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Summary

Optimisation of heat exchanger network maintenance scheduling problems

Riham Al Ismaili

This thesis focuses on the challenges that arise from the scheduling of heat exchanger
network maintenance problems which undergo fouling and run continuously over time.
The original contributions of the current research consist of the development of novel
optimisation methodologies for the scheduling of cleaning actions in heat exchanger
network problems, the application of the novel solution methodology developed to
other general maintenance scheduling problems, the development of a stochastic pro-
gramming formulation using this optimisation technique and its application to these
scheduling problems with parametric uncertainty.

The work presented in this thesis can be divided into three areas. To efficiently
solve this non-convex heat exchanger network maintenance scheduling problem, new
optimisation strategies are developed. The resulting contributions are outlined below.

In the first area, a novel methodology is developed for the solution of the heat ex-
changer network maintenance scheduling problems, which is attributed towards a key
discovery in which it is observed that these problems exhibit bang-bang behaviour.
This indicates that when integrality on the binary decision variables is relaxed, the
solution will tend to either the lower or the upper bound specified, obviating the need
for integer programming solution techniques. Therefore, these problems are in ac-
tuality optimal control problems. To suitably solve these problems, a feasible path
sequential mixed integer optimal control approach is proposed. This methodology is
coupled with a simple heuristic approach and applied to a range of heat exchanger
network case studies from crude oil refinery preheat trains. The demonstrated meth-
odology is shown to be robust, reliable and efficient.

In the second area of this thesis, the aforementioned novel technique is applied to
the scheduling of the regeneration of membranes in reverse osmosis networks which
undergo fouling and are located in desalination plants. The results show that the
developed solution methodology can be generalised to other maintenance scheduling
problems with decaying performance characteristics.
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In the third and final area of this thesis, a stochastic programming version of the
feasible path mixed integer optimal control problem technique is established. This is
based upon a multiple scenario approach and is applied to two heat exchanger network
case studies of varying size and complexity. Results show that this methodology runs
automatically with ease without any failures in convergence. More importantly due
to the significant impact on economics, it is vital that uncertainty in data is taken
into account in the heat exchanger network maintenance scheduling problem, as well
as other general maintenance scheduling problems when there is a level of uncertainty
in parameter values.
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Roman symbols

ā mean of stochastic linear fouling rate [ft2°F/Btu]
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a linear fouling rate [m2K/J]

C̄E mean of stochastic fuel cost [£/J]

C specific heat capacity of fluid [J/kg K]

Ccl cost of cleaning action [£]

CEL electrical power cost [USD/kW h]

CE cost of fuel [£/kJ]

CFC membrane regeneration fixed cost, per cleaning action [USD]

CM maintenance cost [£]

CVC membrane regeneration variable cost, per module [USD]

CX downtime cost [£]

Co concentration of stream [ppm]

Coave average concentration across high pressure side of membrane [ppm]

Dm solute transport parameter [kg/m2s]

F mass flowrate of stream [kg/s]



Nomenclature xv

f function

Fb booster pump flowrate [kg/s]

Ft turbine flowrate [kg/s]

H Hamiltonian

J junction condition

Km permeability of membrane [kg/sN]

KWb electrical duty of booster pump [kW]

KWt electrical duty of turbine [kW]

L Lagrangian

l f membrane fibre length [m]

ls membrane fibre seal length [m]

m vector dimension

MOC membrane regeneration cost [USD]

NC total number of cleaning actions

NE number of exchangers

Nm number of RO modules

NP number of periods
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Ob j objective [£]

OC operating cost to be minimised [USD]

P ratio of capacity flow-rates

p vector of parameters

POC booster pump operation cost [USD]
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Pr pressure of stream [N/m2]

Prdrop pressure drop across membrane module [N/m2]

Prb booster pump pressure [N/m2]

Prt turbine pressure [N/m2]

Q duty of exchanger [W]

QF extra furnace power requirement [W]

R̄∞
f mean of stochastic asymptotic fouling resistance [hft2°F/Btu]

Ṙ f fouling rate [m2K/J]

Ṙn instantaneous net fouling rate [m2K/J]

ri inner radius of membrane fibre [m]

ro outer radius of membrane fibre [m]

R f fouling resistance [m2K/W]

R∞
f asymptotic fouling resistance [m2K/W]

S number of scenarios

Sm membrane surface area [m2]

T temperature of stream [K]

t time [s]

t ′ elapsed time since the last cleaning action [s]

TOC turbine energy saving cost [USD]

U overall heat transfer coefficient [W/m2K]

u control variable

Uc overall heat transfer coefficient in clean condition [W/m2K]

v vector of continuous variables



Nomenclature xvii

x differential state variable

y binary variable

z algebraic state variable

Greek symbols

α effectiveness term

β MINLP objective to be minimised

γ membrane correction factor

∆Pr pressure difference between bulk and permeate streams [N/m2]

∆π osmotic pressure difference between wall and permeate streams [N/m2]

δc thickness of coke layer [m]

δg thickness of gel layer [m]

∆Tlm logarithmic mean temperature difference [K]

∆t duration of time [s]

η membrane specific coefficient

ηc the fraction of the clean value to which the overall heat transfer coefficient
is restored after cleaning

ηe f f efficiency of booster pump or turbine

η f furnace efficiency

λ Euler-Lagrange multiplier

µ Euler-Lagrange multiplier

µv dynamic viscosity of water [kg/ms]

π osmotic pressure [N/m2]

πo osmotic pressure constant [N/m2ppm]



Nomenclature xviii

ρ density of water [kg/m3]

ρwater density of pure water [kg/m3]

ρb density of seawater at booster pump [kg/m3]

ρt density of brine at turbine [kg/m3]

τ̄ mean of stochastic decay constant [s]

τ decay constant [s]

φ terminal cost [£]

ϕd deposition rate [m2K/J]

ϕr removal rate [m2K/J]

ψ weight coefficient

Abbreviations

N P nondeterministic polynomial time

AMPL a mathematical programming language

B&B branch and bound

BONMIN basic open source nonlinear mixed integer

BTA backtracking threshold accepting

CIT crude inlet temperature

CPU central processing unit

DAE differential algebraic equation

DICOPT discrete and continuous optimiser

FWHM full width at half maximum

GA genetic algorithm



Nomenclature xix

GAMS general algebraic modeling system

GB gigabyte

GBD general Benders decomposition

GCC Gulf Cooperation Council

GHz gigahertz

GMS generator maintenance scheduling

GNP gross national product

HEN heat exchanger network

HEX heat exchanger

IPM interior point method

IPOPT interior point optimiser

KSA Kimura-Sourirajan analysis

MILP mixed-integer linear programming

MINLP mixed-integer nonlinear programming

MIOCP mixed-integer optimal control problem

MIP mixed-integer programming

MM million

MP mathematical programming

NLP nonlinear programming

NPC net present value of operating costs [£]

NTU number of transfer units

OA outer approximation

OA/ER outer approximation/equality relaxation



Nomenclature xx

OCP optimal control problem

OS X unix-based operating system

PHT preheat train

ppm parts per million

RAM random access memory

RO reverse osmosis

RON reverse osmosis network

RSD relative standard deviation [%]

SA sensitivity analysis

SD standard deviation

TA threshold accepting

UROPM unified RO performance model

USD United States dollars

Subscripts & superscripts

0 initial condition

b bulk solution

bcp beginning of cleaning subperiod

bop beginning of operating subperiod

c cold fluid

CL cleaning subperiod

clean clean condition

ecp end of cleaning subperiod

eop end of operating subperiod



Nomenclature xxi

F final

f feed stream

h hot fluid

in inlet stream

j j-th cleaning action

max maximum

min minimum

n exchanger no. or membrane unit no.

OP operating subperiod

out outlet stream

p period no.

perm permeate stream

r reject stream

S scenario no.

v vector of continuous variables

w membrane wall

X beginning or end of cleaning or operating subperiod

y vector of binary variables



Chapter 1

Introduction and literature survey

Fouling of heat transfer surfaces is a long established major industry-wide problem.
Due to the reduction in heat transfer caused by fouling, this leads to the loss of effi-
ciency in heat exchangers. This in turn results in a decline in production due to fre-
quent shutdown periods for cleaning and additional maintenance actions. Fouling has
been described by [133] as the major unresolved problem in heat transfer. Moreover,
it is one of the most significant issues affecting heat exchanger operation and thus has
been depicted by [142] as a nearly universal problem in heat exchanger equipment and
design. Furthermore, [128] stated that this problem is of great significance in large
networks of heat exchangers, particularly those situated in crude oil refinery distil-
lation unit preheat trains (PHTs), which are required to operate continuously over
several years between shutdowns.

Fouling is offset through process turndown or increased utility consumption with the
associated surge in greenhouse gas emissions. This is necessary in order to meet oper-
ation requirements such as temperature and pump-around targets. However, in cases
where fouling-related pressure drop changes reduce throughput, plant shutdown is of-
ten required. The reduction of production rates and increased energy consumption
lead to significant economic losses. In studies from the 1980s to the early 1990s, the
cost of heat exchanger fouling due to cleaning, fluid treatment, additional hardware
and loss of production has been estimated at 0.25% of the gross domestic product
(GDP) of industrialised countries [95]. The estimated total cost of heat exchanger
fouling based on 1995 figures in the UK and USA are of the order of 2.5 billion United
States Dollars (USD) and 14 billion USD, respectively [28]. Allowing for inflation, the
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corresponding figures for 2018 would be approximately 4.1 billion USD and 23 billion
USD, respectively. Economic losses are more significant in larger heat exchanger net-
works (HENs) which are associated with long continuous operational times, specifically
in crude distillation unit PHTs situated in oil refineries. Based on 1995 figures, the
cost associated specifically with crude oil fouling in PHTs worldwide were estimated
to be of the order of 4.5 billion USD [111]. Accounting for inflation, the corresponding
figure for 2018 would be around 7.4 billion USD.

Fouling mitigation techniques include addition of antifoulant chemicals, using more
robust heat transfer equipment, and regular cleaning of fouled units. Cleaning of heat
exchangers has a negative impact on operating costs due to the unit being taken offline.
However, with the development of optimisation strategies such as those proposed by
[18, 45, 46, 64, 77, 127], among others, these costs can be minimised resulting in overall
gains due to improved heat transfer of the network over time.

Current solution methods still present limitations. Some approaches suffer from failure
in convergence [45, 128], while others are computationally expensive [77] and result
from unsuitable approximated models [45]. Furthermore, some methods are incap-
able of handling problems involving many variables of similar effect [41] and current
methods used by industry are not guaranteed to be optimal [128].

To address the aforementioned challenges, research presented in this thesis focuses on
the development of novel, robust and reliable strategies to minimise the cost of fouling
in networks of heat exchangers primarily situated in crude oil refinery distillation unit
PHTs. The problems considered in this thesis involve offline cleaning strategies and are
constrained mixed-integer nonlinear programming (MINLP) problems. The detailed
thesis structure will be presented in Section 1.4 after a comprehensive literature survey.

1.1 The physicochemical processes leading to fouling

In this section, the nature of the HEN maintenance scheduling problem is presented
in terms of the physicochemical processes leading to the fouling phenomenon, the
remediation steps involved and types of fouling.
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Fouling is the accumulation, i.e. deposition, of unwanted solid material on a surface.
Building an understanding of the physicochemical processes leading to fouling through
modelling is imperative to mitigating its impacts. One such example is [84] who
proposed a 2-D dynamical model to predict the milk deposit patterns on the surfaces
of plate heat exchangers. Their model is based on chemical reaction and mass transfer,
among other factors. From their results, fouling is shown to be highly dependent on
process operating conditions. [84] concluded that the parameters affecting the fouling
phenomenon, more specifically the flow and mass deposit, depended mainly on the
milk temperature and processing time.

The physicochemical process leading to fouling have been categorised by [36] into 5
main categories:

(i) Crystallisation which can be subdivided into precipitation (also known as scal-
ing) and solidification. Precipitation consists of the deposition of dissolved salts
which at process conditions become supersaturated at the heat transfer surface,
whereas solidification fouling is due to cooling below the solidification temper-
ature of a dissolved component, such as in the case of the formation of wax on
crude oil heat transfer surfaces.

(ii) Particulate which is concerned with the deposition of suspended particles such
as clay and iron oxide on heat transfer surfaces.

(iii) Chemical reaction which involves the deposition of material on the heat transfer
surface due to chemical reaction in which the heat transfer surface is not involved.

(iv) Corrosion which is a consequence of exposure to other ions such as flowing oxy-
genated water in heat exchangers handling natural waters and cooling systems
of water-cooled internal combustion engines.

(v) Biofouling which occurs when live matter is in contact with wetted surfaces.

[19] summarised that the biofoulant development is the net result of several physical,
chemical and microbial processes which includes:

(i) The transportation of dissolved and particulate matter from the bulk fluid to
the surface.
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(ii) Firm microbial cell attachment to the surface.

(iii) Microbial transformations, such as growth and reproduction within the biofilm
resulting in production of organic matter.

(iv) Partial detachment of the biofilm due primarily to fluid shear stress.

A 5×5 matrix was proposed by [36] which summarises the mechanistic steps for fouling
into:

(i) Initiation which is also known as the delay period and is the period in which the
new or clean exchanger is taken into operation. The high heat transfer coefficient
may remain unchanged for a short duration during which initial deposition occurs
such as nutrient deposition for biological growth. For certain fouling categories,
specifically crystallisation and chemical reaction, the duration of the initiation
period is affected by surface temperature.

(ii) Transport where mass transport of at least one primary element from the bulk
fluid to the heat transfer surface is required.

(iii) Attachment where the foulant must latch on to the surface.

(iv) Removal.

(v) Ageing which may increase the strength of the deposit material by polymer-
isation, recrystallisation, dehydration, etc. In addition, with the exception of
waxing problems, the mechanistic step ageing is promoted further by the in-
creasing temperature of the deposit as well as operating time. [107] outlined
that ageing converts the initial gel deposit into a harder, more conductive form,
called coke.

[107] further categorised fouling formation into 3 different groups:

(i) Single layer depositions which are due to chemical reactions, such as coke form-
ation, polymerisation, protein denaturation in food industries and so forth.
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Figure 1.1.1: Schematic of a double layer fouling deposition. The coke layer is
represented in black while the gel layer is in white. Thicknesses of the coke and gel
layers are represented by δc and δg, respectively. Adapted from [61].

(ii) Double layer depositions which consist of a soft exterior deposit (gel) due to age-
ing and a harder interior layer (coke), which forms as a result of transformation
of the initial soft deposit due to ageing. Removal of the gel layer is achieved
using a cleaning-in-place method based on treatment with a solvent. This chem-
ical process is not effective for the coke layer, which requires offline mechanical
cleaning. Figure 1.1.1 demonstrates this double layer mechanism.

(iii) Biofouling.

1.2 Introduction to the heat exchanger network main-

tenance scheduling problem

This section will introduce the general concepts of the HEN maintenance scheduling
problem, along with the mathematical modelling of this optimisation problem, which
are essential for the understanding of this thesis.

