of value functional which is obtained 

as the solution to the HJB equation. Subsequently, a novel neural network (NN) identifier 

is developed to estimate the unknown nonlinearity in the partial differential equation 

(PDE) dynamics. The suboptimal control policy is obtained by forward-in-time 

approximation of the value functional using a second NN-based online approximator and 

identified dynamics. Adaptive tuning laws are proposed for online learning the value 

functional and identifier. Local ultimate boundedness (UB) of the closed-loop system is 

verified by using Lyapunov theory. Simulation results confirm the good performance of 

proposed controller on an unstable 2D Burgers equation.  
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1. INTRODUCTION 

 

Stabilization of multi-dimensional fluids is one of the most challenging 

problems in the control theory [1]. In particular, boundary control of fluid dynamics 

modeled either by Navier Stokes or Burgers equation expressed as partial difference 

equations (PDE) gained special attention [2] after the development of micro-electro-

mechanical systems (MEMS) which made the distributed control of fluids at the 

boundaries possible. 

Boundary control of one dimensional Burgers equation has been studied in the 

literature. In [3], nonlinear Galerkin model reduction is used for designing a controller for 

finite dimensional model. In [4], a combination of nonlinear transformation and 

backstepping method is utilized to design a locally asymptotic controller and an estimate 

of region of attraction is provided. Earlier effort in this area included “radiation boundary 

control” which proves local exponential stability by using scalar feedback gains in the 

boundary conditions [5]. 

Since the fluid flow or mixing applications are usually modeled by using multi-

dimensional Navier Stokes or simplified Burgers equations, boundary control of these 

multi-dimensional PDEs have also been introduced in the literature. In [6], the 

stabilization problem of two dimensional (2D) Navier Stokes equation using 

backstepping method is considered whereas the authors in [3] have applied their 

nonlinear model reduction technique for 2D Navier Stokes equation. The Riccati equation 

for optimal boundary feedback stabilization of incompressible Navier Stokes flows have 

also been formulated in [7]. The control of 2D PDEs is more involved and difficult in 

comparison with a 1D PDE. 

Approximate dynamic programming (ADP) has been extensively utilized for the 

optimal control of one dimensional PDE [8]-[10],. Here, the conventional method of 

solving the PDE [8]-[10] using ADP involves obtaining a reduced order finite 

dimensional representation and subsequently using the ADP on the reduced order 

ordinary differential equations (ODE). Recently, in [11] and [12], an ADP approach is 

introduced for boundary control of linear and nonlinear one dimensional parabolic PDE 

without model reduction, respectively. However, to the best knowledge of the authors, no 
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known work on the optimal control of uncertain multi-dimensional PDE has been 

reported using ADP.  Due to the importance of higher dimensional PDE in various 

applications such as fluid flow, in this paper, the authors intend to solve the boundary 

control of multi-dimensional nonlinear PDE like 2D Burgers equation with unknown 

uncertainty in the system  dynamics. 

Therefore, this paper addresses an ADP-based boundary control of 2D uncertain 

Burgers equation without using model reduction. The optimal control problem is 

formulated in the original PDE domain and solved forward-in-time without using any 

finite dimensional model approximation prior to the control design.  After defining an 

appropriate value functional, the Hamilton-Jacobi-Bellman (HJB) equation is derived in 

the infinite dimensional space and the optimal control policy, which requires the solution 

to the HJB equation, is obtained based on necessary conditions of optimality.  

Afterwards, a NN identifier is introduced for the online approximation of 

nonlinearity in the PDE so that the need for the system dynamics is relaxed. 

Subsequently, by approximating the optimal value functional based on a novel adaptive 

framework, and by using the NN identifier, the actual control policy is derived. No value 

or policy iterations [13] have been used in the ADP design. Instead, the value functional 

NN weights are tuned online based on conventional adaptive techniques. Eventually, 

Lyapunov analysis is utilized to demonstrate the ultimate boundedness (UB) of the 

closed-loop system.  

Throughout the paper .  stands for Euclidean norm for a vector and Frobenius 

norm for a matrix. We recall the inequality 
2

. .
F

   with 
2

.   being the induced 2 norm. 

We also define for
2[ (0, )]w l  L ,

2

1
2

2

2

0

( ( ) )

l

w w z dz L
 and 2

2[ (0, ) ]x l  L  , 

2

1

2 2

0 0

( ( , ) )

l l

x x z y dzdy  L
.  

The rest of the paper is organized as follows. In Section 2, the class of DPS 

under consideration is described and the state feedback optimal control approach is 

explained. The stability of developed approach is discussed in Section 3. Section 4 

demonstrates the simulation results and Section 5 provides the conclusions of the paper. 
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2. APPROXIMATE OPTIMAL CONTROL 

    

The class of DPS considered in this paper is described by following Burger’s 

PDE dynamics in a square domain [0, ] [0, ]l l   with Neumann boundary control as 

 

2 2

2 2

0, 1 1 , 2 2

, 0 1 1 , 2 2

0

( , , ),

| ( ) ( ),  | ( ) ( ),        

| ( ) ( ),  | ( ) ( ),     

( , ,0) ( , ),  

z y z l y

z y z y l

x x x x
x x f x z y

z yz y

g y u y g y u

x

t

x x

z z

x x

y

y

h z v z h z v z

x z y

y

x z y

                                 (1)             

where ( , , )x z y t  represents the system state belonging to the solution space of the 

PDE 2

1[0, ]X lH , with
1H being the Sobolev space of first order, t  denotes 

time , [0, ]z y l , 0l  , being the spatial variable, ( , , )f x z y  is an unknown Lipschitz 

continuous nonlinear vector function, and
x

t




and 

2

2

x

z




 denote the time and second spatial 

derivatives of state x . Moreover
1 2 1 2( ), ( ), ( ), ( )u y u y v z v z denote boundary control input 

signals, and 
1 2 1 2( ), ( ), ( ), ( )g y g y h z h z  are bounded functions. Next the following assumption 

on the nonlinearity is needed.  

Assumption 1: The function (., , )f z y is Lipschitz continuous with Lipschitz 

constant
fL i.e.  

 
1 2 1 2( , , ) ( , , ) .ff x z y f x z y L x x                                                  (2) 

 The objective is to provide a continuous control policy by minimizing the cost 

functional over infinite horizon as 

0

0( , , , ) ( , , ) ,
t

V x t u v V x u v dt                                                    (3) 

where  

0 0

2 2

1,2 1,20 0

( , , ) ( , , )

( ) ( ) ( ) ( ) ,

l l

l l

i i i i

i i

V x u v q x y z dydz

r y u y dy s z v z dz
 



 

 

  
                                          (4) 

with ( , , )q x z y  being a nonlinear integrand function and functions ( ), ( ) 0i ir y s z   for 

, [0, ]y z l , 1,2i  .  
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By using Riesz representation Theorem [14], it can be proven that 

* *

0 0
( , ) ( , , ) .

l l

V x t V x z y dzdy                                                    (5) 

where *V  is the optimal value functional and *V  is its optimal integrand. The steps are 

omitted here for the sake of brevity. By taking the current time interval [ , )t t t , ( , , )V x t u  

in (3) can be expressed in the recursive form as 

( , , , ) ( , , ) ( , , , ).

t t

t

V x t u v V x u v dt V x t t u v                                           (6)                                                                                              

Therefore, the optimal *V can be expressed as 

*

,
( , ) min{ ( , , , .) )( , , }

t t

u v
t

V V x u v dx t x t t ut V v                                           (7)                                                                                              

It is assumed that *( , )V x t  is Frechet analytic in neighborhood of ( ( , ), )x z t t . 