The HEN cleaning scheduling problem is a discrete decision making problem where a
decision must be made as to when cleaning should be performed, which unit is to be
cleaned and in some cases which method of cleaning is to be used, e.g. chemical or
mechanical cleaning. It consists of nonlinear equations which contain binary decision
variables as well as continuous variables and hence it is combinatorial in nature. This
results in a MINLP model which is non-convex, i.e. has multiple local minima and it
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(a) (b)

Figure 1.2.2: (a) Convex function and (b) Non-convex function

is therefore difficult to find the global minimum. Figure 1.2.2 schematically represents
a convex and non-convex function where f is defined to be a convex function if its
domain S ∈ Rn is a convex set, and if for any two points x and y in this domain, the
graph of f lies below the straight line connecting (x, f (x)) to (y, f (y)) in the space
Rn+1. In other words, the following property is satisfied [97]:

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y) ∀α ∈ [0,1] (1.1)

The effect of fouling on heat transfer performance is quantified in lumped parameter
models of process heat transfer via the fouling resistance. The impact of fouling res-
istance is more severe for heat exchangers with a high overall heat transfer coefficient.

1
U

=
1

Uc
+R f (1.2)

Equation (1.2) expresses the overall heat transfer coefficient, U , in relation to the
fouling resistance, R f . Uc denotes the overall heat transfer coefficient in the clean
condition. The instantaneous net fouling rate, Ṙn, is related to the fouling resistance,
R f , by:

Ṙn ,
dR f

dt
, ϕd −ϕr (1.3)
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where ϕd and ϕr are the deposition and removal rates, respectively, with t representing
time. Depending on the relative extents of deposition and removal rates, the fouling
resistance-time curve can exhibit linear, falling or asymptotic behaviour as outlined in
Figure 1.2.3. [16] reported negative fouling resistances occurring due to surface rough-
ness. This process continues until the additional heat transfer resistance overcomes
the advantage of increased turbulence. The time period from the beginning of the
fouling process until the fouling resistance again becomes zero is called the roughness
delay time [5].

Linear fouling is indicative of a constant deposition rate with a negligible removal rate,
i.e. ϕr ≈ 0. In this model, the relationship between deposited mass and time is in the
form of Equation (1.4).

R f = at (1.4)

where a is the slope of the line, i.e. the linear fouling rate for a particular heat ex-
changer. An asymptotic rate fouling curve is indicative of a constant deposition rate
and of the removal rate being directly proportional to the deposit thickness until
ϕr = ϕd at the asymptote. In this model, the rate of fouling gradually falls with time,
so that eventually a steady-state is reached where there is no net increase of depos-
ition on the surface and there is a possibility of continued operation of the equipment
without additional fouling. The relationship between deposit mass and time is in the
following form:

R f = R∞
f
(
1− exp(−t ′/τ)

)
(1.5)

where R∞
f is the asymptotic fouling resistance, τ is the decay constant and t ′ is the

elapsed operating time since the last cleaning action. A falling rate fouling curve also
results from a falling deposition rate, where the mass of deposit increases nonlinearly
with time, but does not reach the steady-state value of the asymptotic case.

Assuming an exchanger is perfectly insulated and the flow regime is laminar, the heat
duty, Q, is linearly related to the inlet and outlet temperatures through the energy
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Figure 1.2.3: Fouling rate versus time curves. Adapted from [69].

balances outlined in Equations (1.6) and (1.7).

Q = FcCc(T out
c −T in

c ) (1.6)

Q = FhCh(T in
h −T out

h ) (1.7)

where F is the mass flow rate of the stream, C is the specific heat capacity of the fluid,
T is the temperature of the fluid. Subscripts c and h denote the cold and hot streams,
respectively, whereas superscripts in and out denote the inlet and outlet streams,
respectively. The duty of a single-pass shell and tube heat exchanger operating in
counter-current mode is given by Equation (1.8), which is based on the logarithmic
mean temperature difference method.

Q =UA∆Tlm (1.8)
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where A is the area of the exchanger and ∆Tlm is the logarithmic temperature difference,
which is defined as:

∆Tlm =

(
T out

h −T in
c
)
−
(
T in

h −T out
c
)

ln
[(

T out
h −T in

c
)
/
(
T in

h −T out
c
)] (1.9)

For the HEN cleaning scheduling problem, the objective is to minimise the operating
and cleaning costs due to fouling over a specified horizon of time, tF, and is given by
Equation (1.10). The form of this objective is generally common to all approaches.
Local considerations may give slightly different mathematical expressions. However,
the differences lie in the solution approach.

Ob j =
∫ tF

0

(
CEQF(t)

η f
+CM(t)+CX(t)

)
dt +

NC

∑
j

Ccl, j (1.10)

The extra furnace energy consumption is described by the term QF(t) which is determ-
ined based on the temperature of the crude oil entering the furnace, i.e. the crude inlet
temperature (CIT). CE and η f represent the cost of fuel and the furnace efficiency,
respectively. CM and CX refer to the extra cost associated with maintenance and down-
time (production losses) incurred due to fouling, respectively. Ccl, j is the cost of the
j-th cleaning action. The total number of cleaning actions in the time horizon, tF, is
described by NC.

The dynamic nature of the model is represented by Equation (1.3). Hence, an integ-
ration strategy is required to obtain numerical solutions for the differential equations
and to integrate the energy, maintenance and downtime costs over a particular time
horizon, tF. The approach of [86] to the MINLP formulation results in a highly non-
convex problem as they do not discretise time into fixed period durations, which by
being considered as continuous decision variables results in considerable computational
effort. Hence, for the formulation of the MINLP problem, the total time horizon is
convenient to be discretised into a finite number of periods, NP, of fixed duration,
∆t, in which cleaning actions are to be performed within these periods. The time
required to clean an exchanger is integrated into the problem by further dividing each
period into fixed sub-periods. A graphical representation is shown in Figure 1.2.4.
Superscripts CL and OP denote cleaning and operating sub-periods, respectively.
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Figure 1.2.4: Time discretisation in MINLP formulation. Adapted from [128].

Binary variables, yn,p, are used to describe the cleaning status of each exchanger in
each cleaning sub-period, where

yn,p =

{
0 if then-th heat exchanger is cleaned in period p

1 otherwise

}
∀n, p (1.11)

Within an operating sub-period, this binary variable is fixed to 1 for all n, i.e. all
units are online. Considering the case where CM =CX = 0 and the above, the objective
function in Equation (1.10) becomes:

Ob j =
∫ tF

0

CEQF(t)
η f

dt +
NP

∑
p=1

NE

∑
n=1

Ccl(1− yn,p) (1.12)

where NE is the number of exchangers considered for cleaning and NP is the number of
periods. For the purpose of attaining results that can be compared to published ones
from case studies in literature, Ccl, is taken to be independent of the exchanger size
and duty. In industrial practice this is not the case, as larger exchangers take more
effort to clean and will thus have a higher value of Ccl and vice versa. The amount
of time taken to clean depends on the installation: if the exchanger must be isolated,
removed and relocated for cleaning, these operations can determine the cleaning time.
Furthermore, different cleaning methods will have different durations, but this is not
considered in this work, although if necessary the optimisation models can include this
with great ease.
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1.3 Solution procedures for the HEN maintenance

scheduling problem

This section will present the HEN cleaning scheduling optimisation problem formula-
tion and review the different approaches used to solve this problem.

The non-convex MINLP cleaning scheduling problem has the general form:

min
y

β = f (v,y) (1.13a)

subject to

g(v) = 0 (1.13b)

h(v, p) = 0 (1.13c)

s(v)≥ 0 (1.13d)

v ∈V ⊆ Rmv (1.13e)

y ∈ Y ⊆ {0,1}my (1.13f)

where f (v,y) is a function which defines the criterion to be optimised, i.e. minimising
cost due to fouling, g(v) = 0 and h(v, p) = 0 are equality constraints that must be
satisfied, e.g. mass and energy balances, and s(v) ≥ 0 are inequality constraints that
also must be satisfied, e.g. safety measurements or quality constraints. v is the vector of
continuous variables, y is the vector of binary variables, mv and my are the dimensions
of vectors v and y, respectively. Due to the non-convex nature of the HEN cleaning
scheduling problem, a reasonable aim is to obtain a good local optimum. Hence,
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solution methods used to solve convex MINLP problems coupled with multiple starting
points can be applied to these problems. This is the approach followed in this work.

The MINLP models can be solved using mathematical programming (MP) techniques
based on MINLP through a number of ways: (i) the outer approximation (OA); (ii)
outer approximation/equality relaxation (OA/ER); or (iii) generalised Benders de-
composition (GBD) method, and also MP techniques based on MILP through refor-
mulation. In addition, stochastic search approaches, such as the standard threshold
accepting (TA) algorithm or variations of it, can be used as well as greedy heuristics
which are currently used in industrial practice. These approaches are explained in
detail in the following subsections.

1.3.1 Mathematical programming (MP) approaches based on

mixed-integer nonlinear programming (MINLP)

The OA, OA/ER and GBD algorithms utilise a decomposition strategy where the
MINLP problem is decomposed to a nonlinear programming (NLP) problem, in which
the binary variables are fixed, and a mixed-integer programming (MIP) problem. The
NLP problem is the primal problem whereas the MIP problem is the master problem.
The upper bound to the MINLP problem is provided by the primal problem which
supplies the set of continuous variables to be used by the master problem. Meanwhile,
the master problem provides a lower bound to the MINLP problem and the set of
binary variables to be used by the primal problem.

For a convex MINLP problem, after a few iterations the upper bound will be equal to
the lower bound and the algorithm will terminate. In this case, the solution produced
is the global optimum.

For a non-convex MINLP problem, the lower bound is not always valid as there is a
possibility of cutting off sections of the feasible region. Therefore, the global solution
may be left out of the search at some iteration. In this case, the lower bound will exceed
the upper bound at some iteration, which will lead to termination of the algorithm.

The OA method was developed by [34]. The method is based on outer approximation
and relaxation principles coupled with decomposition. The algorithm effectively ex-
ploits the structure of MINLP problems and consists of solving an alternating finite
sequence of NLP subproblems and relaxed versions of a MIP linear master problem.
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The master problem is derived using primal information, which consists of the solution
of the continuous variables of the primal problem, and is based on an OA, i.e. lin-
earisation of the nonlinear objective and constraints around the primal solution. The
solution of the master problem and lower bound provides the next set of fixed binary
variables to be used in the next primal problem. As iterations go on, two sequences
of updating upper and lower bounds are generated which are non-increasing and non-
decreasing, respectively, and converge after a number of iterations.

The OA algorithm is developed for problems which exclude nonlinear equality con-
straints. Hence this method assumes that nonlinear equalities can be eliminated al-
gebraically or numerically.

This method was used by [127] for the case of a raw juice preheat train in a sugar
refinery network consisting of 11 exchangers. The objective in this problem was the
maximisation of the target temperature over a 120 day campaign. [128] extended the
problem to a larger network over a longer campaign where they considered 2 case
studies: (i) a 14 HEN over a 3 year horizon and (ii) an operating plant consisting
of 27 units of exchangers for a 2 year horizon which they solved using a multi-start
procedure.

For the purpose of handling explicitly nonlinear equality constraints, [74] developed the
OA/ER algorithm for the solution of MINLP problems. The principle of this method
is the relaxation of the nonlinear equality constraints into inequalities followed by
application of the OA algorithm. Relaxation of the nonlinear equality constraints is
based on the sign of the associated Lagrange multipliers when the primal problem is
solved with the fixed binary variables. [105] highlighted the drawbacks of the OA/ER
methods stating that the formulation of the master problem at each iteration involves
the linearisation of the objective function and the nonlinear constraints around the
primal solution. Linear approximations for non-convex functions are often invalid.
Furthermore, [105] also stated that a large number of constraints are added to the
master problem at each iteration. Hence, the computational effort for solving the
corresponding MIP master problem dramatically increases after only a few iterations.

[106] considered the impact of ageing on fouling and cleaning dynamics in which an
extra decision variable was added to the scheduling model, capturing the choice of
cleaning method. They solved a small network of 4 heat exchangers using the optimiser
DICOPTr [73] which is based on the OA/ER algorithm. The OA/ER algorithm was
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able to obtain a cleaning schedule for the case where the deposit and ageing rates
were fixed to a certain value, but failed to generate a solution when these rates were
temperature-dependent due to the fact that the model becomes very nonlinear.

Due to the large computational effort required to produce a local solution and the
possibility of failure in convergence, [104] used an alternative MINLP algorithm, the
GBD method [11, 44]. The key feature of GBD is that only one constraint is added to
the master problem at each iteration resulting in a small sized MIP master problem
which remains such even after numerous iterations. [50] highlighted the weakness of
this method: the lower bounds of the OA method are greater or equal to the ones
of the GBD method, thus GBD commonly requires a significantly large number of
iterations. However, the MINLP cleaning scheduling problem is non-convex thus with
more iterations the possibility of cutting off sections of the feasible region decreases.
The distinct feature of the GBD method in comparison to the OA/ER algorithm is
that the master problem is derived from nonlinear duality theory making use of the
Lagrange multipliers produced in the primal problem. In every iteration, the primal
solution provides certain information, expressed as a Benders cut, on the assignment
of master problem variables. A Benders cut eliminates some assignments that are not
acceptable and is added to the master problem narrowing down its search space, thus
leading to optimality [22].

1.3.2 Mathematical programming (MP) approaches based on

mixed-integer linear programming (MILP)

Alternatively, this problem can be solved by reformulating certain differential algebraic
equations (DAEs) from an MINLP model to a MILP model as in the work of [77], who
applied a rigorous MILP model to a crude oil preheat train. They avoided introducing
linear approximations through the use of standard transformations to obtain linear
expressions. This was based on the idea of parameterising the heat transfer coefficient
of the units with the aid of the binary variables of the formulation. In their model,
nonlinearity occurred only through products of continuous variables with binary vari-
ables and products of binary variables to each other. [104] highlighted the drawbacks
of their method by recognising that in order to maintain the linear characteristics, ex-
tra variables and constraints must be added. The number of extra constraints grows
exponentially with the number of time intervals, thus making the solution of large
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problems of realistic size computationally impractical. To overcome this drawback, a
decomposition method was proposed by [77]. This was based on the assumption that
the cleaning schedule of an individual unit is not affected by the cleaning decisions of
the rest of the units. Using this decomposition technique, the computational effort
for acquiring a solution was reduced immensely. However, [104] stated that this as-
sumption is invalid and will not work for strongly coupled networks arising from hot
streams passing through units in series.

1.3.3 Stochastic search approaches

As an alternative to MP techniques, stochastic search techniques can be used. Stochastic
search approaches involve a random choice being made in the search direction as the
algorithm iterates towards a solution [131].

[106] used a simple stochastic search method to solve the cleaning schedule for a small
network of 4 units over one year time horizon with dual fouling layers in which the
deposition and ageing rates are a function of temperature. [106] reported that solu-
tions using MP techniques for this case failed as the problem becomes very nonlinear.
Furthermore, [130] explored the use of stochastic optimisation techniques to solve the
HEN cleaning scheduling problem. They developed a method derived from the stand-
ard TA algorithm termed the backtracking threshold accepting (BTA) algorithm. TA
is a local search method proposed by [33, 93]. The algorithm starts with a random feas-
ible solution and searches the neighbouring solution space by making random moves.
Unlike a classical local search, TA allows the escape from local minima by allowing
uphill movements in which deteriorations in the objective value are accepted, given
they are not worse than a particular threshold. The main modification of this method
in comparison with the classical TA algorithm is the addition of a backtracking step
in case a given number of new configurations do not gain acceptance. [130] compared
the BTA with the OA algorithm in 2 large case studies based on crude oil refinery
PHTs, showing that the CPU time taken to solve the problems is significantly smal-
ler. However, the drawback of using stochastic optimisation algorithms is that global
optimality cannot be guaranteed.

With regards to the last observation, nonetheless, it should also be noted that direct
use of an MINLP approach on the HEN scheduling problem only leads to a local
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feasible solution. This is due to the fact that the underlying dynamic model has no
guarantees of convexity and hence only local solutions can be obtained. It is further
noted that the nonlinearity of the model is such that often MINLP algorithms, such as
the OA method and its variants, may fail frequently due to inconsistent linearisation
of the constraints during NLP solution iterations.

1.3.4 Greedy heuristics

Greedy heuristics, which is the methodology currently used by industry, is a simple
and intuitive algorithm in which the solution is constructed in stages. At each stage,
the value of a scheduling action is assigned by making a decision based on heuristics,
such as the current best savings or lowest cost. There is frequently no look-ahead to
the impact of a local decision to long-term economics of the operation of the HEN.
The greedy algorithm chooses the locally most attractive option with no concern for
its effect on global optimality. Therefore, solutions found through greedy algorithms
are not guaranteed to be optimal.

Greedy algorithms are useful when the time available to solve a problem is extens-
ively limited. In the spectrum of solution approaches to combinatorial optimisation
problems, greedy schemes can be seen as lying at one end of the spectrum with MP
techniques lying at the other extreme. In the middle are stochastic search approaches
such as simulated annealing and genetic algorithms (GA).

The GA is named from the process of drawing an analogy between the components
of a configuration vector x and the genetic structure of a chromosome with the goal
of maximising a function f (x) of the vector x = (x1,x2,xN) [123], while simulated
annealing is a stochastic local search technique that operates iteratively by choosing
an element y from a neighbourhood N(x) of the present configuration x: the candidate
y is either accepted as the new configuration or rejected [72]. The solution quality
is best when using MP techniques, while it is worst when using greedy heuristics.
However, the former technique is associated with an increase in solution time [139].

For the HEN maintenance scheduling problem, such simple strategies consider cleaning
actions only in the current period. [128] compared their produced MINLP results
using the OA method with that of a simple greedy algorithm, showing that the former
approach is more efficient when it converged, as it considered all the options over
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the complete horizon. However, due to the non-convexity of the problem, neither the
MINLP OA algorithm nor the greedy heuristic can guarantee global optimality.

1.4 Thesis structure

This thesis can be subdivided into the following parts:

(i) The development of novel approaches for optimisation of HEN maintenance
scheduling problems (Chapter 3 and Chapter 4);

(ii) Generalisation of the methodology to multiperiod maintenance scheduling prob-
lems (Chapter 5) ; and

(iii) HEN maintenance scheduling problems with parametric uncertainty (Chapter
6).

The current chapter (Chapter 1) gives a general outline to vital concepts needed for
the core material of this thesis.

Chapter 2 reviews the detailed aims and objectives achieved by the work presented in
this thesis.

Chapter 3 commences with the presentation of the general HEN maintenance schedul-
ing problem formulation. In the core of the chapter, novel approaches based on MINLP
to solve this problem are presented. A set of HEN case studies of different sizes, config-
uration and fouling models from the open literature demonstrate that these methods
are able to optimally produce schedules with the best reported computational time.

In Chapter 4, the first section presents the formulation of the HEN cleaning schedul-
ing problem as an optimal control problem (OCP). This is followed by a theoretical
demonstration of bang-bang OCP property. In the next section, a novel method-
ology for the solution of the HEN cleaning scheduling problem based on a feasible
path optimal control approach, i.e. sequential approach, is presented. A number of
HEN cleaning scheduling case studies from the open literature demonstrate that this
approach is robust, reliable, and efficient.
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In Chapter 5, the novel approach presented in Chapter 4 is generalised to other main-
tenance scheduling problems through application to the scheduling of membrane re-
generation actions in reverse osmosis (RO) membrane networks. In the first section,
the RO membrane network scheduling problem is introduced along with motivations
for this problem. In the following sections, the problem formulation is presented and
similarities with HEN maintenance scheduling problems are discussed in terms of de-
caying performance processes. The next sections presents an RO case study description
from the open literature and the problem solution methodology, respectively. Results
for the case study are presented and discussed in the final sections of this chapter
demonstrating that the feasible path optimal control approach can be deployed to
address generalised maintenance scheduling problems.

Chapter 6 presents a novel approach for optimisation of HEN maintenance schedules
with parametric uncertainty. This chapter initially gives a general introduction to
parametric uncertainty in decision making followed by a literature survey of method-
ologies used for solving optimisation problems with uncertainty. In the core of the
chapter, the problem formulation is presented followed by implementation details and
modifications of case studies from the open literature. In the final two sections, results
are presented for these case studies along with a thorough discussion and report of
observations, showing that this methodology is stable and is efficient.

Chapter 7 presents the overall conclusions of the current thesis and proposes future
research directions.



Chapter 2

Aim and objectives

2.1 Research aim

Due to the limitation of current solution methods for the multiperiod optimisation
of cleaning schedules of HENs as aforementioned in Chapter 1, there is a great need
to develop efficient, reliable and robust solution methods for this problem and other
discrete decision making based maintenance scheduling problems arising in chemical
engineering processes. Therefore, the general aim of this thesis is to make novel
contributions to the solution of HEN maintenance scheduling problems.

2.2 Research objectives

Objective I: Develop novel techniques for the multiperiod optimisation of scheduling
HEN cleaning problems (Chapter 3 and Chapter 4)

HEN cleaning scheduling problems present a great challenge due to their complex
combinatorial nature. Three novel methods are proposed based on solving the relaxed
MINLP HEN cleaning scheduling problem:

(i) Using an infeasible path MINLP based approach coupled with rounding
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An important observation missed by previous authors is the near bang-bang
nature of the HEN cleaning scheduling problem. If the decision variable is re-
laxed, i.e. yn,p is allowed to vary between 0 and 1, and the solution occurs when
the decision variable is at either extreme bound of the feasible region, this is
termed a bang-bang solution. By recognition of this characteristic, the relaxed
NLP of the MINLP can be solved by any standard, large-scale constrained non-
linear optimisation solver, such as an interior point method (IPM). This obviates
the need for combinatorial optimisation methods. The technique is followed by a
simple rounding process, when required if the solution is not totally bang-bang,
to obtain a solution to this problem with very little computational effort.

(ii) Using an infeasible path MINLP based approach coupled with a direct branch
and bound (B&B) method

In the case where many singular arcs exist, i.e. yn,p is fractional and rounding
does not give a good solution, it is alternatively proposed to apply a direct B&B
technique to solve this problem. A direct B&B method is an attractive option
as it searches the solution space of a given problem for the best one. The B&B
method uses bounds for the function to be optimised combined with the value of
the current best solution enabling the algorithm to search parts of the solution
space only implicitly.

(iii) Using a feasible path optimal control approach coupled with rounding

The HEN cleaning scheduling problem can be categorised as a mixed-integer
optimal control problem (MIOCP) where discrete (binary) control decisions are
made over a known time horizon with the objective of minimising cost. MIOCPs
are concerned with the optimisation of dynamic systems and have been largely
explored with mathematical techniques. As such, a multistage sequential optimal
control approach for the solution of the HEN maintenance scheduling problem
is most suitable. The technique is followed by a simple rounding strategy.

Objective II: Demonstrate that the techniques developed can be generalised to mul-
tiperiod maintenance scheduling problems in chemical engineering processes (Chapter 5)

The proposed research approach is not limited to the HEN scheduling cleaning prob-
lem. The novel techniques developed can be applied to other important multiperiod
maintenance scheduling problems which are based on discrete decision making. For
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instance, in the water treatment industry, maintenance scheduling examples include
RO membranes which are subject to biofouling. RO is an important membrane separa-
tion process widely used in desalination applications. Biofouling decreases production
capacity, water quality and increases operational costs. The regeneration of mem-
branes through cleaning is necessary to remove such foulants and restore membrane
performance.

Objective III: Improve solution robustness through stochastic programming techniques
(Chapter 6)

Heat exchangers are typically over-designed in terms of their heat exchange area.
This is chosen with fouling in mind as well as the numerous uncertainties in data and
prediction. Accounting for uncertainty is vital as it influences the cleaning schedule
optimisation. Uncertainties in parameters which need to be addressed include heat
transfer coefficients, kinetics for fouling layer formation, temperature effect, process
economics, etc.

The final aim is to make use of stochastic programming techniques to deal with uncer-
tainties in the HEN cleaning scheduling model through computational experiments.
As such, a suitable multi-scenario approach is proposed.



Chapter 3

MINLP approaches for HEN cleaning
scheduling problems

This chapter presents two methodologies based on an infeasible path MINLP approach
for the solution of the HEN cleaning scheduling problem. In these cases, time is
discretised into periods and further discretised into cleaning and operating sub-periods,
where the beginning and end of the cleaning period is denoted by superscripts bcp and
ecp. Similarly, superscripts bop and eop denote the beginning and end of the operating
sub-periods. The first approach uses an IPM coupled with a simple rounding scheme
to take care of any fractional binary variables, yn,p, that arise. In the case where
many binary variables are fractional, this simple rounding scheme may not result in
good solutions, therefore the second approach uses an IPM coupled with a direct B&B
technique. Results show both of these methods achieve good solutions with minimal
computational time. This is due to the very few fractional binary variables that result
which is attributed towards the bang-bang nature of these problems. This is discussed
further in Section 3.5.

3.1 Problem formulation as a MINLP problem

Cleaning decisions are made at the beginning of each period. Using the time discret-
isation outlined in Figure 1.2.4 and binary variable yn,p shown in Equation (1.11),
the overall heat transfer coefficient shown in Equation (1.2) can be rewritten for each
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of the sub-period points in time: bcp, ecp, bop, and eop. The overall heat transfer
coefficient for unit n at the beginning of the first cleaning sub-period, Ubcp

n,p , can be
written as Equation (3.1).

Ubcp
n,p =U0,n ∀n, p = 1 (3.1)

where U0,n represents the initial value of the overall heat transfer coefficient and is
equivalent to Uc,n if the unit is in a clean condition at the start of the operating
horizon. The overall heat transfer coefficient at the end of each cleaning sub-period is
defined in relation to that at the beginning of the cleaning sub-period:

Uecp
n,p = yn,p

Ubcp
n,p

1+Ubcp
n,p Ṙ f ,n∆tCL

+ηcUc,n(1− yn,p) ∀n, p (3.2)

Equation (3.2) resets the overall heat transfer coefficient to the clean condition, ηcUc,n,
if exchanger n is cleaned in period p, i.e. yn,p = 0. ηc denotes the fraction of the clean
value to which the overall heat transfer coefficient is restored after cleaning, while
Ṙ f ,n is the fouling rate. For exchanger n undergoing linear fouling this is defined as a
constant parameter based on plant data reconciliation, as shown in Equation (3.3).

Ṙ f ,n = a ∀n (3.3)

For the purpose of attaining results that can be compared to published ones from case
studies in the open literature, the duration of the cleaning sub-period, ∆tCL, is taken
to be independent of the exchanger size and duty. In industrial practice this is not the
case, as the cleaning time from one exchanger to another will vary depending on its
size and duty. Larger exchangers will take longer to clean and vice versa. Furthermore,
different cleaning methods will have different durations, but this is not considered in
this work. Such variations in cleaning time can be readily accommodated within all
mathematical programming models proposed in this research.

The overall heat transfer coefficient at the beginning of each operating sub-period is
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related to that in the previous cleaning sub-period by:

Ubop
n,p =Uecp

n,p ∀n, p (3.4)

and that at the end of each operating sub-period can be expressed as:

Ueop
n,p =

Ubop
n,p

1+Ubop
n,p Ṙ f ,n∆tOP

∀n, p (3.5)

The overall heat transfer coefficient at the beginning of each consecutive cleaning
sub-period can be calculated from Equation (3.6).

Ubcp
n,p =Ueop

n,p−1 ∀n, p = 2, . . . ,NP (3.6)

For the case of asymptotic fouling, Equation (3.2) is replaced with Equation (3.7),
where the overall heat transfer coefficient at the end of the cleaning sub-period is
represented in relation to that of the initial value, U0,n, at the start of the operating
horizon.

Uecp
n,p = yn,p

U0,n

1+U0,nRecp
f ,n,p

+ηcUc,n(1− yn,p) ∀n, p (3.7)

where the asymptotic fouling resistance at the end of the cleaning sub-period is cal-
culated via Equation (3.8).

Recp
f ,n,p = R∞

f ,n

(
1− exp

[
−t ′n,p

CL

τn

])
∀n, p (3.8)

where t ′n,p
CL is the elapsed time since the last cleaning action in the cleaning sub-

period for exchanger n in period p and can be defined for the first period through
Equation (3.9).

t ′n,p
CL = ∆tCL ∀n, p = 1 (3.9)
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For consecutive cleaning sub-periods, this is calculated through:

t ′n,p
CL = yn,p(t ′n,p−1

OP+∆tCL) ∀n, p = 2, . . . ,NP (3.10)

where t ′n,p−1
OP is the elapsed time since the last cleaning action for exchanger n in the

previous operating sub-period and is expressed in Equation (3.11).

t ′n,p
OP = t ′n,p

CL+∆tOP ∀n, p (3.11)

Similarly, for the case of asymptotic fouling, to calculate the overall heat transfer
coefficient at the end of the operating sub-period Equation (3.5) is replaced with
Equation (3.12).

Ueop
n,p =

U0,n

1+U0,nReop
f ,n,p

∀n, p (3.12)

where the asymptotic fouling resistance at the end of the operating sub-period is
calculated through:

Reop
f ,n,p = R∞

f ,n

(
1− exp

[
−t ′n,p

OP

τn

])
∀n, p (3.13)

Calculation of the performance of an existing network is a requirement for the schedul-
ing problem, in which the network is simulated based on rating calculation. Hence,
the number of transfer units (NTU) effectiveness method [56] is used to assess the per-
formance of each heat exchanger instead of direct usage of Equations (1.8) and (1.9).
This is achieved by rearranging Equations (1.8) and (1.9) in terms of a rating calcula-
tion. The units are modelled as simple countercurrent exchangers. The effectiveness
term, denoted by α , and the ratio of capacity flow rates, denoted by P, defined in
Equations (3.14) and (3.15), respectively, are reproduced from [128]:

αn,p =
Un,pAn

Fh,nCh,n
∀n, p (3.14)
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Pn =
Fh,nCh,n

Fc,nCc,n
∀n (3.15)

Equation (3.14) can be rewritten for each of the sub-period points in time: bcp, ecp,
bop and eop, as shown in Equation (3.16).