According to calculus of variations [15], *( , )x tV t  can be represented in its first order 

approximation form as 

*
* * *

0 0
( , ) ( , ) ,

l l

xx t t x t V x
V

V dzdy t
t

V                                          (8)                                                                                      

Since the cost function V in (3) is infinite horizon, *V does not explicitly depend on time 

and 
*

0
t

V
.  Consequently, substituting approximation (8) into (7), canceling *( , )V x t  on 

both sides, dividing throughout by t , letting 0t   and finally substituting PDE 

dynamics (1) for 
x

t




 results in the HJB equation given by 

2

0 0
1,2 0

2 2
2

2 2
1,2 0

*

*

0 0

( , , ) ( ) ( )

( ) ( ) (

( , , ))

0 min{

}

l
l l

i i

i

l

i i

i

u

l l

x

q x y z dydz r y u y dy

x x
s z v z dz

z y

H

V

dzd
x x

x x f
z

yx z y
y                                     

(9)                                         



124 

 

Define the Hamiltonian as 

2

0 0
1,2 0

2 2
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2 2
1,2 0

0 0
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                                      (10)                                                          

Using integration by parts, Hamiltonian can be rewritten as 

2
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1 1

0
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V V
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y z
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                              (11)                                                                    

The necessary conditions of optimality requires that for the control policy to be 

minimizing the Hamiltonian (11), 0
dH

du
 . Therefore 

1 1

1

2

*

2

*
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1
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2 ( )

1
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By substituting the optimal control policy (12) in (11), the HJB is given by 
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V dy V dy

V d
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g y g y
y l y
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z z l

s z s z

x x

z V dz

V V
dzdy

z z y y

x x
x x f x z y

z y
V dzdy

0
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l

                                     (13) 

Remark: The control inputs (12) at all boundary edges depend on the value 

functional *V which is the solution to the HJB for the Burgers equation expressed as 2D 

PDE. The HJB for multi-dimensional nonlinear PDE problem cannot be generally solved 

separately for each dimension and therefore two decoupled optimal controllers for y and z  

directions are not a substitute for the proposed control scheme in this paper. 

Since the nonlinear function ( , , )f x z y  in the system dynamics is unknown, it is 

necessary to introduce an identifier prior to control synthesis. Therefore, in the next 

section the design of NN identifier will be introduced. 

2.1. IDENTIFIER DESIGN 

Since f is a function over 2 2[0, ] (0, )X l C l  , and the domain 2[0, ]X l  is a Banach 

space,  there exists a compact set 2[0, ] ,X l   such that for ( , , )x z y   by choosing a  

smooth bounded basis function vector 2 2

1

2: [0,[0, ] (0,] [ ) ]m

f l Cl l  H with the uniform norm 

bound 
fM  the function ( , , )f x z y  can be written as [16] 

( , , ) ( , , ) ( , , ),T

f f ff x z y W x z y x z y                                           (14) 

where m

fW  is the target weight vector with the Euclidean norm  bound 
fMW and 

f  is 

the approximation error with the bound fM  .  Hence, the NN approximation of the 

nonlinearity is given by 

ˆ ˆ( , , ) ( , , ).
T

f f
f x z y W x z y                                                  (15) 

In order to find the tuning law for the estimated weight vector ˆ
fW , a state estimator 

with following PDE dynamics is initially considered as 
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2 2

2 2
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ˆ ˆ
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| ( ) ( ),   | ( ) ( ).  
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                                      (16) 

The state estimation error x is defined as ˆx x x . 

Select NN tuning law for ˆ
fW  as 

0 0

ˆ ˆ ( , , ) .

l l

f f f fW W x z xdydzy                                                 (17) 

Accordingly, the state estimation error x  dynamics will be governed by 

2 2

2 2

0, ,

, 0 ,

,( , , ) ( , , )

| | 0,  

| | 0,                   

f f f

z y z l y

z y z y l

x x x
kx

t
W x y z

x x

z z

x x

z z

x y z
z y

 

 

 

 
    
 

 





 

 


 




                                   (18)

 
where the NN weight estimation error for the identifier is given by ˆ

f f fW W W  .  Noting 

ˆ
f fW W  , the dynamics of NN identifier weight estimation error can be represented as

                                                                                      
 

0 0

ˆ ( , , ) .

l l

f f f fW W x z xdydzy                                                   (19)  

Since an estimate of system dynamics is now available, in the next section, the 

ADP approximate optimal control policy will be addressed. 

2.2. APPROXIMATE CONTROLLER DESIGN 

Equation (13) is generally a nonlinear quadratic partial integro-differential 

equation (PIDE) and therefore it has no closed-form solution. Therefore, the objective is 

to find a suitable structure for estimation of *( , )V x z  in (13). For this purpose, it is 

assumed that *( , )V x z  is an integral functional over 2 2

1 1[ [0, ] [0] , ]n l C l H , and therefore 

there exists a smooth bounded basis function vector 2

1

2

1:[ [0,] ] [ [0, ] ]pn l C l  H with the 

uniform norm bound M  such that [16] 

*( , , ) ( , , ) ( , , ).T

VV x z y W x z y x z y                                      (20) 

Assumption 2: It is assumed that the weight vector pW  is bounded  with the 

bound
MW

and the derivative of approximation error with respect to x , i.e. Vx  and its 
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second and third derivatives with respect to z and y  are bounded by uniform norm 

bounds
VxM , 

VxzM ,
VxyM , VxzzM and

VxyyM  [16] . 

Therefore the optimal control input can be written as 

1

2

1

2

*

1 1

1

*
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2
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1 1

1

*

2 2

2

1
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1
( ) ( ) ( , , ) ,

2 ( )

1
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2 ( )

1
( ) ( ) ( , , ) ,

2 ( )

T

x u

T

x u

T

x v

T

x v

u y g y x y W
r y

u y g y x l y W
r y

v z h z x z W
s z

v z h z x z l W
s z

                                      (21) 

where 
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(22) 

Consequently, the HJB equation can be represented in its approximated form as 
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(23)                                                    

where the function   is expressed as ( , )z y for brevity, using similar notation for 

functions V and f in the following equation, H can be derived as 

2 2

2 21 2

1 2

2 2

2 21 2

1 2

0 0

0 0

1 1

4 4

1

( ) ( )
( ,0) ( , )

( ) ( )
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4 4) ( )
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H Vx Vx

Vx V
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x
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dy dy
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(24)                                                         
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The approximated Hamiltonian can be represented as 
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Next, the control policy in terms of estimated value functional weight vector becomes 

1 1

1

2 2

2

1 1

1

2 2

2

1 ˆˆ ( ) ( ) (0, ) ,     
2 ( )

1 ˆˆ ( ) ( ) ( , )
2 ( )

1 ˆˆ ( ) ( ) ( ,0) ,    
2 ( )

1 ˆˆ ( ) ( ) ( , )
2 ( )

T

x

T

x

T

x

T

x

u y g y y W
r y

u y g y l y W
r y

v z h z z W
s z

v z h z z l W
s z

                                                     (26) 

Select the value function NN weight tuning law as 

2

1 2 32
ˆ ˆ ˆ ˆ ˆ ,N

N

W H W W W


  


                                                       (27) 
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where  
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1 2 3, ,    represent positive constants and 

2 2 2 2

2 2

1

2

2 3 4( , ) ( ,0)N x xc c c x z x zcl    
L L L L

 

 22 2

2 2 2

5 6 7

8 9 10 11

2 2( , ) ( , ) ( , )

(0, ) ( , ) ( ,0)

c c c

c

x l y x l y x l

c c c

y

x y x z l x z

 

   


LL L

L L L

                                    

(29) 

with
1 11,...,c c being positive constants. Next the stability analysis of the closed-loop system 

is fully analyzed by using Lyapunov criterion. Specifically, ultimate boundedness (UB) 

of all closed-loop states for Neumann boundary control condition will be addressed. 
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3. STABILITY ANALYSIS 

 

System closed-loop stability will be fully analyzed by using Lyapunov criterion. 

First, it will be shown in Theorem 1 that in presence of bounded input, the identifier 

dynamics and estimation error will be bounded. In Lemma 1, a bound will be found for 

Hamiltonian reconstruction error 
H  when Neumann boundary control policy is 

implemented. This bound will be used later in closed-loop stability proof. Consequently, 

Theorem 2 will address ultimately boundedness (UB) of all closed-loop states for 

Neumann boundary control condition.  

Theorem 1 (Boundedness of the NN identifier): Let the initial NN identifier 

weight estimation error fW and state estimation error x  be residing in a compact set 
1
, 

and the proposed NN identifier, the state estimator and NN weight tuning law be 

provided by (15), (16) and (17), respectively. In the presence of bounded inputs, there 

exists a positive definite gain 1
2

k   and tuning parameter 0f  for the identifier weight 

update law such that the state estimation error x  and weight estimation error fW are all 

UB. 