α
X
n,p =

UXAn

Fh,nCh,n
∀n, p (3.16)

where superscript X denotes bcp, ecp,bop and eop. Given that all exchangers are
online during the operating sub-period and by combination and rearrangement of
Equations (1.6) to (1.9), the temperature of the hot and cold streams leaving each
exchanger can be calculated. The temperatures of the hot and cold streams leaving
an exchanger are determined by:

T out
h,n,p = T in

h,n,p −
1
Pn

(
T out

c,n,p −T in
c,n,p
)

∀n, p (3.17)

T out
c,n,p =

[
Pn(exp(−αn,p(Pn−1))−1)

exp(−αn,p(Pn−1))−Pn

]
T in

h,n,p +
[
(1−Pn)exp(−αn,p(Pn−1))

exp(−αn,p(Pn−1))−Pn

]
T in

c,n,p

∀n, p
(3.18)

Equations (3.17) and (3.18) are applicable to most preheat configurations which fea-
ture Pn < 1. If the alternative case arises where Pn > 1, these equations must be
amended. By incorporating the different sub-period points in time: bcp, ecp,bop and
eop, Equation (3.17) can be rewritten as:

T out,X
h,n,p = T in,X

h,n,p −
1
Pn

(
T out,X

c,n,p −T in,X
c,n,p
)

∀n, p (3.19)

The temperature of the cold stream leaving an exchanger at the beginning of the
operating sub-period is defined by:
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T out,bop
c,n,p =

[
Pn(exp(−α

bop
n,p (Pn −1))−1)

exp(−α
bop
n,p (Pn −1))−Pn

]
T in,bop

h,n,p (3.20)

+

[
(1−Pn)exp(−α

bop
n,p (Pn −1))

exp(−α
bop
n,p (Pn −1))−Pn

]
T in,bop

c,n,p ∀n, p

The same expression is generated for the cold stream temperature leaving an exchanger
at the end of the operating sub-period. For the beginning of the cleaning sub-period
using the time discretisation and binary variable yn,p, the temperature of the cold
outlet stream is given by:

T out,bcp
c,n,p =

[
Pn(exp(−α

bcp
n,p (Pn −1))−1)

exp(−α
bcp
n,p (Pn −1))−Pn

]
yn,pT in,bcp

h,n,p (3.21)

+

(
1− yn,p + yn,p

[
(1−Pn)exp(−α

bcp
n,p (Pn −1))

exp(−α
bcp
n,p (Pn −1))−Pn

])
T in,bcp

c,n,p ∀n, p

Again, the same expression is generated for the cold stream temperature leaving an
exchanger at the end of the cleaning sub-period.

The cold inlet temperature of the first exchanger in the network is fixed and is based
on an external stream. For the case of crude oil refinery PHTs this is the crude feed
temperature. Subsequent exchangers’ cold inlet temperatures are determined based
on the cold outlet temperature of the immediate upstream exchanger. The same is
applicable for the hot inlet stream temperature. If an exchanger is being cleaned, the
inlet cold stream bypasses the exchanger and the corresponding hot stream is diverted
to the next exchanger.

The objective to be minimised is the expected net present value of the operating costs
(NPC) arising from the tradeoff between furnace extra fuel costs due to fouling and
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heat exchanger cleaning costs which includes manpower, chemicals and maintenance.
This is shown in Equation (3.22).

min
yn,p

NPC =
NP

∑
p=1

CE
(Qclean

F −QF,p)

η f
+

NP

∑
p=1

NE

∑
n=1

Ccl(1− yn,p) ∀n, p (3.22)

where Qclean
F is the furnace’s energy consumption for the clean condition and QF,p is

the total actual energy consumption in period p. As the cleaning sub-period, ∆tCL can
vary for each exchanger, the total actual energy consumption is approximated using
the following expression:

QF,p =
Qbcp

F,p +Qecp
F,p

2
∆tCL+

Qbop
F,p +Qeop

F,p

2
∆tOP ∀p (3.23)

where

∆tCL =

NE
∑

n=1
∆tCL

n

NE
∀n (3.24)

This expression approximates the energy consumption in each sub-period using a linear
approximation.

Selection constraints are imposed on the binary variables such as processing considera-
tions, performance targets, i.e. temperature bounds on the performance of exchangers
and plant protocol. These constraints impose a restriction on the combination of clean-
ing actions allowed thus reducing solution space and simulations to be performed, res-
ulting in faster convergence. Logical selection constraints are also imposed preventing
a unit from being cleaned in the direct period after it is last cleaned:

yn,p + yn,p−1 ≥ 1 ∀n, p = 2, . . . ,NP (3.25)

In addition, all units are constrained to be online during the first period, where:

yn,p = 1 ∀n, p = 1 (3.26)
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3.2 Problem solution methodology and implementa-

tion

In this section, we introduce the IPM and rounding scheme used throughout this
chapter, as well as the direct B&B technique which is suitable for cases where many
non-integer yn,p result and rounding does not yield a good solution.

3.2.1 Interior Point Method (IPM) with rounding scheme

The IPM is a polynomial-time algorithm which was first proposed by [67] to solve linear
programs. The method is based on approaching the optimal solution from the strict
interior of the feasible region rather than the boundaries as in the simplex method
published by [25] in 1947. The simplex method, as shown in Figure 3.2.1, involves
traveling along the constraints going from one vertex or corner point to another until
an optimal value for the objective is found at a vertex. The drawback of this method
is that its worst complexity is exponential.

Figure 3.2.1: Interior point and simplex method illustrations
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Another way of approaching nonlinear programming problems is to dualise the con-
straints such that the constraints are integrated into the problem, resulting in an
unconstrained nonlinear programming problem. To transform the problem shown
in Equations (3.27a) to (3.27c) into the standard form shown in Equations (3.28a)
to (3.28d), slack variables are introduced to the inequality constraints to convert them
to equalities. This is done by setting bi − ai(y) ≡ si, where si are the slack variables,
giving bi −ai(y)− si = 0 subject to si ≥ 0. These equality constraints are represented
by the standard form c(y) = 0 shown in Equation (3.28b).

min
y

f (y) (3.27a)

subject to

ai(y)≤ bi (3.27b)

i = 1, . . . ,m (3.27c)

min
y

f (y) (3.28a)

subject to

c(y) = 0 (3.28b)

y ≥ 0 (3.28c)

y ∈ Rm (3.28d)

A continuous function known as a barrier function is used to dualise the constraints.
The most common types of barrier functions are inverse and logarithmic barrier func-
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tions. For instance, in the mathematical programming problem displayed in Equa-
tion (3.29a), taking the negative logarithm of the constraint slacks results in the barrier
function approaching infinity as variable y approaches the boundaries of the feasible
region.

min
y

f (y)−ψ

m

∑
i=1

log(bi −ai(y)) (3.29a)

barrier function:

−
m

∑
i=1

log(bi −ai(y))→ ∞as y → ai(y)≤ bi (3.29b)

Since the objective is to be minimised, the barrier function prevents the search point
from going outside the feasible region. The value of ψ is the weight coefficient and thus
controls the strength of the barrier function. A large ψ entails that the current point is
far away from the boundaries giving the analytical centre of the feasible region, marked
as ∗ in Figure 3.2.1. Decreasing ψ slowly and taking time to find the precise optimal
point for each ψ value, traces out the central path. This is quite time consuming and
a computationally intense process.

An alternative is to approximate the path by utilising Newton’s method for solving
NLPs. To achieve polynomial-time complexity, ψ is decreased gradually and a Newton
step is used for each decrease in ψ which results in a small zig-zag pattern convergence
to the optimal point. Practically, ψ can be decreased quicker to get faster convergence.
In summary, Newton’s method approximates the path through the interior of the
feasible region and this technique is referred to as IPMs.

IPMs are theoretically advantageous due to their polynomial-time complexity and
more importantly their practical advantage as a range of difficult industrial problems
including nonlinear large-scale models have been solved using these methods. Applic-
ations include heating, ventilating and air conditioning systems energy consumption
optimisation problems [75], simultaneous dynamic processing and production planning
for a multi-product plant [12], etc.

As the IPM cannot handle the mixed integer decision variables yn,p, a simple rounding
scheme is proposed. Throughout this work, the rounding scheme presented in Equa-
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tion (3.30) is imposed on the optimal relaxed NLP of the MINLP which is denoted
by y∗n,p . It is recognised that a simple rounding scheme will not generate good results
when many singular arcs exist, i.e. fractional decision variables. Therefore, we altern-
atively propose implementing a direct B&B method to arrive at a feasible MINLP
solution. This is outlined in the next subsection.

yn,p =

{
1 if y∗n,p ≥ 0.5
0 if y∗n,p < 0.5

}
(3.30)

3.2.2 Direct Branch and Bound (B&B) method

B&B is the most widely used tool for solving large scale N P-hard combinatorial
optimisation problems. The B&B method is based on the concept of solving the
continuous relaxation of the programming problem and branching on the fractional
variables [23]. Generally, B&B algorithms search the complete solution space for a
given problem for the best solution. The number of potential solutions increases
exponentially with the number of variables, hence explicit enumeration is usually im-
possible. Thus, B&B algorithms make use of bounds for the function to be optimised
in combination with the value of the current best solution enabling the algorithm to
search parts of the solution space only implicitly. The solution status is described by
a pool of unexplored subsets and the best solution found so far. A search tree is dy-
namically generated where the unexplored subspaces are represented as nodes which
are processed through each iteration by a B&B algorithm.

There are three major elements taking place with every iteration: (i) selection of the
node to process; (ii) calculation of bounds and (iii) branching of the node. Branching
refers to the subdivision of the node solution space into two or more subspaces that are
examined in a succeeding iteration. This is achieved by addition of a new constraint
on each node that is branched. During each iteration, a check is made to establish
whether there is a single solution contained in the subspace or otherwise. If the former
holds, the generated solution is compared with the current best one and the better
of the two is kept. Else, the subspace bounding function is calculated and compared
to the current best solution. The subspace is then either discarded or stored with its
bound depending on whether the subspace contains an optimal solution. Once the
search terminates, the overall best solution found is declared as the optimal solution.
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Termination of the search is signalled by completing the examination of all parts of
the solution space. Usually though, to avoid complete evaluation of the entire B&B
tree, a tolerance is specified for the difference between the current lower bound and
upper bound (the best feasible and fully integer solution available) so as to declare
earlier termination, good enough for practical purposes. It is worth noting that for
MINLP problems, the upper bound for the first node is calculated by solving the NLP
model without integer constraints, i.e. relaxation of these constraints. Therefore, if
the problem is non-convex, the lower bound calculated, which is based on the upper
bound, is not the true one and may be much lower. Furthermore, premature fathoming,
i.e. early termination of the node, may occur if only one local NLP solution is generated
at each node.

3.2.3 Implementation

Python is a high performance object-oriented programming language that is easy to
learn and is user-friendly compared to other traditional languages such as Fortran, C
and C++, which require considerable training and extensive time in terms of program
development, compiling and debugging. A Python environment has been selected for
implementation due to two main advantages: Python’s ability to prototype rapidly
and the availability of a large set of libraries to perform specific computing tasks.

Furthermore, this environment contains a Python optimisation modelling objects pack-
age (Pyomo), which is an open source tool for modelling optimisation applications in
Python. Pyomo can be used to define symbolic problems, create concrete problem in-
stances and solve these instances with standard solvers. Pyomo provides a capability
that is commonly associated with algebraic modelling languages such as AMPL [43]
and GAMS [115], but Pyomo’s modelling objects are embedded within a full-featured
high-level programming language with a rich set of supporting libraries [53].

In this work we use the solver IPOPT, which is an IPM using logarithmic barriers and
implements several advancements [68]. IPOPT is used as a library in Pyomo and is
an open source software package for large-scale nonlinear systems optimisation. [140]
demonstrate the performance of IPOPT code with a detailed numerical study based
on hundreds of problems indicating increased robustness, thus making it the most
reliable large-scale NLP solver available to date.
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For the implementation of the direct B&B method, we use the solver BONMIN [15],
which uses a simple B&B algorithm based on solving a continuous nonlinear program
at each node of the search tree and branching on variables. BONMIN is a basic open
source nonlinear mixed integer programming software package and uses IPOPT as the
NLP solver.

Due to the non-convex nature of the scheduling problem, 50 starting points are used
and the best objective value is reported. Starting points are generated by randomly
selecting the status of each heat exchanger, i.e. operating or cleaning, in every period.
This is done through a random choice of 0 or 1 for all the decision variables’ starting
points and is implemented via the random.choice function in Python. Results are
obtained on an Intel Core i5, 4 GB RAM and 1.4 GHz MacBook Air running on OS
X (2014 model).

3.3 Case studies descriptions

In this section, the case studies for the scheduling of cleaning actions for HENs are
introduced along with their associated data. Both linear and asymptotic fouling be-
haviour are considered.

3.3.1 Case study A

A single heat exchanger from [77] is considered as shown in Figure 3.3.2. Both lin-
ear and asymptotic fouling are modelled. Based on [77]’s model, constant flows and
properties throughout the horizon are assumed. In addition, [77] assume that the
temperatures are constant throughout the sub-period. These assumptions are also
applicable to case studies B to D and are made for the purpose of achieving results
that can be compared to published ones from case studies in the open literature. Two
different cleaning costs are used: £0 and £4000. There is no mention of the furnace
fuel cost CE in the work of [77]; however, a cost of £2.93/MM Btu is used in our work,
which is based on the cost reported by [130]. This also applies to case studies B and
C. The work of [130] is the source of data for [77]’s models where they compare their
solution for their MILP approach with those obtained by [130] who use the OA/ER
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Figure 3.3.2: Single heat exchanger case. Temperature values are given for initial,
clean condition. Adapted from [77].

algorithm. Although [77] state that they take into account the decay of the heat
transfer coefficient in each sub-period ηc, there is no mention of this value in their
work. Hence, we considered the value of parameter ηc to be 1 in this case study as
well as in case studies B to D. The single heat exchanger is modelled over a 24 month
operating horizon. Data for this case study is presented in Table 3.3.1. The single
unit is constrained to be online in the first period and logical constraints are imposed
(Equation (3.25)). These constraints are also applicable to case studies B and C.

3.3.2 Case study B

Four heat exchangers in series for a crude distillation unit PHT, where heat is recovered
from distillation column products and pump-around streams, are considered. This is
displayed in Figure 3.3.3. Only linear fouling is considered in this case with a cleaning
cost of £4000. The four heat exchanger case is modelled over two operating horizons:
12 months and 18 months. Data for this case study is presented in Table 3.3.2.

3.3.3 Case study C

A 10 unit HEN located in crude oil distillation unit PHTs undergoing linear and
asymptotic fouling is considered as shown in Figure 3.3.4. The number of periods con-
sidered is NP = 18 for this network and both £0 and £4000 cleaning costs are used.
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Table 3.3.1: Data for single heat exchanger case. Adapted from [77].

Parameter Value
Fh [lb/h] 208000
Fc [lb/h] 649000
Ch [Btu/lb°F] 0.67
Cc [Btu/lb°F] 0.57
Uc [Btu/hft2°F] 88.1
U0 [Btu/hft2°F] 88.1
A [ft2] 1257
a (linear fouling) [ft2°F/Btu] 3.88×10−7

R∞
f (asymptotic fouling) [hft2°F/Btu] 6.73×10−3

τ (decay constant)[month] 4
∆tCL [month] 0.20
∆tOP [month] 0.80
η f 0.75

Figure 3.3.3: Four heat exchanger case. Temperature values are given for initial,
clean condition. Adapted from [77].
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Table 3.3.2: Data for four heat exchanger case. Adapted from [77].