Proof: Refer to Appendix. 

The boundedness of the control input is relaxed in the main closed-loop stability 

theorem. The following lemma is needed before we proceed. 

Lemma 1: The following inequality  

2 2 2

2 2 2

2 2 2

2
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c cx x x z l
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x l y x

c
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c c cy x

c

l

c

z

x z





  

  

 

 

L L L

L L L

L L L

L

                                       (30) 

holds where 1 11,...,H Hc c  are positive constants. Moreover note that H NM N    where N  is 

defined in (29) and NM  is a positive constant. 

Proof: Refer to the Appendix. 

Theorem 2 (Performance of the state feedback NN controller): Consider the DPS 

given by (1) and let the NN identifier, the state estimator and NN weight update law be 
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provided by (15), (16) and (17),  respectively. Moreover, let control policy and tuning 

law for value function weights be provided by (26) and (27), respectively where 
10 1   

, 
2 3   and 

33

N

   with 
3

N

  being a positive constant. Then the system state x , state 

estimation error x  and weight estimation errors fW andW  are all UB. 

Proof: Refer to the Appendix. 

In the next section, the performance of proposed ADP based NN controller is 

examined on the 2D Burgers PDE via simulation. 
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4. SIMULATIONS 

 

We consider the plant with the PDE dynamics 

2 2

2 2

0, 1 , 2

, 0 1 , 2

0

( , , ),

| ( ),  | ( ),        

| ( ),  | ( ),     

( , ,0) ( , ),  

z y z l y

z y z y l

x x x x
x x f x z y

z yz y

u y u y

v z v z

x z y x

x

t

x x

z z

x x

y y

z y                                            (31) 

in the region , (0,1) (0,1)z y . The unknown nonlinearity ( , , )f x z y  is given by 

 2

2 2

100
( , , ) ,

1 100(( 0.5) ( 0.25) )
f x z y x

z y                                        
   (32) 

and state initial condition is expressed as 

0 2 2

10
( , ) .

1 100(( 0.75) ( 0.25) )
x z y

z y                                           (33) 

The 4th order Runge-Kutta finite difference method was used for numerical 

simulation of Burgers PDE with 0.05z y and 45 10t . The function ( , , )q x z y  in 

cost functional  (4) was chosen to be 

2

2 2

1
,

1 10(( 0.5) (
(

0.25)
,

)
, ) x

z y
q x z y

   


                                            (34) 

and 
1 2 1 2 1.r r s s    The NN activation functions for identifying ( )f x were chosen as 

2 2

1
( , , ) ( ),

1 10(( ) ( ) )i i

x z y x
z z y y                                          (35) 

where 2( ) { , }.x x x  Forty eight basis functions were chosen to approximate *( , , )V x z y with 

following structure 

2 2

1
( , , )

1 10(( ) ( ) )

( ) ,

i

i

i i

j j

x z y
z z y y

c x dzdy
                                               (36) 

where 2 4 6( ) { , , },x x x x 2 410 ,10jc   or 610 and spatial domain is divided into 16 identical 

square subregions
i
, 1 16i . The value functional update parameters were chosen to 
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be
1 0.9,  2 0.2,  3 0.1  , 

11 0.5c  , 3

1 10 10c c   and identifier update parameters were 

selected as 2f  and 50k  . 

Figure 4.1 verifies that the open loop system was highly unstable with these 

values for system parameters. Figure 4.2 confirms the instability of open loop PDE by 

displaying the divergent behavior of 
2L  norm of state for initial 100 msec. 

Figure 4.3 depicts the closed-loop state evolution of system in space and time verifying 

that the boundary controller can stabilize the unstable states at zero in less than 0.5 

second. Figure 4.4 shows the convergence of system state ( , )x z y  to zero more clearly by 

displaying the norm of state x over time. As shown the boundary controller can stabilize 

the state norm at zero in less than 0.5 second. Stabilizing the norm of state is a very good 

indication that the states have converged to zero. Moreover, the norm history shows how 

elegantly the controller performs in presence of external disturbance. 

 

 

 

 

Figure 4.1. Snapshots of system open loop state behavior. 
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Figure 4.2. Open loop time history of norm of state x when there is no boundary. 

control. 

 

 

 

 

Figure 4.3. Time profile of norm of state using the proposed boundary control policy. 
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Figure 4.4. Snapshots of closed loop state behavior. 

 

 

 

Figures 4.5 and 4.6 show the time profile of control policy and convergence of 

HJB error, respectively. The 
2L norm of boundary control inputs are solely shown in Fig 

5 for brevity.  This figure shows that the initial admissible control effort is relatively high 

since the PDE dynamics are unstable. Subsequently, faster convergence of HJB error in 

this figure compared to state trajectory and control inputs verifies that the HJB error is 

reduced by the proposed adaptive law before convergence of the states to zero. Moreover, 

increasing the value of
1  in the tuning law (27) results in a more rapid convergence of 

the HJB error. 

Finally, Figure 4.7 verifies the performance of proposed identifier developed in 

Section 2.1. As shown, increasing the gain k in state estimator has a significant role in 

convergence of the identification error to zero.  
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Figure 4.5. Time profile of norm of boundary control inputs. 

 

 

 

 

 

Figure 4.6. Time profile of HJB error for different values of design parameters. 
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Figure 4.7. Time profile of identifier error for different values of design parameters. 
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5. CONCLUSIONS 

 

This paper introduced a novel ADP optimal boundary control scheme for 2D 

Burgers equation under Neumann boundary condition without any model reduction prior 

to the control design. By formulating the HJB equation based on calculus in infinite 

dimensional state space, boundary optimal control policy was derived. The proposed 

adaptive NN framework made online approximation of optimal control policy along 

system trajectories possible whereas the PDE dynamics were partially unknown. 

Lyapunov stability analysis indicated the error between approximated and truly optimal 

weights and state trajectories would remain UB. Simulation results confirm the 

effectiveness of developed boundary control approach on an unstable 2D Burgers 

equation. 
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APPENDIX 

 

Proof of Theorem 1: In order to prove stability of state feedback identifier, 

consider the Lyapunov function 

0 0

1 1
,

2 2

l l

T T

c c c f fL x xdydz W W                                                  (37)  

where 
c  is a positive scalar. Taking its derivative 
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Taking integration by parts and substituting PDE dynamics (18) for state 

estimation error x  yield 
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Therefore, using Young’s inequality 2 2

1 2 1 2

1 1
(

2 2
)  yields 
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21
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where
2

2
2 1

2 2
c c fM c f f

l
W      . Therefore by selecting 

1

2
k  , the identifier dynamics are 

UB with the bounds for 
2

2
x
L

and 
2

fW can be arbitrarily reduced through the selection of 

design parameters. 

Proof of Lemma 1: Define Vx
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where, 
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Proof of Theorem 2: Since * 0H   , *ˆ ˆH H H   and it can be represented in the 

following form: 
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Subsequently, expanding 
2

ˆ ˆTWW W    and using Young’s and Cauchy-Schwarz 

inequalities to get 
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Consequently 
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According to Young’s Inequality 
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Moreover, 
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where
i , 1 4i  are defined in Lemma 1.   By observing the fact that
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where by using Lemma 2, 2 223
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Moreover, 
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Closed loop stability proof: In order to prove the overall closed loop stability of 

the system, Consider the Lyapunov function L  defined by .a b cL L L L    Taking its 

derivative L  yields 
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Consequently, the closed-loop system is UB and the bounds for the state x , state 

estimation x  and weight estimation errors W
, fW   can be  reduced by using design 

parameters. 
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V. OUTPUT FEEDBACK BOUNDARY CONTROL OF TWO DIMENSIONAL 

NONLINEAR PARABOLIC PDE: AN ADAPTIVE DYNAMIC PROGRAMMING 

APPROACH 

 

B. Talaei, S. Jagannathan, and J. Singler 

 

In this paper, adaptive dynamic programming (ADP) based output feedback 

boundary control of two dimensional nonlinear parabolic partial differential equations 