Parameter Heat Exchanger
1 2 3 4

Fh [lb/h] 141000 73800 423000 429000
Ch [Btu/lb°F] 0.67 0.70 0.62 0.62
A [ft2] 465 287 1192 1488
a (linear fouling, ×107) [ft2°F/Btu] 3.07 3.27 3.68 3.88
Fc [lb/h] 721000
Cc [Btu/lb°F] 0.46
Uc [Btu/hft2°F] 88.1
U0 [Btu/hft2°F] 88.1
∆tCL [month] 0.20
∆tOP [month] 0.80

Data for this case study is presented in Table 3.3.3. In addition to the logical con-
straints, selection and operational constraints are also imposed through consideration
of performance targets or acceptable operating practice, as presented in Table 3.3.4.
These constraints are based only on exchanger cleaning actions. However, in practice,
temperature bounds on the performance of exchangers are required to be applied, for
example in the case of desalter temperature control considered by [60]. For the pur-
pose of achieving results that can be compared to published ones from case studies in
the open literature, only the constraints shown in Table 3.3.4 are imposed on this case
study.
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Figure 3.3.4: 10 unit HEN case. Temperature values are given for initial, clean
condition. Adapted from [77].

3.3.4 Case study D

A 25 unit HEN for a crude oil refinery preheat train from [129] is modelled as shown in
Figure 3.3.5. The second cold stream located between the desalter and flash is evenly
split into two branches while the third cold stream is evenly split into four branches.
Longer durations of operation, where the number of periods are NP = {24,36}, are
considered in this network and the cleaning cost incurred for cleaning operations, Ccl,
is £5000 per cleaning action. For this case, the duration of the cleaning and operating
sub-periods are equal with △tcl =△top = 15 days. If the cleaning time did depend on
the size of the exchanger, these durations would have to be unit dependent. Data for
this case study is presented in Table 3.3.5. The furnace fuel cost CE is £0.34/kW day.
Similarly to the previous case study, in addition to the logical constraints, selection
and operational constraints are also imposed as shown in Table 3.3.6. Again, these
constraints are based only on cleaning actions, yn,p. Only these constraints are imposed
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Table 3.3.4: Operational constraints for 10 unit HEN case.

only one unit of exchangers 1-4 can be cleaned in each period y1,p + y2,p + y3,p + y4,p
≥ 3 ∀p

only one unit of exchangers 5-7 can be cleaned in each period y5,p + y6,p + y7,p ≥ 2 ∀p
temperature drop across desalter T in,X

c,5,p = T out,X
c,4,p −18 ∀p

in order to achieve results that can be compared to published ones from case studies
in the open literature.

Figure 3.3.5: 25 unit HEN case. Solid lines, cold (crude) streams; dashed lines, hot
streams; CIT, crude inlet temperature to furnace. Temperature values are given for
initial, clean condition. Adapted from [129].
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Table 3.3.5: Data for 25 unit HEN case. Adapted from [129].

HEX Fh
(kg s−1)

Fc

(kg s−1)
Ch
(kJ kg−1K−1)

Cc
(kJ kg−1 K−1)

Uc
(kW m−2K−1)

A
(m²)

a×1011

(m²KJ−1)
1A 8.7 23 2.8 2.4 0.5 21.3 1.9
2A 11.4 23 2.9 2.4 0.5 29.7 1.8
3A 4.8 23 2.8 2.4 0.5 31.4 1.6
1B 8.7 23 2.8 2.4 0.5 21.3 1.9
2B 11.4 23 2.9 2.4 0.5 29.7 1.8
3B 4.8 23 2.8 2.4 0.5 31.4 1.6
3C 8.7 23 2.8 2.4 0.5 21.3 1.9
2C 11.4 23 2.9 2.4 0.5 29.7 1.8
3C 4.8 23 2.8 2.4 0.5 31.4 1.6
1D 8.7 23 2.8 2.4 0.5 21.3 1.9
2D 11.4 23 2.9 2.4 0.5 29.7 1.8
3D 4.8 23 2.8 2.4 0.5 31.4 1.6
4A 23 47.4 2.8 2.3 0.5 26.7 1.5
5A 28 47.4 2.6 2.3 0.5 35.4 1.1
6A 17.4 47.4 2.9 2.3 0.5 79.1 1.5
4B 23 47.4 2.8 2.3 0.5 29.2 1.6
5B 28 47.4 2.6 2.3 0.5 35.4 1.1
6B 17.4 47.4 2.9 2.3 0.5 79.1 1.5
7A 25 47.4 2.6 1.92 0.5 60.8 0.8
7B 25 47.4 2.6 1.92 0.5 80.3 0.8
8 49.6 95 2.6 1.92 0.5 129 0.8
9A 55.8 95 2.6 1.92 0.5 110 0.9
9B 55.8 95 2.6 1.92 0.5 96.6 0.9
10 3.3 95 2.9 1.92 0.5 8.5 0.6
11 19.1 95 2.8 1.92 0.5 56.6 0.6
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3.4 Computational results and discussion

In this section, computational results for the IPM and direct B&B techniques on each
of the case studies are presented. For case studies A and B, solutions are obtained
using the rounding scheme. The B&B method is demonstrated in case studies C and
D in addition to the rounding scheme. For case studies A, B and C, the solutions
obtained are compared in the schedules shown in Table 3.4.7, Tables 3.4.10 to 3.4.11
and Tables 3.4.14 to 3.4.17 with the schedules obtained by [77] using the MILP for-
mulation. For case study D, the solutions are compared in the schedules shown in
Tables 3.4.20 and 3.4.21 with the schedules obtained by [129] using the OA method
and BTA algorithm. In the economic comparison, we fixed the solutions obtained by
[77] and [129], and evaluated them using our model. This is done because the discret-
ised ODE nonlinear model is used here, and hence, the constraints of this model are
satisfied. These are shown in Tables 3.4.8, 3.4.12, 3.4.18 and 3.4.22, where the best
obtained solution is reported for each of the cases. Solution metrics which include the
worst cost out of 50 runs of different starting points, mean cost and relative standard
deviation (RSD) about the mean value for each case is reported in Tables 3.4.9, 3.4.13,
3.4.19 and 3.4.23. Additionally, the total computational time for the multiple runs is
also reported in these tables.

3.4.1 Case study A

Fouling rates have a great impact on the performance of the heat exchanger models.
The asymptotic fouling case has larger initial fouling rates causing a rapid decay
in the crude inlet temperatures, resulting in a much larger objective value for the
uncleaned case (e.g. £313k vs. £203k in Table 3.4.8). Generally, more cleaning actions
are performed in the asymptotic fouling scenarios than in the corresponding linear
ones, as shown in Table 3.4.7, with the cleaning actions increasing from 3 to 5 in the
£4k cleaning cost scenario of this work’s solution. This is primarily attributed towards
the early loss of exchanger efficiencies.

For the reported schedules with a cleaning cost of £4k, there is an absence of cleaning
actions near the start and end of the operating horizon, as there is little incentive
to clean a relatively clean unit, and there is little time for the cost of cleaning to be
recovered towards the end of the operating horizon. For example, in the linear fouling
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case with a cleaning cost of £4k, the first cleaning action does not occur until 7 months
after the start of the operating horizon and there are no cleaning actions in the last 5
months of the operating horizon, as shown in Table 3.4.7.

Similar observations as those in [77] are seen where cleaning actions are cyclic (see
Table 3.4.7). For example, in the asymptotic fouling case with a cleaning cost of £4k,
after the first cleaning action, subsequent cleanings take place every 4 months. In
addition, in this case the schedules are the same, both resulting in a cost value of

£222k, as can be seen in Table 3.4.8. This is also applicable to the corresponding linear
case. However, for the asymptotic case with a cleaning cost of £0, one less cleaning
is performed in our model than in [77]’s (6 vs. 7 cleanings) and the schedules are
different, with their cleaning actions taking place earlier. In the corresponding linear
case, the number of cleaning actions between our model and that of [77] are the same
with 4 cleanings take place of which only one is not common, as shown in Table 3.4.7.

The case with £0 cleaning cost is termed the energy maximisation scenario with more
cleaning actions taking place, such as in Table 3.4.7, where the total number of cleaning
actions increase from 3 to 4 and from 5 to 6 in the linear and asymptotic fouling cases,
respectively. This difference is more significant in larger networks, as will be shown in
Subsection 3.4.3.

An important observation worth discussing is the bang-bang nature of this problem.
Only a small number of fractional yn,p values result from the relaxed MINLP solution,
which leads to the objective values using the rounding scheme being very close to the
corresponding relaxed MINLP value and in several cases they are completely integer.
For example, in the asymptotic fouling case with a cleaning cost of £0, the relaxed
MINLP solution is £196k whereas the rounded MINLP solution is only £2k more, as
shown in Table 3.4.8. Furthermore, for the corresponding case with a cleaning cost
of £4k, these values are almost equivalent (£222k). For the case where yn,p for the
relaxed MINLP solution is completely integer, e.g. in the linear fouling cases, this is
termed a bang-bang solution and is indicated by ∗ in Table 3.4.8.

The schedules featuring the best objective, i.e. lowest overall cost, are shown for these
cases. However, a number of different schedules with similar objective values are
also obtained. For all cases, the range of objective values obtained in the 50 runs is
narrow, as shown in Table 3.4.9, where the objective function value varies between
£102k up to only £109k for the linear case with a £4k cleaning cost, and between
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£222k and £225k for the asymptotic cases with a cleaning cost of £4k. Furthermore,
the results are narrowly dispersed about the mean, with a RSD value of 1.2% and
0.4% in the aforementioned corresponding scenarios, respectively. The resource usage
varies depending on the cleaning cost, fouling type, method used and problem size.
For all of these scenarios, a quick convergence is achieved, where the total CPU time
for the 50 runs is a maximum of 9 CPU s, as shown in Table 3.4.9.

3.4.2 Case study B

For the four heat exchanger case over an operating horizon of 12 months, the same
schedules are obtained in this work and in the work of [77] (Table 3.4.10), where the
cost values are both £106k, as shown in Table 3.4.12. In the longer operating duration
of 18 months, the total number of cleaning actions are the same in comparison to the
optimum schedule of [77] (6 cleanings in Table 3.4.11). All solutions in the four heat
exchanger case are feasible, i.e. integer, as shown in Table 3.4.12. Hence, rounding is
not needed in these cases.

For the 18 month operating horizon case, a better solution is obtained in our work
compared to the work of [77] (£179k vs. £183k in Table 3.4.12). When comparing
the corresponding schedules in Table 3.4.11, each unit is cleaned the same number of
times; however, there is only one common cleaning action and the cleaning actions of
[77] are earlier than ours.

In terms of the distribution of the solutions about the mean, the RSD is only 1.6%
and 1.2% for the 12 month and 18 month horizons, respectively, and the difference
between the maximum and minimum cost values is £5k and £10k (Table 3.4.13) for
the corresponding cases, respectively. Therefore, it can be deduced for these cases
that only a few runs are sufficient to achieve a good solution. Similarly to case study
A, the computational time is very small at a maximum of 23 CPU s for the 18 month
case, as shown in Table 3.4.13.

3.4.3 Case study C

For the energy maximisation scenario of the 10 unit HEN case, cleaning actions taking
place often, such as in the linear case where the cleaning actions increase from 10 to
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Table 3.4.10: Cleaning schedule for the four heat exchanger case using MINLP
approach (duration of 12 months, linear fouling, cleaning cost £4k).

HEX Time (months) No. of cleaning actions
1 2 3 4 5 6 7 8 9 10 11 12 + ,

1 0 0
2 0 0
3

⊕
1 1

4
⊕

1 1
cleaning actions: + MINLP rounding scheme; , [77] 2 2
MILP approach;

⊕
common

18 for the rounding scheme in Tables 3.4.14 and 3.4.15 when the cleaning cost is
reduced from £4000 to £0, and increase more than three times from 10 to 31 in the
corresponding asymptotic case in Tables 3.4.16 and 3.4.17. A further increase in the
cleaning cost would limit the number of cleaning actions even more and increase the
objective further. This can be used to determine which cleaning actions and hence
exchangers are more important. From Tables 3.4.15 and 3.4.17, it can be seen that
exchangers 9 and 10 are cleaned the most frequently, making these exchangers more
important in the network, while exchangers 1 and 2 are not cleaned at all. Exchangers
9 and 10 are cleaned more often as they have the highest fouling rates, as shown in
Table 3.3.3. Fouling rate is not the only criterion that determines how often cleaning
is done. For instance, as shown in Table 3.4.17, despite the similar asymptotic fouling
rates of exchangers 5 and 7, the former is not cleaned at all while the latter is cleaned
twice during the operating horizon.

Figure 3.4.6 shows the CIT profiles with and without cleaning over time for the linear
and asymptotic cases, respectively. For the cleaning scenario, the profile shown is
based on the best objective value using the rounding scheme, i.e. the schedules in
Tables 3.4.15 and 3.4.17. The CIT profiles show that fouling has a significant effect
on the performance of the HEN. The larger fouling rates for the asymptotic fouling
model result in a steep decline in the CIT, e.g. there is a rapid decay in the CIT at
the 5th, 9th and 13th months and this is attributed towards unit 10 being cleaned (see
Figure 3.4.6b and Table 3.4.17), which has the highest fouling rate.

A cost comparison between our model and [77]’s model only makes sense in the linear
fouling case, where the objective value for the no-cleaning scenario is the same. For the
asymptotic case, [77] estimates a lower objective value associated with the no-cleaning
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scenario resulting in < 2% difference (see Table 3.4.18). This is attributed to retaining
the nonlinear expressions in our model which is more accurate, whereas, as mentioned
in previous sections of this chapter, [77] use standard transformations to obtain linear
expressions, thus eliminating the nonlinear expressions by addition of extra variables.

From our results, we observe that in all cases our model produces similar overall costs
using both the rounding scheme and B&B method to [77]’s model. The rounding
scheme produces a slightly better solution than the B&B method. It is worth noting
that [77]’s MILP model is solved to global optimality, whereas our model being a
non-convex MINLP model is not. Despite this, we still produce similar results (a
difference of £4k in the worst case, as shown in Table 3.4.18). The difference between
the maximum and minimum of objective values for all cases is very narrow, this being
£16k and £10k in the worst case for the asymptotic fouling case with a cleaning cost
of £4k using the rounding scheme and B&B method, respectively (see Table 3.4.19).
Therefore, similarly to the previous cases, many runs are not required and a similar
objective to that of [77] is obtained within the first run. In these cases, special tuning
is not required and the model runs automatically with ease, with only up to 2 infeasible
solutions produced out of the 50 runs using the B&B technique, while all solutions
produced for the rounding scheme are feasible.

The number of cleaning actions from the three solution methods in the 10 unit HEN
case are generally similar. The rounding scheme results in the minimum number of
cleaning actions in the energy maximisation scenarios, e.g. 18 for the rounding scheme
in the linear scenario vs. 20 and 21 for B&B method and [77]’s reformulation, respect-
ively. Despite the similarity in the objective values and number of cleaning actions
performed, no pattern is observed from the schedules, where cleaning actions occur
earlier in some cases and later in others. This further emphasises our earlier find-
ings where there are a number of schedules with similar objective values but different
distributions.

Similar to observations from the previous case studies, this problem also exhibits
bang-bang behaviour. For the linear fouling cases, the objective values using the
rounding scheme are the same value as the corresponding relaxed MINLP values and
in some cases are completely integer, as shown in Table 3.4.18. Where fractional yn,p

values exist, these solutions are termed bang-singular. The number of singular arcs are
minimal with the maximum number of singular arcs produced being 9 out of 180 binary
variables in the asymptotic fouling model with £0 cleaning cost. It is worth noting
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that in both of the asymptotic fouling cases, the rounded MINLP solution results in a
lower objective value in comparison to the relaxed MINLP, as shown in Table 3.4.18
(£362k vs. £399k and £460k vs. £478k for Ccl = £0 and Ccl = £4k, respectively).