(PDE) under Neumann boundary control condition is introduced. The Hamilton-Jacobi-

Bellman (HJB) equation is formulated in the original PDE domain and the optimal 

boundary control policy is derived using the value functional as the solution of the HJB 

equation. Subsequently, a novel PDE observer is developed to estimate the system states 

given the nonlinearity in PDE dynamics and measured outputs. Eventually, the sub-

optimal boundary control policy is obtained by forward-in-time estimation of the value 

functional using a neural network (NN) online approximator and estimated state obtained 

from the NN observer. Novel adaptive tuning laws in continuous-time are proposed for 

learning the value functional online to satisfy the HJB equation along system trajectories 

while ensuring the closed-loop stability. Local ultimate boundedness (UB) of the closed-

loop system is verified by using Lyapunov theory. The performance of proposed 

controller is verified via simulation on an unstable two dimensional nonlinear diffusion 

reaction process. 
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1. INTRODUCTION 

 

Many physical phenomena are described by the interaction of convection, 

diffusion and reaction [1]. In fact, the convection–diffusion and the diffusion–reaction 

processes modeled by nonlinear partial differential equations (PDE) are basic in 

describing a wide variety of problems in physics, chemistry, biology, and engineering. It 

is well known that the Burgers equation is a simple nonlinear model equation 

representing phenomena described by convection and diffusion [2]. The Fisher equation 

is another nonlinear model equation which arises in a wide variety of problems involving 

diffusion and reaction such as propagation of an advantageous gene in a population [3]. 

The Fisher equation is a particular case of a general model equation, called the nonlinear 

reaction–diffusion equations. Other problems described by this kind of PDE include the 

propagation of chemical waves [4], the spread of animal or plant populations [5] and the 

evolution of neutron populations in a nuclear reactor [6]. 

The optimal control of nonlinear parabolic PDE was first studied in [7]. In the 

early stages of development, the existence and uniqueness of solutions to Hamilton-

Jacobi-Bellman (HJB) equation were solely studied in the abstract form using operator 

theory. Several other researchers subsequently extended the results to boundary control 

and different kinds of settings [8]-[11]. However, a practical solution to the HJB equation 

could not be provided because of computational complexity of solving the HJB equation 

with huge number of states involved in the PDE system. 

From the engineering aspect of view, approximate dynamic programming (ADP) 

[12], as part of optimal control, seeks computationally feasible solutions of HJB for the 

cases where the state space is considerably large and the dynamics are nonlinear. 

Therefore, the conventional method of controlling the PDE using ADP has been 

previously used to control different kinds of one dimensional parabolic PDE [13]-[17]. 

The conventional control method involves obtaining a reduced order finite dimensional 

representation and subsequently using the ADP algorithms on the reduced order ordinary 

differential equations (ODE). 

The real-world applications of PDE and in particular nonlinear reaction diffusion 

systems are almost in multi-dimensional domains. Although the design and analysis is 
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much more challenging in two or three dimensions, very few ADP approaches were 

designed in these settings. Moreover, since the system is spatially distributed, it is 

necessary that the controller only rely on availability of few measurable outputs rather 

than the state on whole spatial domain. However, most of developed ADP approaches in 

the literature, design and analyze the controller based on the assumption that state is 

available throughout the space. 

This paper designs and analyzes an output feedback ADP control method for two 

dimensional (2D) nonlinear reaction diffusion PDE. The design extends recently 

developed approach [18],[19] for one dimensional setting which does not utilize model 

reduction. Hence, the HJB is derived and an adaptive algorithm is developed to 

approximate its solution in the PDE domain forward-in-time and without using policy or 

value iterations [20]. A PDE observer is designed to estimate the unavailable state. 

Moreover, the stability analysis is also carried in the original infinite dimensional domain 

using calculus. The boundary control problem which is more theoretically challenging 

and practically relevant is addressed. Since abstract operator theory is avoided, the paper 

is comprehensible for majority of engineers that are not quite familiar with functional 

analysis. Simulation results confirm that the presented output feedback control method 

has good convergence and control performance on an unstable 2D diffusion-reaction 

process.  

Notations: Throughout the paper, .  stands for Euclidean norm for a vector and 

Frobenius norm for a matrix. We recall the inequality 
2

. .
F

   with 
2

.   being the 

induced 2 norm. We also define for 2[ (0, )]w l  L , 2

1
2

2

2

0

( ( ) )

l

w w z dz L
 and 2 2[ (0, ) ]x l  L , 

2

1

2 2

0 0

( ( , ) )

l l

x x z y dzdy  L
.  

The rest of the paper is organized as follows. In Section 2, the class of PDE under 

consideration is described and the output feedback boundary optimal control approach is 

explained. Section 3 addresses the closed-loop stability of system under the proposed 

boundary control framework. Section 4 demonstrates the simulation results and Section 0 

provides the conclusions. 
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2. ADAPTIVE DYNAMIC PROGRAMMING BOUNDARY CONTROL 

             

The class of PDE considered in this paper is described by following 2D parabolic 

dynamics in a square domain [0, ] [0, ]l l  with Neumann boundary control as  

2 2

2 2

0, 1 1 , 2 2

, 0 1 1 , 2 2

0

0 0

( , , ) ( , , ),

| ( ) ,  | ( ) ,        

| ( ) ,  | ( ) ,     

( , ,0) ( , ),  

( ) ( , ) ( , ) , 

z y z l y

z y z y l

l l

x

t

x x

z z

x x

y

x x
f x z y d z y t

z y

g y u g y u

h z v h z v

x z y x z y

w t C z y x z y dzdy

y
                                            (1)             

where ( , , )x z y t  represents the system state belonging to the solution space of the 

PDE 1 2[0, ]X lH , with 1H being the Sobolev space of first order, t  denotes 

time, , [0, ]z y l , 0l  , being the spatial variable, ( , , )f x z y  is an Lipschitz continuous 

nonlinear vector function, 
x

t




, 

2

2

x

z




and 

2

2

x

y




 denote the time and second spatial 

derivatives of state x and ( , , )d z y t is an exogenous disturbance. Moreover,
1 2 1 2, , ,u u v v denote 

boundary control input signals, and 
1 2 1 2(.), (.), (.), (.)g g h h  are bounded functions with 

uniform bounds 
1Mg , 

2Mg , 
1Mh , 

2Mh . In addition, ( , )w z y  represents the measured output 

and 2 1 2 1 2( , ) : (0, ) (0, )C z y l lL H H  is a function with 2( , ) 0C z y
L

.  Next, the following 

assumptions on the nonlinearity are required.  

Assumption 1: The function (., , )f z y  is Lipschitz continuous with Lipschitz 

constant
fL i.e.  

 
1 2 1 2( , , ) ( , , ) .ff x z y f x z y L x x                                                 (2) 

Assumption  2: The exogenous disturbance ( , , )d z y t  is bounded, i.e. 

, [0, ], [0, )z y l t ,   ( , , )d z y t D  where D . 

The objective is to provide a continuous optimal boundary control policy by 

minimizing the cost functional over infinite horizon as 

0

0( , , , ) ( , , ) ,
t

V x t u v V x u v dt                                                                  (3) 
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where  

2 2

0 0
1,2 1,2

( , , ) ( , , ) ,
l l

i i i i

i i

V x u v q x y z dydz ru s v
 

                                          (4) 

with ( , , )q x z y  being a nonlinear integrand function and scalars , 0i ir s   for 1,2i  .  

The HJB equation for above optimal problem has been previously stated in [9]  

when the control input is distributed in space. The results were further extended to 

boundary control in [10] when there is a discount factor in the cost function. As 

mentioned in [9], existence of discount factor in the cost function is not necessary. 

Moreover, approximation of time independent value function is much more feasible using 

neural networks. In what follows, a formal derivation of HJB equation is provided using 

Bellman principle of optimality. It is assumed that the value functional is Frechet 

differentiable [21]. In [11], it has been shown that in case of smooth initial conditions and 

Lipschitz cost function, the differentiability assumption of value function is reasonable. 