Convergence is achieved very quickly in each run and the resource usage is very prac-
tical even for the worst case: for the linear fouling case and £4k cleaning cost, only
115 CPU s (1.9 CPU min) is required for 50 runs of the relaxed MINLP. [77] stated
that the time to solve the 10 unit HEN case is impractical, therefore, in addition to
reformulating their model into a MILP problem, they use a decomposition procedure
to decrease the computational time. They also state that they kept the linearity of the
expressions with the aim of having better chances of capturing the global optimum.
From our findings, these are both clearly not required.

In the next subsection, we will present a 25 unit HEN previously solved by [129] using
the BTA and OA methods.

3.4.4 Case study D

Similarly to the asymptotic fouling case in case study C, there is a difference in the un-
cleaned objective values for both the 24 and 36 month models, as shown in Table 3.4.22.
This difference arises from the different numerical methods used to solve the equation
sets and represents < 7% difference and < 8.5% difference when compared to the BTA
algorithm over NP = 24 months and NP = 36 months, respectively.

The schedules obtained have a limited number of common cleaning actions with that
of [129]. For the 2 year operating horizon, the cleaning actions for [129]’s OA method
generally take place earlier in the operating horizon as well as closer to the end of
the horizon than in our rounding scheme, as shown in Table 3.4.20. In this case,
more cleaning actions are performed in their schedule than in ours, e.g. 17 in their
OA method schedule and 15 in their BTA algorithm schedule compared to 14 in our
schedule, as shown in Table 3.4.20. Contrariwise, for the 3 year operating horizon
there are more cleaning actions in our schedule than in theirs (36 vs. 34, as shown
in Table 3.4.21). Some features in common are that most exchangers are cleaned the
same number of times as our schedule, and certain exchangers are not cleaned at all
(e.g. exchangers 3A to 3D in the 2 year schedule, as can be seen in Table 3.4.20).
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(a)

(b)

Figure 3.4.6: CIT profile for the 10 unit HEN case using MINLP rounding approach:
(a) linear fouling, cleaning cost=£4k and (b) asymptotic fouling, cleaning cost=£4k
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In terms of the economic comparison, the OA method produces the worst objective
value, whilst our method produces the best objective value (£535k vs. £552k for the 24
month model), as shown in Table 3.4.22. Furthermore, in the same case, the overall
cost in our work is slightly better in comparison to [129]’s BTA solution which is
£539k. This difference is more notable in the 36 month model, with a cost of £915k
in our work compared to £931k in [129]’s BTA solution.

The time required for convergence is minimal in each run and the resource usage is
very practical: for the 36 month model, only 252 CPU s (4.2 CPU min overall, ≈ 5
CPU s per run), on a 2014 model MacBook Air, is required for 50 runs, as shown in
Table 3.4.23, while the resource usage quoted by [129] for their BTA algorithm is 6,624
CPU for 10 trials (≈ 1.8 CPU hr overall, ≈ 662 CPU s per trial) on a SunSPARC 10
workstation in 2002. As per Moore’s law, which is the observation that the number
of transistors in a dense integrated circuit doubles every 2 years [91], the convergence
time for their method translates to ≈ 10 CPU s per trial in 2014. Hence, the resource
usage for their BTA algorithm is 2 times more expensive than the MINLP approach.
In addition, they are unable to solve the HEN over 36 months using their proposed
OA method.

The objective values vary in a slightly wider range than in the previous case studies,
e.g. for 3 years of operation the objective varies from £915k to £957k, as shown in
Table 3.4.22. In addition, the objective values obtained using the rounding scheme
are almost equivalent to the corresponding relaxed MINLP values, at £535k for the 2
year horizon (see Table 3.4.22). Hence, this model also results in a nearly bang-bang
solution giving a minimal number of singular arcs. The 24 month operating horizon
solution only produces 1 value of yn,p out of 600 which is fractional, whereas the 36
month operating horizon solution produces 16 out of 900 fractional values of yn,p.

A 14 unit HEN case study appearing in the work of [128] was also modelled over an
operating duration of 3 years. The cost was varied and both linear and asymptotic
fouling were considered. Based on the results, similar findings were made to those in
the cited work.
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3.5 Chapter summary

In this chapter, 2 different methods as an alternative to solving the HEN scheduling
cleaning problem are presented. It is shown for the first time that this problem pro-
duces nearly bang-bang optimal solutions which can be obtained by simply solving
the relaxed MINLP using an IPM followed by a simple rounding scheme. In all the
case studies reported, a tight MINLP is formulated thereby making it unnecessary
to use a direct B&B approach. The advantages of these methods are that they are
quick, robust and reliable with very few infeasible solutions produced. Despite the
non-convexity of these models it is shown that only a small number of starting points
are needed to attain a good solution. The solutions obtained are compared with three
different methods showing that this work’s method outperforms the others. Addition-
ally, it is shown that by solving the MINLP problem, as opposed to reformulating the
model to an MILP problem, similar solutions are obtained and sometimes even better
than the latter approach, despite the fact that the model in this work is not solved to
global optimality. This chapter’s model is thus more accurate and the full model is
solved with minimal resource usage, hence avoiding the need to use a decomposition
procedure. The bang-bang nature of this problem is explained further in Chapter 4.
In addition, in Chapter 4 another novel method for solving the HEN maintenance
scheduling problem is presented, where it is solved as a MIOCP.



Chapter 4

Optimal control approach for
multiperiod HEN cleaning scheduling
problems

In this chapter a sequential technique for solving the HEN scheduling problem is
presented, which is based on the discovery that the HEN cleaning scheduling problem
is in actuality a multistage OCP, and further that cleaning actions are the controls
which appear linearly in the system equations. The key feature is that these prob-
lems exhibit bang-bang behaviour, obviating the need for combinatorial optimisation
methods. Similarly to the MINLP approach in Chapter 3, the usual time discret-
isation approach is implemented; however, the state variables are kept in their true
continuous form, thus retaining the model accuracy. Results show that the feasible
path approach adopted is stable and efficient in comparison to classical methods which
sometimes suffer from failure in convergence.

4.1 Theoretical demonstration of bang-bang optimal

control problem property

This section will demonstrate that the HEN cleaning scheduling problem is in actuality
a MIOCP. In this problem the controls, i.e. cleaning decisions, occur linearly in the
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system, thus resulting in a bang-bang solution. Hence, integrality of the solution
can be obtained by solving only the relaxed MIOCP as a standard NLP problem.
Furthermore, proof of the bang-bang behaviour is shown in this section based on the
linearity of the model equations in the controls, i.e. cleaning actions.

The basic formulation for an OCP is expressed in Equations (4.1a) to (4.1d) where the
performance index is minimised by selection of controls, u(t), subject to differential
and algebraic equations involving differential and algebraic state variables, x(t) and
z(t), respectively. Equations (4.1b) to (4.1c) describe an index-1 differential algebraic
equation (DAE) system given the initial condition, x0, and a fixed final time, tF .
It is noted that the problem considered involves binary control variables, u(t), thus
constituting a MIOCP.

min
u(·)

W = φ [x(tF)]+

tF∫
0

L[x(t), z(t),u(t), t]dt (4.1a)

subject to

ẋ(t) = f [x(t),z(t),u(t), t], x(t0) = x0, (4.1b)

g(x(t),z(t),u(t), t) = 0, (4.1c)

u(t) ∈ U , U ∈ {0,1} ∀ t ∈ [0, tF] (4.1d)

The OCP solution is obtained through discretisation of time into periods, where the
control profiles are allowed to be discontinuous at a finite number of points, tp, termed
junctions. Period lengths have not been specified. [138] gives a general form of junction
conditions between stages (i.e. periods) p and p+1. This is shown in Equation (4.2)
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for the sake of clarity.

Jp(ẋp+1(t+p ),xp+1(t+p ),zp+1(t+p ),up+1(t+p ), ẋp(t−p ),xp(t−p ),zp(t−p ),up(t−p ), tp) = 0
∀p = 1,2, . . . ,NP−1

(4.2)

The basic formulation of a multi-period OCP over time periods, p = 1, . . . ,NP, where
t ∈ [tp−1, tp] with tNP = tF, is shown in Equations (4.3a) to (4.3g).

min
u(·)

W =
NP

∑
p=1

[
φ
(p)x(tp),z(p)(tp),u(p), t(p)

]
+

tp∫
tp−1

L(p)
[
x(p)(t),z(p)(t),u(p), t

]
dt (4.3a)

subject to

ẋ(p)(t) = f (p)(x(p)(t),z(p)(t),u(p), t) (4.3b)

0 = g(p)(x(p)(t),z(p)(t),u(p), t) (4.3c)

tp−1 ≤ t ≤ tp, p = 1,2, . . . ,NP (4.3d)

x(1)(t0) = I(1)(u(1)) (4.3e)

x(p)(tp−1) = I(p)(x(p−1)(tp−1),z(p−1)(tp−1),u(p)) ∀p = 2,3, . . . ,NP (4.3f)

u(t) ∈ U , U ∈ {0,1} (4.3g)



4.1 Theoretical demonstration of bang-bang optimal control problem property 92

For the HEN cleaning problem the controls, u(p)(t), are considered to be piecewise
constant so as to reflect the on/off nature of having a unit cleaning or not. The stage
switching times, tp, are fixed in this initial derivation. The collective vector of controls
over all stages is:

uuu = (u(1),u(2), . . . ,u(NP))T (4.4)

At the junctions, conditions are set where differential state variables are allowed to be
re-initialised based on the control variable value:

xp(tp−1) = up(t) · xp−1(tp−1) ∀p = 2, . . .NP (4.5)

Proof that the control in the relaxed multistage MIOCP for cleaning scheduling is
linearly related to the process variables is provided as follows, with acknowledgment
to [1] for the derivation corrections.

This multistage adjoint system is a linear time-varying coefficient semi-explicit index-
1 DAE system. The performance index in Equation (4.3a) is modified such that the
Euler-Lagrange multipliers are introduced:

W̄ =
NP

∑
p=2

{
φ
(p)(x(p)(tp),z(p)(tp),u(p), t(p))

+
(

ν
(p)
)T

·
(

I(p)(x(p−1)(tp−1),z(p−1)(tp−1),u(p))− x(p)(tp−1)
)

+
∫ tp

tp−1

L(p)(x(p)(t),z(p)(tp),u(p), t)dt

+
∫ tp

tp−1

(
λ
(p)(t)

)T
·
(

f (p)(x(p)(t),z(p)(tp),u(p), t)− ẋ(p)(t)
)

dt

Note, the equation continues on the next page.
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+
∫ tp

tp−1

(
µ
(p)(t)

)T
·
(

g(p)(x(p)(t),z(p)(t),u(p), t)
)

dt}
+φ

(1)(x(1)(t1),z(1)(t1),u(1), t(1))

+
(

ν
(1)
)T

·
(

I(1)(u(1))− x(1)(t0)
)

+
∫ t1

t0
L(1)(x(1)(t),z(1)(t),u(1), t)dt

+
∫ t1

t0

(
λ
(1)(t)

)T
·
(

f (1)(x(1)(t),z(1)(t),u(1), t)− ẋ(1)(t)
)

dt

+
∫ t1

t0

(
µ
(1)(t)

)T
·
(

g(1)(x(1)(t),z(1)(t),u(1), t)
)

dt (4.6)

Variations on the parameter set of stage p′, of the form δu(p′), are considered, which
result in variations in the state values at all times, as shown in Equation (4.7). Clearly,
the state vector of stage p, where p < p′, will not be influenced. This results in
δx(p)(t), 0 and δ z(p)(t), 0.

δW̄ =
NP

∑
p=2

{
[

∂φ (p)

∂x(p)(tp)
δx(p)(tp)+

∂φ (p)

∂ z(p)(tp)
δ z(p)(tp)+

∂φ (p)

∂u(k)
δu(p)

]
+
(

ν
(p)
)T

·(
∂ I(p)

∂x(p−1)(tp−1)
δx(p−1)(tp−1)+

∂ I(p)

∂ z(p−1)(tp−1)
δ z(p−1)(tp−1)+

∂ I(p)

∂u(p)
δu(p)

Note, the equation continues on the next page.
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−δx(p)(tp−1)

)

+
∫ tp

tp−1

∂L(p)

∂x(p)(t)
δx(p)(t)+

∂L(p)

∂ z(p)(t)
δ z(p)(t)+

∂L(p)

∂u(p)
δu(p) dt

+
∫ tp

tp−1

(
λ
(p)(t)

)T
·(

∂ f (p)

∂x(p)(t)
δx(p)(t)+

∂ f (p)

∂ z(p)(t)
δ z(p)(t)+

∂ f (p)

∂u(p)
δu(p)−δ ẋ(p)(t)

)
dt

+
∫ tp

tp−1

(
µ
(p)(t)

)T
·

(
∂g(p)

∂x(p)(t)
δx(p)(t)+

∂g(p)

∂ z(p)(t)
δ z(p)(t)+

∂g(p)

∂u(p)
δu(p)

)
dt}

+

[
∂φ (1)

∂x(1)(t1)
δx(1)(t1)+

∂φ (1)

∂ z(1)(t1)
δ z(1)(t1)+

∂φ (1)

∂u(1)
δu(1)

]

+
(

ν
(1)
)T

·

(
∂ I(1)

∂u(1)
δu(1)−δx(1)(t0)

)

+
∫ t1

t0

∂L(1)

∂x(1)(t)
δx(1)(t)+

∂L(1)

∂ z(1)(t)
δ z(1)(t)+

∂L(1)

∂u(1)
δu(1) dt

+
∫ t1

t0

(
λ
(1)(t)

)T
·(

∂ f (1)

∂x(1)(t)
δx(1)(t)+

∂ f (1)

∂ z(1)(t)
δ z(1)(t)+

∂ f (1)

∂u(1)
δu(1)−δ ẋ(1)(t)

)
dt

+
∫ t1

t0

(
µ
(1)(t)

)T
·

(
∂g(1)

∂x(1)(t)
δx(1)(t)+

∂g(1)

∂ z(1)(t)
δ z(1)(t)+

∂g(1)

∂u(1)
δu(1)

)
dt (4.7)

Integration by parts for the last term in the integrals involving δ ẋ(p) is used to obtain
Equation (4.8):
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δW̄ =
NP

∑
p=2

{
[

∂φ (p)

∂x(p)(tp)
δx(p)(tp)+

∂φ (p)

∂ z(p)(tp)
δ z(p)(tk)+

∂φ (p)

∂u(p)
δu(p)

]
+
(

ν
(p)
)T

·(
∂ I(p)

∂x(p−1)(tp−1)
δx(p−1)(tp−1)+

∂ I(p)

∂ z(p−1)(tp−1)
δ z(p−1)(tp−1)+

∂ I(p)

∂u(p)
δu(p)

−δx(p)(tp−1))

)

+
∫ tp

tp−1

∂L(p)

∂x(p)(t)
δx(p)(t)+

∂L(p)

∂ z(p)(t)
δ z(p)(t)+

∂L(p)