Let 2 2(0, )lL be the Hilbert space of square integrable functions with inner product 

defined as 

21 2 1 2
0 0

( , ) ( , ) ( , ) .
l l

x x x z y x z y dzdy  L                                             
(5) 

Also, let 1 2(0, )lH  be the Hilbert space of 2L  functions with 2L  derivatives with inner 

product defined as 

1

1 2 1 2

1 2 1 2
0 0

( , ) ( ) .
l l x x x x

x x x x dzdy
z z y y

   
  

    H
                                   (6) 

We assume that the optimal value functional * 2:V L  is Frechet differentiable 

everywhere with respect to x [1].  Denote the x -Frechet derivative of *V  at 1  evaluated 

at 
2
 by *

1 2[ ( )]xV . Since *( )xV  is a bounded linear functional on 2L , the Riesz 

representation Theorem [22] guarantees that there is a unique 2L  such that 

*

1 2 1 2
0 0

[ ( )] ( , , ) ( , ) .
l l

xV z y z y dzdy                                          (7) 

We also make an additional assumption that 1H .   

By taking the time interval [ , )t t t , *( ( ), )V x t t  can be expressed in the recursive 

form as 
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*

,

( , , , ) min{ ( , , , )}.( , , )

t t

u v
t

V V x u vx t u v x t t vd V ut                                          (8) 

Take 0t , and use ( ) ( ) ( / )x t t x t t x t  and the definition of the Frechet derivative 

of *V with respect to x  to obtain 

2

, 0 0
1,2

*
2 *

1,2

0 min{ ( , , )

[ ( ( ))] } ( ( ), ).

l l

i i
u v

i

i i x

i

q x y z dydz ru

x V
s v V x t x t t

t t

                                             (9) 

Since the actual infinite horizon cost function does not depend on t , 
*

0
V

t
. Next, use 

(7) and PDE dynamics (1) to obtain the HJB equation as 

2

, 0 0
1,2

2 2
2

2 2
0 0

1,2

0 min{ ( , , )

( , , )(

( , , ) ( , , )) }.

l l

i i
u v

i

l l

i i

i

q x y z dydz ru

x x
s v x z y

z y

f x z y d z y t dzdy

                                     (10) 

Integrating by parts in the second order term gives  

2

, 0 0
1,2

0 min{ ( , , )
l l

i i
u v

i

q x y z dydz ru

 

2

2 2

1,2

1 1 2 2

0

0 0

0 0 0

0 0

1 1

( , , ) ( )

( ,0, ) ( ) ( , , ) ( )

( , ,0) ( ) ( )

( , , )( ( , , ) ( , , )) }.

l

l l

l l l

l l

i i

i

s v x l y g y u

x y g y u x z l h z v

x x
x z h z v dz

z z y y

x z y f x z y d

dy

dy dz

dzdy

dzy dyt z

                     (11) 

By completing the square, it can be shown that the minimum is achieved when 

*

1 1
0

1

*

2 2
0

2

1
( ) ( ,0, ) ,    

2

1
( ) ( , , ) ,

2

l

l

u g y x y dy
r

u g y x l y dy
r

                                                 (12) 
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*

1 1
0

1

*

2 2
0

2

1
( ) ( , ,0) ,      

2

1
( ) ( , , ) .

2

l

l

v h z x z dz
s

v h z x z l dz
s  

Moreover, define 

1 1
0

2 2
0

( ) ( ) ( ,0, ) ,

( ) ( ) ( , , ) ,

l

l

I g y x y dy

I g y x l y dy

                                            (13) 

3 1
0

4 2
0

( ) ( ) ( , ,0) ,

( ) ( ) ( , , ) .

l

l

I h z x z dy

I h z x z l dy
 

According to Trace Theorem [23], since 1( ,.,.)x H  for any fixed 1x H  , 1:iI H  is a 

bounded linear functional. By the Riesz Representation Theorem, there exists 1

ie H  

such that 

1 0 0
( ) ( , ) ( , , ) ( , , )

.

l l

i i i

i i

I e x z y e x z y

e e
dzdy

z z y y

H

                            (14) 

Therefore, 

11 1
0

1
0 0

*2

1 1

1

( ) ( ,0, ) ,

( , , )

1
( )

4

l

l l

g y x y dyr e

p x y x dydz

u
r

H

                            (15) 

The terms *2

2 2r u , *2

1 1s v  and *2

2 2s v can be represented in a similar fashion. Substituting the 

above representations in (3) results  

*

0 0
0

( ) ( , , ) ( , , ) ,
l l

V x q x z y p x z y dzdydt                       (16) 

where 
4

1

(.,.,.) (.,.,.)i

i

p p . By switching the order of integration one has 

* *

0 0
( ) ( , , ) ,

l l

V x V x z y dzdy                                   (17) 
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where *

0
( , , ) ( , , ) ( , , )V x z y q x z y p x z y dt   and *( , , ) ( , , )xV x z y x z y .  

By substituting the optimal control policy (12) in (11), the HJB equation is expressed as 

* 2

0

* 2 * 2

0 0

*

1
0 0

1

2 1

2 1

2

2

*

* 2

0 0 0

*

*

0 0

1
)

4

1 1
) )

4 4

1
)

4

( , , ) ( ( ) (0, )

( ( ) ( , ) ( ( ) ( ,0)

( ( ) ( , ) (

) .( ( , , ) ( , , ))

l

x

l l

x x

l

l l

l l
x

x

l l
x

x

H q x z y dydz g y y
r

g y l y h z z
r s

x
h z z l

s z

V dy

V dy V dz

V
V dz

V
dzdy V dz

z

x
f x z y d z y t

y
dy

y

                             (18) 

Remark 1: The control inputs (12) at all boundary edges depend on the value 

functional *V which is the solution to the HJB equation for the 2D parabolic PDE. The 

HJB for multi-dimensional nonlinear PDE problem cannot be generally solved separately 

for each dimension and therefore two decoupled optimal controllers for y and z  directions 

are not a substitute for the proposed control scheme in this paper. 

Since the system state x  is necessary to implement the control policy (12), it is 

necessary to introduce an observer prior to control synthesis. Therefore, assuming that the 

system is observable [24], in the next section the design of a NN observer will be 

explained. 

2.1. NEURAL NETWORK OBSERVER DESIGN 

The objective in this section is to introduce an observer for the estimation of 

system state x in the presence of dynamics and disturbance when states are available for 

measurement only in limited locations in spatial domain or at boundaries. The estimated 

states can be subsequently used in the controller design.  

If the estimation of state x  is denoted by x̂ , consider the observer with dynamics 

2 2

0

2 2

0

ˆ ˆ
ˆ( , , )

   

ˆ

ˆ( )( (     ,) )

l l

x

t

C z y C z

x x
f x z y

z

xdzdy

y
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0, 1 1 , 2 2

, 0 1 1 , 2 2

0

| ( ) ,    | ( ) ,        

| ( ) ,    | ( ) ,     

ˆ ˆ( , ,0

ˆ ˆ

ˆ ˆ

) ( , ),  

z y z l y

z y z y l

g y u g y u

h z v h z v

x z y

x x

x z

z z

y

x x

y y
                         (19) 

0 0

ˆ ˆ( ) ( ) ( , ) ,    

l l

y t C z x z t dzdy  

where ŷ  is the estimation of output y , and  is a positive definite gain constant. 

Define the state estimation error ˆx x x . Therefore, its dynamics will be 

governed by 

2 2

2 2

0, ,

,

0

0

0

,

ˆ( , , ) ( , , )

        

| 0,  | 0,        

| 0,  | 0,     

ˆ

( , ) ( , ) ,

l

z y z l y

z y z l

l

y

x x
f x z y f x z y

z y

x

t

C z y C z y xdzdy

x x

z z

x x

y y

                               (20) 

Assumption 2: There exists a positive definite constant    such that for x  

satisfying error dynamics (20), the quadratic term in terms of y satisfies 

2

22 2 .y x
L

                                                         (21) 

where
fL  with  0 . 

The above assumption helps to prove a smaller less conservative bound for 

observation error. This assumption will not hold generally for all 1 2(0, )x lH but can be 

justified for estimation error of parabolic PDE as long as the nonlinear 

dynamics ( , , )f x z y and initial condition
0 ( , )x z y are smooth. Since an estimate of system 

state is now available, in the next section the ADP approximate optimal control will be 

addressed. 