∂u(p)
δu(p) dt

+
∫ tp

tp−1

(
λ
(p)(t)

)T
·(

∂ f (p)

∂x(p)(t)
δx(p)(t)+

∂ f (p)

∂ z(p)(t)
δ z(p)(t)+

∂ f (p)

∂u(p)
δu(p)

)
dt

+
∫ tp

tp−1

(
λ̇
(p)(t)

)T
δx(p)(t)dt

+
(

λ
(p)(tp−1)

)T
·δx(p)(tp−1)−

(
λ
(p)(tp)

)T
·δx(p)(tp)

+
∫ tp

tp−1

(
µ
(p)(t)

)T
·

(
∂g(p)

∂x(p)(t)
δx(p)(t)+

∂g(p)

∂ z(p)(t)
δ z(p)(t)+

∂g(p)

∂u(p)
δu(p)

)
dt}

+

[
∂φ (1)

∂x(1)(t1)
δx(1)(t1)+

∂φ (1)

∂ z(1)(t1)
δ z(1)(t1)+

∂φ (1)

∂u(1)
δu(1)

]

+
(

ν
(1)
)T

·

(
∂ I(1)

∂u(1)
δu(1)−δx(1)(t0)

)

Note, the equation continues on the next page.
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+
∫ t1

t0

∂L(1)

∂x(1)(t)
δx(1)(t)+

∂L(1)

∂ z(1)(t)
δ z(1)(t)+

∂L(1)

∂u(1)
δu(1) dt

+
∫ t1

t0

(
λ
(1)(t)

)T
·(

∂ f (1)

∂x(1)(t)
δx(1)(t)+

∂ f (1)

∂ z(1)(t)
δ z(1)(t)+

∂ f (1)

∂u(1)
δu(1)

)
dt

+
∫ t1

t0

(
λ̇
(1)(t)

)T
δx(1)(t)dt

+
(

λ
(1)(t0)

)T
·δx(1)(t0)−

(
λ
(1)(t1)

)T
·δx(1)(t1)

+
∫ t1

t0

(
µ
(1)(t)

)T
·

(
∂g(1)

∂x(1)(t)
δx(1)(t)+

∂g(1)

∂ z(1)(t)
δ z(1)(t)+

∂g(1)

∂u(1)
δu(1)

)
dt (4.8)

For a stationary point, infinitesimal variations in the right hand side should yield no
change to the performance index, i.e. δW̄ = 0, and hence related terms must be chosen
so that they always guarantee this. This leads to the following set of Euler-Lagrange
equations and the Pontryagin minimum principle [108].

To cancel the δx(1)(t) and δx(1)(t1) terms, the differential equations and final time
stage conditions, as shown in Equations (4.9a) to (4.10), must hold, respectively:

λ̇
(1)(t) =−

[
∂ f (1)

∂x(1)(t)

]T

λ
(1)(t)−

[
∂g(1)

∂x(1)(t)

]T

µ
(1)(t)−

[
∂L(1)

∂x(1)(t)

]T

(4.9a)

t0 ≤ t ≤ t1 (4.9b)

λ
(1)(t1) =

[
∂φ (1)

∂x(1)(t1)

]T

+

[
∂ I(2)

∂x(1)(t1)

]T

ν
(2) (4.10)

Algebraic equations and final stage conditions, Equations (4.11a) to (4.12), must hold
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in order to cancel the δ z(1)(t) and δ z(1)(t1) terms:

[
∂ f (1)

∂ z(1)(t)

]T

λ
(1)(t)+

[
∂g(1)

∂ z(1)(t)

]T

µ
(1)(t)+

[
∂L(1)

∂ z(1)(t)

]T

= 0 (4.11a)

t0 ≤ t ≤ t1 (4.11b)

[
∂φ (1)

∂ z(1)(t1)

]T

+

[
∂ I(2)

∂ z(1)(t1)

]T

ν
(2) = 0 (4.12)

The δx(p)(t), δx(p)(tp) and δx(p)(tp−1) terms are cancelled through the condition that
the following differential equations and final time stage conditions are held:

λ̇
(p)(t) =−

[
∂ f (p)

∂x(p)(t)

]T

λ
(p)(t)−

[
∂g(p)

∂x(p)(t)

]T

µ
(p)(t)−

[
∂L(p)

∂x(p)(t)

]T

(4.13a)

tp−1 ≤ t ≤ tp ∀p = 2,3, . . . NP (4.13b)

λ
(p)(tp) =

[
∂φ (p)

∂x(p)(tp)

]T

+

[
∂ I(p+1)

∂x(p)(tp)

]T

ν
(p+1) ∀p = 2,3, . . . ,NP−1 (4.14a)

λ
(p)(tp) =

[
∂φ (p)

∂x(p)(tp)

]T

∀p = NP (4.14b)

ν
(p) = λ

(p)(tp−1) ∀p = 2,3, . . . ,NP (4.15)

To cancel δ z(p)(t) and δ z(p)(tp) terms, the following algebraic equations must hold:

[
∂ f (p)

∂ z(p)(t)

]T

λ
(p)(t)+

[
∂g(p)

∂ z(p)(t)

]T

µ
(p)(t)+

[
∂L(p)

∂ z(p)(t)

]T

= 0 (4.16a)
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tp−1 ≤ t ≤ tp ∀p = 2,3, . . . NP (4.16b)

[
∂φ (p)

∂ z(p)(tp)

]T

+

[
∂ I(p+1)

∂ z(p)(tp)

]T

ν
(p+1) = 0 ∀p = 2,3, . . . ,NP−1 (4.17a)

[
∂φ (p)

∂ z(p)(tp)

]T

= 0 ∀p = NP (4.17b)

The terms δu(1) and δu(p) are cancelled on the condition that Equations (4.18a) to
(4.19b) hold. These are equivalent to the Hamiltonian gradient condition:

∇u(1)H
(1) ,

[
∂φ (1)

∂u(1)(t1)

]T

+

[
∂ I(1)

∂u(1)

]T

ν
(1)

+
∫ t1

t0


[

∂L(1)

∂u(1)(t)

]T

+

[
∂ f (1)

∂u(1)(t)

]T

λ
(1)(t)+

[
∂g(1)

∂u(1)(t)

]T

µ(t)

 dt , 0

(4.18a)

t0 ≤ t ≤ t1 (4.18b)

∇u(p)H(p) ,

[
∂φ (p)

∂u(p)(tp)

]T

+

[
∂ I(p)

∂u(p)

]T

ν
(p)

+
∫ tp

tp−1


[

∂L(p)

∂u(p)(t)

]T

+

[
∂ f (p)

∂u(p)(t)

]T

λ
(p)(t)+

[
∂g(p)

∂u(p)(t)

]T

µ(t)

 dt , 0

(4.19a)

tp−1 ≤ t ≤ tp ∀p = 2,3, . . . NP (4.19b)
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When the functions appearing in Equations (4.18a) and (4.19a) are linearly related
to the control, the optimal control for the relaxed MIOCP will exhibit bang-bang
behaviour (with potential singular arcs). Bang-bang solutions occur when the optimal
control action is at either bound of the feasible region [17]. Controls that are not
bang-bang, where the control lies between the bounds, are called singular. In this
case, singular arcs exist. Pure bang-bang controls are demonstrated in minimum-time
problems for linear systems [9] and bilinear systems [89], optimal control of batch
reactors [14], optimal thermal control [8], etc.

For nonlinear optimisation systems, this bang-bang principle does not always hold.
[150] investigated reservoir flooding problems, where the control is linear in relation to
the continuous variables, and showed that if the only constraints are upper and lower
bounds on the control, then due to their particular structure, these problems will
sometimes have bang-bang optimal solutions. This is advantageous since bang-bang
solutions can be implemented with simple on–off control valves.

Approaches for optimal control of nonlinear dynamical systems with binary controls
(on/off) were reviewed by [118]. To satisfy requirements for bang-bang behaviour, the
general OCP is reformulated such that the binary controls are presented linearly in the
system dynamics. Solutions in this case may require use of heuristics, e.g. rounding
up or a sum up rounding strategy, or algorithms such as Branch and Bound, when
singular arcs appear [118].

For the cleaning scheduling problem, reformulation is not necessary as the controls
involved already have linear presentation in the system. More importantly, the formu-
lation of this problem as an OCP facilitates the solution of the relaxed NLP problem
through the feasible path approach, obviating the need to discretise the system equa-
tions. This otherwise leads to a very large scale optimisation problem with a strongly
nonlinear system of equality constraints. This approach avoids failures of convergence
produced by direct solutions of MINLPs resulting from discretisation, such as in pre-
vious work of [45] and of [128]. Furthermore, it allows direct handling of nonlinear
models without approximation by linearisation, particularly in the case where fouling
kinetics may take a highly nonlinear form, e.g. in a dual layer fouling model when the
growth rates of the layers are functions of temperature [106].
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4.2 Problem formulation as an optimal control prob-

lem

The objective to be minimised is expressed as in Equation (1.12). The overall heat
transfer coefficient can be determined through rearrangement of Equation (1.2) and
rewriting it as:

Un =
Uc,n

1+Uc,nR f ,n
∀n ∈ NE (4.20)

The optimisation of the HEN maintenance scheduling problem is started from a clean
condition, i.e. U0,n =Uc,n. Through incorporation of the binary control variable, yn,p,
the linear and asymptotic fouling resistances in Equations (1.4) and (1.5) can be
rewritten as:

Ṙ f ,n = yn,pan ∀n ∈ NE, p ∈ NP (4.21)

R f ,n = R∞
f ,n

(
1− exp(−t

′
n/τn)

)
n ∈ NE (4.22a)

ṫ ′n = yn,p ∀n ∈ NE, p ∈ NP (4.22b)

As the HEN optimisation is started from a clean condition, the initial fouling resistance
is 0 for the first period of all heat exchangers. In consecutive periods, the initial fouling
resistance is related to the fouling resistance at the end of the previous period by
integration in time, and this value is allowed to be reset through a junction condition
when cleaning occurs. The junction condition for the linear fouling model is defined
in Equation (4.23) where the fouling resistance is reinitialised based on the control
variable value.

R f ,n(t initial
p ) = yn,pR f ,n(tend

p−1) ∀n ∈ NE, p = 2, . . .NP (4.23)

For the asymptotic fouling model, this junction condition is defined in Equation (4.24),
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where the elapsed time since the last cleaning is reinitialised based on the control
variable value.

t
′
n(t

initial
p ) = yn,pt

′
n(t

end
p−1) ∀n ∈ NE, p = 2, . . .NP (4.24)

Similarly, to the MINLP formulation, the NTU effectiveness method is also used in
this case. Through rearranging and rewriting of Equations (3.17) and (3.18), the
temperature of the cold and hot streams leaving each exchanger can be calculated,
via:

T out
c,n = T in

c,n +Pn
(
T in

h,n −T out
h,n
)

∀n ∈ NE (4.25)

T out
h,n = yn,p

[
(1−Pn)T in

h,n exp(−αn(1−Pn))+T in
c,n(1− exp(−αn(1−Pn)))

1−Pn exp(−αn(1−Pn))

]
+(1− yn,p)T in

h,n ∀n ∈ NE, p ∈ NP (4.26)

where the effectiveness term can be written from Equation (3.14) as:

αn =
UnAn

Fh,nCh,n
∀n ∈ NE (4.27)

and the ratio of capacity flow rates for each exchanger, Pn, can be expressed as shown
in Equation (3.15).

4.3 Problem solution methodology and implementa-

tion

The implementation is performed in MATLAB® R2016b with its Optimisation Tool-
box TM and Parallel Computing Toolbox TM [134]. It is noteworthy that this method-
ology cannot be implemented in current commercial simulators directly. For example,



4.4 Computational results and discussion 102

gPROMSTM [110], which is one of the most advanced commercial simulators, does
not facilitate multi-period optimal control problem solution, as it does not allow for
junction conditions.

The MATLAB® code works as a standard multi-period optimal control problem solver
using the feasible path approach (i.e. sequential approach) by linking together the Or-
dinary Differential Equation (ODE) solver ode15s with the optimiser fmincon. The
default settings for ode15s are used, with absolute tolerance of 10-6 and relative toler-
ance of 10-3. The optimiser fmincon is used with the Sequential Quadratic Program-
ming (SQP) algorithm option whilst keeping the remaining settings at their default
values: constraint, optimality and step tolerances of 10-6 using a forward finite differ-
ence scheme for the estimation of gradients. Gradient evaluations conducted via finite
differences are costly and require repeated simulations of the dynamic process model.

Additionally, since this problem is non-convex, multiple runs with different starting
points are performed and the best solution is reported. 50 starting points are gener-
ated through a random choice of 0 or 1 for all the control variables’ initial points, and
this is implemented using the randsample function in MATLAB®. A test was run
using the Parallel Computing ToolboxTM to compare the computational time between
parallelisation of the gradient evaluations versus parallelising a loop of multiple start-
ing points. On a 4GHz Intel Core i7, 16 GB RAM iMac (2014 model) running on
macOS Sierra, the latter was faster than the former. Parallelisation of a loop of 50
runs is performed using the parfor loop in MATLAB®. For cases where singular arcs
(i.e. fractional control values) appear in the optimal control solution found, a rounding
up scheme is employed.

4.4 Computational results and discussion

In this section, computational results for the MIOCP feasible path technique on each
of the case studies shown in Section 3.3 are presented. For case studies A and C, a
cleaning cost of £4000 is used. The energy maximisation scenario is not considered
here; however, this can be easily applied by setting the cleaning cost to £0, as done in
the previous chapter. Additionally, for case study D only the longer duration, where
NP = 36, is considered. For case studies A, B and C, the best solutions obtained are
compared in the schedules shown in Tables 4.4.1, 4.4.4, 4.4.5, 4.4.8 and 4.4.9 with
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the schedules obtained by [77] using the MILP formulation, while for case study D
the best solution is compared in the schedule shown in Table 4.4.9 with the schedule
obtained by [129] using the BTA algorithm. In the economic comparison, similarly to
the MINLP approach in Chapter 3, we fixed the solutions obtained by [77] and [129],
and evaluated them using our model. This is done because the full ODE nonlinear
model is used here, and hence the constraints of the model are completely satisfied.
This would be even more accentuated in the case of highly nonlinear fouling kinetics,
where linearisation would not necessarily satisfy the constraints of the full nonlinear
model, let alone produce the same objective function value. These are shown in Tables
4.4.2, 4.4.6, 4.4.10 and 4.4.13, where the best obtained solution is reported for each
of the cases. Solution metrics which include the worst cost out of 50 runs of different
starting points, mean cost, RSD around the mean value, number of iterations and
function evaluations are reported in Tables 4.4.3, 4.4.7, 4.4.11 and 4.4.14. In addition
for each case, the best and worst resultant computational time per run is reported in
these tables.

4.4.1 Case study A

Similar observations are seen as in Subsection 3.4.1:

(i) Due to the higher initial fouling rates of the asymptotic fouling case in compar-
ison to that of the linear case, the objective for the no-cleaning scenario is much
larger in the asymptotic case (e.g. £317k vs. £203k for the single unit case, as
shown in Table 4.4.2).

(ii) More cleaning actions are expected in the asymptotic fouling model case than
the corresponding linear one due to the early loss of exchanger efficiencies. This
is evident in Table 4.4.1 with the cleaning actions increasing from 3 to 5 in both
the MIOCP solution and the solution of [77].