2.2. ADP CONTROLLER DESIGN 

Equation (18) is generally a nonlinear quadratic 2D partial integro-differential 

equation (PIDE) and therefore it has no closed-form solution. Therefore, the objective is 

to find a suitable structure for estimation of *( , , )V x z y  in (18). For this purpose, it is 
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assumed that *( , , )V x z y  is an integral functional over 2 21 1[ [0, ] [0] , ]n l C l H , and therefore 

there exists a smooth bounded basis function vector 21 1 2:[ [0,] ] [ [0, ] ]pn l C l  H  with the 

uniform norm bound 
M  such that [25] 

*( , , ) ( , , ) ( , , ).T
VV x z y W x z y x z y                                           (22) 

Assumption 4: It is assumed that the optimal weight vector pW  is bounded  

with the bound
MW

and the derivative of approximation error with respect to x , i.e. Vx  

and its second and third derivatives with respect to z and y  are bounded by uniform norm 

bounds
VxM , 

VxzM ,
VxyM , VxzzM and

VxyyM  [26]. 

Therefore the optimal control policies can be represented as 

1

2

1

2

*

1 1
0

1

*

2 2
0

2

*

1 1
0

1

*

2 2
0

2

1
( ) ( ,0, ) ,     

2

1
( ) ( , , ) ,

2

1
( ) ( , ,0) ,          

2

1
( ) ( , , ) ,

2

l
T

x u

l
T

x u

l
T

x v

l
T

x v

u g y x y W dy
r

u g y x l y W dy
r

v h z x z W dy
s

v h z x z l W dy
s

                                 (23) 

where 

1

2

1

2

1
0

1

2
0

2

1
0

1

2
0

2

1
( ) ,

2

1
( ) ,

2

1
( ) ,

2

1
(

( ,0, )

( , , )

( , ,0)

( , , ))
2

.

l

l

l

u Vx

u Vx

v Vx

v V

l

x

g y
r

g y
r

h z
s

x y dy

x l y dy

x z dy

h z d
s

x z l y

 

 

 

 







 


 


  











 
                                                

(24) 

Consequently, the HJB equation can be represented in its approximated form as 

*

0
1

2 2

0

1
0 0

2 1

2 1
0

1
0 (0, )

4

1 1
) ( , )

( , , ) ( ( )

( ( ) ()
4 4

( )

l
T

x

l l
T T

x

l l

H W y
r

dy W l y d

q x z y dydz g y

g y h z
r s

y W



 

   

  

  

 
 

2

2 2

0

0 0

0 0

2

( ( )

( )

( (

1
( ,0) ) ( , ) )

4

, ) ,)

l
T

x x

l l

T

f

T Tx x

l

x f

l
T

H

z dz W z l dz

W W d

h z
s

x
zdy

W d

x

z z y y

W yz y zd 



 



  

 


 

 


  







 

 

                                      (25)                                                    
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where the function   is expressed as ( , )z y for brevity. Using similar notation for 

functions 
V and 

f in the following equation, 
H can be derived as 

1 2

1

2 2

0 0
1 2

2 2

0 0
1

2

2

1 1
) )( ( ) ( ,0) ( ( ) ( , )

( ( ) (0, )

4 4

1 1
) )

4
)

4
( ( ( , )

l l

l

H Vx Vx

Vx V

l

x

dy dy
r r

g y y g y y l

h y z h y ldz dz
s s

z





 



 

 

  

 

 

1 1
0 0

1

2 2
0 0

2

1 1
0 0

2 2
0 0

1

2

1
( ) (0, ) ( ) (0, )

2

1
( ) ( , ) ( ) ( , )

2

1
( ) ( ,0) ( ) ( ,0)

2

1
( ) ( , ) ( ) ( , )

2

l l
T

x

l l
T

x

l l
T

x

Vx

Vx

Vx

Vx

l l
T

x

g y W y dy g y y dy
r

g y W l y g y l y dy
r

h z W z dz h z z dz

h z W z l dz h z z l d

d

s

z

y

s

















 

 

 

 

 

 

 

 

                                             (26)                                                         

                              
0 0 0 0

0 0

( ) ( ( , ))

( ,( ) ( , , )) .

TVx Vx

V

l l l l

l l
T

x f

x

f

f

dzdy dzdy
x x

W z y
z z y y

z yW d z y t dzdy

 
 



  


 
 

  

    

 

 

Since the state vector is unavailable for measurement *( , , )V x z y  is estimated by 

*ˆ ˆ ˆ( , , ) ( , , ).TV x z y W x z y                                                                  (27) 

Hence, the approximated HJB can be represented as 

0
1

0 0

2 1

1

2 2

0 0

2 2

0

2 1

2

2

ˆ ˆ( , , ) ( ( ) ,

ˆ( ( ) , ( ( )

ˆ ˆ, (

1ˆ ˆ ( 0, )
4

1 1ˆ ˆ) ( , ) )
4 4

1 ˆ( ,0) ) ,,()
4

( ) )

l
T

x

l l
T

l l

T

x

l
T

x x

H W y
r

dy W l

q x y z dydz g y x

g y dy x h z
r s

x h z x

y W

z dz l dz
s

W z



 



  

  

  












 

0 0

0 0

ˆ ˆ
( )

ˆ( ( ,

ˆ ˆ

ˆ ˆ ., ))

l l

T

f f

T Tx x

l l
T

x

W W d
x x

z z y y

x

zdy

W W d yy dz z

 



  

















 

 

                                             (28)                                                    

Next, the control policy in terms of estimated value functional weight vector would be 

represented as 

1 1
0

1

2 2
0

2

1 ˆˆ ˆ( ) ( ,0, ) ,
2

1 ˆˆ ˆ( ) ( , , ) ,
2

l
T

x

l
T

x

u g y x y W dy
r

u g y x l y W dy
r

                                                   (29) 
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1 1
0

1

2 2
0

2

1 ˆˆ ˆ( ) ( , ,0) ,
2

1 ˆˆ ˆ( ) ( , , ) .
2

l
T

x

l
T

x

v h z x z W dy
s

v h z x z l W dy
s

                                                     (30) 

Note that the designed boundary control inputs does not vary with spatial 

variables ,z y  and therefore applicable with finite number of actuators at boundary edges. 

Select the value function NN weight tuning law as 

2

1 2 32
ˆ ˆ ˆ ˆ ˆ ,N

N

W H W W W


  


                                                    (31) 

where  

                                     
0 0 0 0

1
0

1

ˆ
ˆ( ( , , )) (

ˆ

ˆ

1
( ) ()

2
ˆ ),0,

l l l l
x

x

l

N f

x

T

f

x

W dz
x

x z y
z z

x
x

y y

dy

dzdy g y y dy
r

 


 




 


 

 


 


   



 

1 2
0 0

2

2 1
0

2
0

1
0

1 1
0

1ˆ( ) ( 0, ) ( ) ( , )
2

1ˆ( ) ( , ) ( ) ( ,0)
2

1ˆ( ) ( ,0) ( ) ( , )
2

ˆ ˆ, ,

ˆ ˆ, ,

ˆ ˆ, ,

l l
T

x x

l l
T

x x

l l
T

x x

g y y W dy g y l y dy
r

g y l y W d

x x

x x
s

y h z z dz

h z W z dz h z zx l
s

dzx







  

  

  

 

 

 

 

1
0

ˆ,ˆ( ) ( , ) ,
l

T

xh z W z l dzx                                                                     (32)                                                

1 2 3, ,    represent positive constants and 

2

2 2

1 2 3 4

ˆ ˆ
ˆ

N

x x
x c c

z
c

y
c 

 
  

 L
L L

                                                (33) 

with
1 4,...,c c being positive constants.  

Remark 2: The first term in update law (31), minimizes the approximated 

Hamiltonian whereas the other terms are necessary to insure the boundedness of weights 

as will be explained in the proof. Under an initial admissible control policy, it will be 

shown in Section 3 that the update law (31) and control policies (29)-(30) along with 

developed observer in Section 2.1, cause the system state vector x ,state estimation error 

x  and the weights estimation errors W , 
fW  to be ultimately bounded (UB). 

Remark 3: Observe from the definition (31) and the Hamiltonian approximation 

(28) that both the value function and the Hamiltonian become zero when 0x‖ ‖ . Hence, 
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when the system state converges to zero, the value function approximation is no longer 

properly updated. This can be viewed as a persistency of excitation (PE) [27] requirement 

for the inputs to the NN. Therefore, the system states must be persistently exciting long 

enough for the NN to learn the optimal value function. The PE condition can be 

guaranteed to be satisfied by adding exploration noise or a perturbation term to the 

control input. 

Next the stability analysis of the closed-loop system is addressed. 
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3. STABILITY ANALYSIS 

  

System closed-loop stability will be examined by using Lyapunov criterion. First, 

it will be shown in Theorem 1 that in presence of bounded input, the observer dynamics 

will be bounded. In Lemma 1, a bound will be found for Hamiltonian reconstruction 

error
H

when the output feedback boundary control policy is implemented. This bound 

will be used later in closed-loop stability proof. Consequently, Theorem 2 will address 

the ultimate boundedness (UB) of all closed-loop states.  

Theorem 1 (Local asymptotic stability of observer): Let the state estimation error 

x  be residing in a compact set 
1
, and the proposed NN observer be provided by (19). In 

the presence of bounded inputs, there exists a positive definite observer gain  such that 

the state estimation error x is asymptotically stable. 

Proof: Refer to Appendix. 

Lemma 1: The following inequality  

2

2 2

1 2 3 ,H NM N H H H

x x
x

z yL
L L

                              (34) 

holds where
1H
,…

3H
,  and 

NM
  are positive constants depending on approximation 

reconstruction errors. 

Proof: Refer to Appendix. 

Theorem 2 (Performance of the output feedback NN controller): Consider the 

DPS given by (1) and let the proposed NN observer be provided by (19). Moreover, let 

control policies and tuning law for value function weights be provided by (29)-(30) and 

(31), respectively where 
10 1  , 

2 3
 and 

33

N  with 
3

N  being a positive 

constant. Consequently, provided an initial admissible control, the system state x , state 

estimation error x  and weight estimation errors 
fW  and W  are all UB. 

Proof: Refer to Appendix. 

In the next section, the performance of proposed ADP based NN controller is 

examined by simulation on a two dimensional nonlinear diffusion reaction process. 
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4. SIMULATIONS 

 

We consider the plant with the PDE dynamics (1) in the region , (0,1) (0,1)z y . 

The nonlinearity ( , , )f x z y  is given by 

1 2

2 2

50
( , , ) ,

1 100 ( 0.5) ( 0.25)

x

x
f x z y e x

z y
                          

 

(35) 

the disturbance ( ) 5sin(100 )d t t , 
1 2( ) ( )g y g y   

2

1

1 ( 0.5)y 
and

1 2 2

1
( ) ( )

1 ( 0.5)
h z h z

z
 

 
. 

The state initial condition is expressed as 

0 2 2

10
( , ) .

1 100(( 0.75) ( 0.5) )
x z y

z y
                                (36) 

The implicit-explicit finite difference method [28] was used for numerical 

simulation of nonlinear parabolic PDE with 0.05z y and 45 10t . However, the 

mesh size for control design was set to 0.1z y . The diffusion term 
2 2

2 2

x x

z y
 was 

handled implicitly while the nonlinearity ( , , )f x z y  was modeled in the explicit form. The 

function (.,.)C  was chosen as 
0 0( , ) ( , ),C z y z z y y where 

0 0,z y  {0.25,0.5,0.75} . 

Moreover, The function ( , , )q x z y  in cost functional  (4) was chosen to be 

2

2 2

1
,

1 10(( 0.5) (
(

0.25)
,

)
, ) x

z y
q x z y

   


                              (37) 

and 
1 2 1 2 1.r r s s      

Thirty two basis functions were chosen to approximate *( , , )V x z y with following 

structure 

2 2
( , , )

1 10(( ) ( ) )

                   ( ) ,

i

j

i

i i

j

c
x z y

z z y y

x dzdy

                                (38) 

where 2 4( ) { , },j x x x 2 410 ,10jc   and spatial domain is divided into 16 identical square 

subregions
i
, 1 16i . 
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The value functional update parameters were chosen to be 

1 0.9,  2 0.2,  3 0.1  , 3

1 3 10c c   , 
4 0.5c   and observer update parameters were 

selected as 1f  and 1  . 

Figure 4.1 verifies that the open loop system was highly unstable with these 

values for system parameters.  

Figure 4.2 depicts the closed-loop state evolution of system in space and time 

verifying that the boundary controller can stabilize the unstable state at zero in less than 

0.5 second.  

Figure 4.3 shows the convergence of system state ( , )x z y  to zero more clearly by 

displaying the snapshots of state x over time. 

 

 

 

 

Figure 4.1. Snapshots of system open loop state behavior. 
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Figure 4.2. Time profile of norm of state using the proposed boundary control policy. 

 

 

 

Figures 4.4 and 4.5 show the time profile of control policy and convergence of 

HJB error, respectively. Figure 4.4 basically shows that the initial admissible control 

effort is relatively high since the PDE dynamics are unstable. Subsequently, faster 

convergence of HJB error in this figure compared to state trajectory and control inputs 

verifies that the HJB error is reduced by the proposed adaptive law before convergence of 

the states to zero. Moreover, increasing the value of
1  in the tuning law (31) results in a 

more rapid convergence of the HJB error. 

       Finally, Figure 4.6 verifies the performance of proposed observer developed in 

Section 2.1. As shown, increasing the gain in the PDE observer has a significant role in 

convergence of estimation error to zero.  
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Figure 4.3. Snapshots of closed loop state behavior. 

 

 

 

 

Figure 4.4. Time profile of norm of boundary control inputs. 
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Figure 4.5. Time profile of HJB error for different values of design parameters. 

 

 

 

 

Figure 4.6. Time profile of observer error for different values of design parameters. 
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5. CONCLUSIONS 

 

This paper developed a novel NN-based output feedback near optimal boundary 

control scheme for nonlinear 2D parabolic PDE under Neumann boundary control 

condition without any model reduction prior to control design. By defining an integral 

cost functional and formulating the HJB equation based on calculus in infinite 

dimensional state space, a closed-form of optimal control policy was derived. The 

proposed adaptive NN framework made online approximation of optimal control policy 

along system trajectories possible when the PDE state was not available and exogenous 

disturbance was present. Lyapunov stability analysis indicated that the error between 

approximated and truly optimal weights and state trajectories would remain UB. The 

performance of proposed observer and controller in estimating states, stabilizing the 

system and reducing the HJB error was successfully verified on an unstable 2D nonlinear 

diffusion reaction process. 
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APPENDIX 

 

In order to avoid long derivations in the proof, we first define 
z

x
x

z
, 

y

x
x

y
, 

2

2zz

x
x

z
, 

2

2yy

x
x

y
,

x
x

 , x

xz
z

, Vx

Vxz
z

 and 
2

2

Vx

Vxzz
z

.  First, the proof of 

Theorem 1 will be provided. 

Proof of Theorem 1: In order to prove stability of observer, consider the 

Lyapunov function 

2

0 0

1
( , ) ,

2

l l

c cL x z y dzdy                                                       (39) 

where 
c
 is a positive scalar. Taking its derivative 

cL   and substituting error dynamics 

(20)  yields 

                                             

2

0 0

0 0
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ˆ( ( , , ) ( , , )) ,

l l

c c c zz yy

l l

c

L w x x x dzdy

x f x z y f x z y dzdy

                                  

(40) 

where ˆw w w . Taking integration by parts, substituting PDE dynamics (20) for state 

estimation error x  and using Poincare inequality 2 2

0 0 0 0

( )

l l l l

p zdzdy C dzdy with 

constant 0pC , yields 

                                              

2 2

0 0 0 0

( )

l l l l

zz yy z yx x x dzdy x x dzdy

 

2 2 2

0 0 0 0

1 1
.

2 2

l l l l

z y

p
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Moreover,  

2

2

0 0

ˆ( ( , , ) ( , , ))
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c c fx f x z y f x z y dzdy L x
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Therefore using (21)  yields,  

                                             2 2 2

21 1 1
( ) ,

2 2 2
c c z y

p

L x x x
C L L L

                          (43)

Therefore, defining 
1

2 pC
,   one has 

2 2 2

22 21
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2
c c c z yL x x x
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Proof of Lemma 1: Using integration by parts, one has 
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where 
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2 3H H VxzMc c l  , 4 5H H VxyMc c l   

and
4

2

6

2

1

1
( )

4
H i

i

VxMc l  


 
4

2

1

1
( )

2
VxM xM Mi

i

l W  



   2

VxM Ml f 2

M xMl W D     with 
2

1

1

1

Mg

r
  , 

2

2

2

2

Mg

r
  , 

2

1

1

3

Mh

s
   and 

2

2

2

4

Mh

s
  . 



171 

 

Using the Trace Theorem [23], 2( , )x l y
L

, 2(0, )x y
L

, 

2( , )x z l
L

, 2( ,0)x z
L 2 2 2

( )z yk x x x
L L L

, 0k . Hence 
H

 can be expressed as 

2 2 21 2 3 4.H H H z H y Hx x x      
L L L

 

where 
1 2 3 51 4[ ]H H H HH Hc k c c c c     , 

3 52 2 3 4( )HH H H H Hk c c c c       and  
4 6H Hc  . 

Therefore, using ( ˆx x x ) yields   

2 2 2
1 2 3 ,H NM N H H z H yx x x
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where 31 2 4

1 2 3 4
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c c c c
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Proof of Theorem 2: First, consider the quadratic function 

1
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Subsequently, 
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Closed loop stability proof: In order to prove the overall closed loop stability of 

the system, Consider the Lyapunov function L  defined by .a b cL L L L  Taking its 

derivative L yields       
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 and the closed-loop system is UB.  

Aside from increasing number of neurons to reduce the bound , the bounds for 

x , and x  can be arbitrarily reduced by increasing minq , and  in . 
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SECTION 

2. CONCLUSIONS AND FUTURE WORK

2.1. CONCLUSIONS 

In this dissertation novel ADP control approaches based on state and output 

feedback were proposed for uncertain parabolic PDE in one and two dimensions. The 

controller design included an ADP-based approach in the early lumping category which 

was addressed in Paper I. Consequently, the other four papers focused on control design 

without model reduction for different kinds of parabolic PDE, namely: uncertain linear, 

coupled nonlinear and two dimensional nonlinear parabolic and Burgers PDE. The 

notable attributes of designed controllers can be classified as achieving the following 

contributions: 

1. The infinite horizon optimal control problem was solved in the forward-in-time

manner and applied in real time to the DPS without the requirement of solving

an algebraic Riccati equation (ARE) or value and policy iterations.

2. The distributed nature and large scale of state space makes pure state feedback

control design for DPS practically obsolete. Therefore, special attention was

paid to output feedback designs using limited-point sensors in the domain or

only at boundaries

3. Considerable effort has been made in this research, which were specifically

featured Papers II–V to avoid model reduction before ADP controller design

and, therefore, make system stability analysis possible in original infinite

dimensional domain. Using Lyapunov criterion, the ultimate boundedness

(UB) result that was common in most ADP control approaches was

successfully verified for closed-loop PDEs regulated by developed controllers.

4. Finally, Papers IV and V shows that the developed ADP control method can be

extended to multi-dimensional and more complicated PDE dynamics like

Burgers and nonlinear parabolic equations.

In Paper I, an output feedback ADP near optimal NN boundary controller was 

designed for DPS which is described by a one-dimensional semi-linear parabolic PDE 
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with control input constraints and unknown nonlinearity in dynamics. For controller 

synthesis, a discretized model of DPS was developed which uses finite difference 

approximation (FDM), and this model provided satisfactory results. The FDM approach 

led to an affine nonlinear finite dimensional dynamical representation of DPS where the 

boundary control input could be designed based on an optimal control method for finite 

dimensional systems. Then a novel ADP scheme was provided by using two NNs to 

estimate unavailable states under uncertain system dynamics and to approximate the 

optimal value function when only a few states were available for measurement in the 

spatial domain. Since the input constraints were incorporated as a priori in the design, the 

control input lay inherently within the actuator limits. Ultimate boundedness (UB) of the 

closed-loop system was successfully verified by using standard Lyapunov theory. Finally, 

simulation results confirmed the effectiveness of an output feedback controller on a 

diffusion reaction process. 

 An ADP-based near optimal boundary control scheme for DPS governed by 

uncertain linear one-dimensional parabolic PDE under both Neumann and Dirichlet 

actuation conditions without any finite dimensional model approximation prior to control 

design was introduced in Paper II. By defining the value functional as the extension of its 

definition from linear LPS optimal control design, the HJB equation was derived in 

original infinite dimensional state space. The proposed identifier was effective in 

estimating the unknown coefficient over the space in system dynamics. Based on defined 

structure for the value functional as a surface integral, a radial basis network (RBN) was 

proposed to estimate its unknown parameters as a continuous two-variable kernel 

function. The update law for RBN unknown weights was defined to reduce the HJB error 

effectively and insuring system stability whereas PDE dynamics was uncertain. Ultimate 

boundedness of the closed-loop system was verified by using the standard Lyapunov 

theory with consideration of all approximation reconstruction errors. Since model 

reduction was not utilized in control development, the design is more reliable and can be 

applied to achieve accurate control and closed loop stability of the original infinite 

dimensional system. The performance of the proposed control method was successfully 

verified on a diffusion reaction process. 
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Paper III presents a novel NN-based output feedback near optimal boundary 

control scheme for DPS governed by semi-linear coupled parabolic PDE under Neumann 

boundary control condition. No model reduction prior to control design is needed with 

the new control scheme. By defining an integral cost function and formulating the HJB 

equation based on calculus in infinite dimensional state space, a closed-form of optimal 

control policy was derived. The proposed adaptive NN framework made online 

approximation of optimal control policy along system trajectories possible when PDE 

dynamics were partially unknown. Lyapunov stability analysis indicated that the error 

between approximated and truly optimal weights and state trajectories would remain UB. 

The performance of proposed observer and controller in estimating states, stabilizing the 

system and reducing the HJB error was successfully verified on a coupled semi-linear 

diffusion process. 

In Paper IV, the development of a novel ADP optimal boundary control scheme is 

introduced for 2D Burgers equation under Neumann boundary condition without any 

model reduction. By formulating the HJB equation based on calculus in infinite 

dimensional state space, boundary optimal control policy was derived. The proposed 

adaptive NN framework made online approximation of optimal control policy along 

system trajectories possible whereas the PDE dynamics were partially unknown. 

Lyapunov stability analysis indicated the error between approximated and truly optimal 

weights and state trajectories would remain UB. Simulation results confirm the 

effectiveness of the developed boundary control approach on an unstable 2D Burgers 

equation. 

The requirement for infinite number of actuators or sensors in DPS control is a 

typical challenging problem and if a control design method can tackle these problems 

appropriately, it has an obvious advantage. The control method developed in the Paper III 

requires finite number actuators for implementation. Moreover, the effect of external 

disturbance on system stability has been considered. 

The next stage of research as reported in Paper V was focusing on output 

feedback control design for parabolic PDE in the two dimensional domain. Until now, the 

ADP control approaches for multi-dimensional PDE have not been studied in detail. 

Paper IV presents a novel framework for this purpose without model reduction. However, 
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the proposed approach relies on availability of system state. Measuring the state over the 

entire domain is a formidable task and impractical. Hence, the necessity for an output 

feedback control design is much more crucial in multi-dimensional PDE domains. 

Accordingly, the observer design and stability proof for two dimensional parabolic PDE 

was the primary task to be addressed in the final stage of this research. 

2.2. FUTURE WORK 

In contrast to ODEs, no general control methodology can be developed for PDEs, 

either for analysis or for control synthesis. Two of the most basic categories studied in 

literature are parabolic and hyperbolic PDEs, with standard examples being heat 

equations and wave equations. Therefore, as part of future work, other PDE problems like 

hyperbolic PDE can be considered. The oscillating nature of this type of PDEs makes 

their controller design and stability guarantee much more challenging. 
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