(iii) Cleaning actions occur cyclicly (see Table 4.4.1). For linear fouling, the num-
ber of cleaning actions as well as the schedules are very similar; however, the
cleanings in our model are performed 1 month earlier than in [77]’s schedule.

Both linear and asymptotic fouling case solutions produced are bang-bang, where the
relaxed MIOCP is completely integer and no rounding is needed. This evident in
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Table 4.4.2 where the relaxed MIOCP and the MIOCP solutions are £103k and £226k
for the linear fouling and asymptotic fouling cases, respectively.

Due to the non-convexity of this problem, a number of local solutions with different
schedules are produced. For the linear case, the best cost value obtained is £103k
compared to the worst cost being £109k, as shown in Table 4.4.3. The difference
between the best and worst objective increases to £15k for the asymptotic behaviour
case (£226k to £241k, as shown in Table 4.4.3). The results are narrowly dispersed
about the mean, with a RSD value of 1.3% and 1.4% in the linear and asymptotic scen-
arios, respectively. The resource usage varies depending on the cleaning cost, fouling
type, method used and problem size. For all of these scenarios, a quick convergence is
achieved, where the total CPU time per run ranges between 15 to 48 CPU s and 9 to
47 CPU s for the linear and asymptotic cases, respectively, as shown in Table 4.4.3.

4.4.2 Case study B

For the four heat exchanger case, the schedule for the 12 month operating horizon
is the same as that of the [77] model, resulting in the same cost of £106k, as shown
in Tables 4.4.4 and 4.4.6; meanwhile, for the 18 month duration case, the schedules
differ although the number of cleaning actions per unit are the same (see Table 4.4.5).
No pattern is evident when the schedules are compared, with some cleaning actions
occurring earlier in some cases and later in others.

In terms of cost comparison for the case of 18 months operation, the cost of our schedule
is slightly less than that reported, with the difference in savings being <1.5%. This is
because of the existence of multiple local optima. It is noteworthy that [77]’s MILP
model is solved to global optimality whereas our model, being a non-convex MINLP
(MIOCP) model, is not. Despite this, we still obtain similar results and in some cases
even better.

For the 4 unit heat exchanger case over a 12 month length of operation, the resultant
savings from cleaning are 19.3% in the worst case compared to 21.5% in the best
case scenario (see Table 4.4.7). Therefore, similarly to Subsection 3.4.2, only a few
runs are needed to achieve a good solution, where the RSD is even less at only 0.9%
and 1.1% for the 12 month and 18 month horizons, respectively. Furthermore, the
difference between the maximum and minimum cost value is only £3k for the 4 unit
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Table 4.4.4: Cleaning schedule for the four heat exchanger case using MIOCP ap-
proach (duration of 12 months, linear fouling, cleaning cost = £4000)

HEX Time (months) No. of cleaning actions
1 2 3 4 5 6 7 8 9 10 11 12 + ,

1 0 0
2 0 0
3 ⊕ 1 1
4 ⊕ 1 1
cleaning actions: + MIOCP approach; , [77] 2 2MILP approach; ⊕ common

heat exchanger case over a 12 month operating horizon, and this difference is £10k for
the corresponding 18 month operating horizon scenario. The optimisation converges
within an average of 34 CPU s and 132 CPU s (≈2.2 CPU min) for the four heat
exchanger case over 12 months and 18 months duration, respectively (see Table 4.4.7).
In addition, it is evident from Table 4.4.7 that only a few iterations are required to
achieve convergence (a maximum of 12 and 22 major iterations of the SQP algorithm
for the 12 month and 18 month cases, respectively).

4.4.3 Case study C

For the 10 unit HEN case, the economic chart (Table 4.4.10) shows that the cost for
the linear fouling case is similar to that of [77] (£259k vs. £258k). In terms of the
schedules, although a general relation is seen in [77]’s schedule, where cleaning actions
increase in the asymptotic fouling case vs. the linear one (from 10 to 11 cleanings),
this drops down by 4 cleaning actions in our schedule, as shown in Tables 4.4.8 and
4.4.9. Only the last 3 units are cleaned here whilst there is a more distributed cleaning
of units in the schedule of [77], with half the units in the network undergoing cleaning
during the operational horizon. Consequently, the cost of their schedule is slightly less
than ours (£484k vs. £493k as shown in Table 4.4.10). This is a small difference of
just over 1.5% in savings (11.2% saving in the MIOCP solution compared to 12.8% in
[77]’s MILP one).

Both cases result in the solution of the relaxed models being completely integer, i.e. a
bang-bang control solution, indicated by ∗ in Table 4.4.10. Thus, the proposed round-
ing up scheme was not performed here. However, given the non-convex nature of this
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problem, a number of bang-singular solutions are obtained, where the objective values
are similar but different orders of cleaning actions are obtained.

Figure 4.4.1 shows the CIT profiles with and without cleaning over time for the linear
and asymptotic cases, respectively. For the cleaning scenario, the profile shown is
based on the best objective value using the MIOCP feasible path approach, i.e. the
schedules in Tables 4.4.8 and 4.4.9. Similarly to Figure 3.4.6, the CIT profiles in
Figure 4.4.1 show that fouling has a significant effect on the performance of the HEN,
where, for the asymptotic fouling model, there are a couple of instances where there
is a rapid decay in the CIT which reaches as low as 327°F, due to the unit with the
highest fouling rate (unit 10) being cleaned in the 4th, 8th and 12th months (see
Figure 4.4.1b and Table 4.4.9).

The range of objective values obtained in the 50 runs is quite narrow for the linear
case, as shown in Table 4.4.11, where the objective values only vary by a maximum
of £11k. For the 10 unit asymptotic HEN case study, this range widens up to £42k
from a minimum of £493k to a maximum of £535k. Hence, for less complex networks
and/or fouling models many runs at different starting points are not required to obtain
a good solution. In terms of the distribution of the objective values for the 50 runs
performed in each case, the results for each of the cases are narrowly dispersed around
the associated mean value, where the RSD of the local optima for each of the cases
considered lies in a narrow range of 1% and 1.5% (see Table 4.4.11). For the 10 unit
HEN case subject to asymptotic fouling, the worst run results in a saving of 3.6%
compared to 11.2% for the best solution achieved.

From Table 4.4.11, it can be seen that the resource usage is practical even for the worst
case: the 10 unit HEN with asymptotic fouling model required 942 CPU s (≈15.7 CPU
min), with the corresponding best case for this model being a modest 91 CPU s (≈1.5
CPU min).

4.4.4 Case study D

For the 25 unit HEN case study, [129] reported a lower objective associated with
the no-cleaning scenario representing <11% difference (see Table 4.4.13). This is
partly attributed to our model retaining the fouling expressions in their dynamic form,
which is more accurate. [129] discretised the system equations and thus assumed that
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(a)

(b)

Figure 4.4.1: CIT profile for the 10 unit HEN case using MIOCP approach: (a)
linear fouling, cleaning cost=£4k and (b) asymptotic fouling, cleaning cost=£4k
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variables, such as the temperatures of the hot and cold streams, are fixed within
each sub-period, which is not a good approximation for large complex networks with
extensive feedback of hot/cold streams. Temperatures in our model are interpreted
continuously over time. The difference in the objective for the no-cleaning scenario
in the 25 unit HEN is also attributed to the different numerical methods used to the
solve the equation sets.

The MIOCP solution yields a saving of 36.2% with an overall cost of £902k, whereas
the best reported cost produced by [129] using their BTA algorithm is £917k. The
associated schedule has a small number of cleaning actions in common with that of
[129]. Similarly to the 4 units over 18 months case study, no pattern is evident in
the cleaning actions for the [129] method. More cleaning actions are performed in our
schedule (37 vs. 34, as shown in Table 4.4.12). Some features in common are that
most exchangers are cleaned the same number of times as our schedule and certain
exchangers are not cleaned at all (e.g. exchanger 10).

Figure 4.4.2 shows the CIT profiles with and without cleaning over time for the case
of 36 months of operation. For the cleaning scenario, the profile shown is based on
the best objective value using the MIOCP feasible path approach, i.e. the schedule in
Table 4.4.12. Towards the centre of this profile, there are multiple instances where the
CIT steeply declines. This is due to the frequent cleanings (37 as per Table 4.4.12)
taking place towards the middle of the operating horizon. Units with the highest
fouling rates, e.g. 1A to 1D, as well as units which are important in the network
(based on their location), result in the most rapid decays in the CIT.

In terms of the solution metrics, out of the 50 different starting points performed,
the range of objective values varies by up to £28k, from £902k to £930k. Similarly to
previous cases, the RSD about the mean is small (only 0.8%, as shown in Table 4.4.14).
The resource usage becomes expensive for the 25 unit HEN case study, requiring
55,243 CPU s (≈15.3 CPU hr) with 38,603 function evaluations in the worst case.
This is due to the implementation approach whereby gradients are calculated using
finite differences in the MATLAB® optimiser. The computational cost is proportional
to the number of finite difference calculations required, with each finite difference
calculation requiring a full dynamic system simulation; for larger problems, this leads
to a significant computational cost. For example, for the single heat exchanger case
under linear fouling for an operating horizon of 24 periods, an average of 11 gradient
calculations is required with each one requiring 24 finite difference calculations, as
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shown in Table 4.4.3. This accounts for the average computational cost of 30 CPU s.
The case of the 25 unit HEN under linear fouling over 36 periods results in a much
larger average computational time of 39,611 CPU s (≈11 CPU hr). In this case, there
is an average of 31 gradient calculations each of them requiring 900 finite difference
calculations (see Table 4.4.14).

Future applications of the multistage optimal control approach will include the reduc-
tion of CPU time such that it becomes significantly smaller in larger and more complex
networks. This will be achieved through gradient calculation using sensitivity equa-
tions. Furthermore, future work will involve extending the range of case studies in
HENs to include pressure drop constraints, variable throughput, and optimisation of
operating conditions such as the consumption of utilities.

4.5 Critique

This chapter has demonstrated that the HEN cleaning scheduling problem as posed,
considering all potential cleaning actions, can be solved for large networks and larger
numbers of actions than previously achieved through the recognition of the task as an
OCP where the solutions fit bang-bang characteristics. Here, we review which aspects
of the scheduling problem, which may be encountered in practice, have been included
in the work, and those which have not, in order to identify the scope and potential for
further development.

Aspects which have been included are: the distribution of heat duties within networks
in response to cleaning actions, and their evolution; linear and nonlinear (asymptotic)
fouling behaviour; and constraints on the selection of combination of cleaning actions
representing pump-around targets, rundown temperature targets, flash temperature
maintenance, etc. Aspects presented by other workers which could be included, but
require more detailed modelling and therefore solution time, include the choice between
two types of cleaning actions [106] and temperature target constraints (e.g. desalter
temperature, see [60]).

Those not included can be grouped as follows:

(i) Nonlinearity arising from fouling phenomena.
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Figure 4.4.2: CIT profile for the 25 unit HEN case using MIOCP approach (36
months)
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Fouling rates are known to depend strongly on temperature, and will therefore
vary in an exchanger over time as fouling changes the temperature distribution
within a network. This level of detailed modelling can be incorporated in greedy
[63] and genetic algorithm approaches [114], at the expense of ensuring global
optimality, as well as in these total horizon approaches.

(ii) Nonlinearity arising from network dynamics.

Fouling deposits change the pressure drop across a heat exchanger as well as its
heat transfer performance. The network model presented here assumes constant
stream flow rates, but fouling in practice can give rise to flow redistribution
between parallel streams, as well as throughput reduction, as a result of pump-
ing limitations [62, 147]. Changes in flow rate affect both local fouling rates
and the objective function, and network models incorporating pressure drop and
throughput dynamics have been constructed. The relationship between foul-
ing resistance, pressure drop and throughput is not linear: depending on the
network configuration, it can feature a threshold followed by a quasi-parabolic
region. The heat duty in the objective function (Equation (1.12)) then contains
a product of two variables (Ḟc and CIT), and with an appropriate formulation,
this is amenable to the total horizon approach.

(iii) Uncertainty in fouling models and model parameters.

There is a conflict between aspects (i) and (ii) and (iii): the increased model complexity
in the former means that multiple condition testing, as required by (iii), will require
considerable resource. The desire to account for known, deterministic phenomena must
be balanced against the limitations to tractability introduced by those phenomena.
From an engineering perspective, the question to be asked is which essential features
of the problem must be included, at a suitable level of detail, to achieve the desired
outcome.

Aspects (i) and (ii) will require special reformulation to be incorporated in a suitable
level of detail for some practical cases with total horizon approaches, such as the one
described in this chapter. These approaches are, however, ideally suited for combina-
tion with algorithms for designing HENs, as they can generate estimates for expecting
optimal operating performance, including considerations of uncertainty in fouling (and
operating parameters).
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For the case of a crude PHT, the initial network design would yield temperature and
flow rate conditions for which fouling rates could be estimated. The operation of this
network, with cleaning schedules calculated for a portfolio of fouling rates, could then
be quantified (and key exchangers identified for design attention), and this information
used to update the design. [141] employed simulated annealing approaches to identify
fouling resistant preheat train designs, but did not incorporate cleaning aspects in
their consideration of network performance: the MIOCP solution methodology now
makes this a tractable problem and one worthy of attention.

Current network complexities may prohibit application of a full optimisation based
methodology for the scheduling of cleaning, and hence currently the preference in
industry is to use heuristic or greedy approaches. However, the contribution of this
chapter is to show that optimisation based methodologies can be general enough to
encapsulate both complexity and different operating modes and this will be explored
further in future work.

4.6 Chapter summary

An alternative methodology to the solution of the HEN cleaning scheduling problem
is presented here by recognising, for the first time, that this optimisation model is
in actuality a MIOCP which exhibits bang-bang behaviour. This proves to be an
efficient and robust approach and has been compared with 3 different methods: a
direct MINLP approach (OA), reformulation of the MINLP to an MILP model, and
a stochastic optimisation technique (BTA algorithm).

The multistage optimal control formulation using the feasible path approach does not
suffer from failures in convergence and is thus reliable, in contrast to the OA method
which fails to produce a solution in larger and more complex networks. The feasible
path approach as implemented is shown to be very competitive. Optimal solutions
reported here are all bang-bang in the controls. As a result, these particular case
studies did not require any heuristic approaches to be applied. In comparison to the
classical methods, economic values are similar and in some instances better than those
reported in the open literature. The cleaning schedules showed several conventional
characteristics, with key exchangers being cleaned more often. However, the allocation
of cleaning actions was often not systematic, i.e. unpredictable.
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This approach is not limited to HENs, and, in the next chapter, the feasible path
MIOCP methodology is applied to the optimisation of general scheduling mainten-
ance problems, specifically, scheduling the maintenance of reverse osmosis membrane
networks.



Chapter 5

Maintenance scheduling of reverse
osmosis membrane networks

This chapter will demonstrate that the methodology used to solve the HEN cleaning
scheduling problem can be generalised to other maintenance problems with decaying
performance processes. Here, the feasible path MIOCP approach is applied to determ-
ine the optimal regeneration schedules for RO module units in seawater desalination
and wastewater treatment systems. Similarly to the previous chapter, this scheduling
problem is formulated using a discretised interval analysis to allocate cleaning and
operating periods whilst keeping the state variables in their original continuous state.
An exponential decay in membrane permeability over time is considered. Results
show that the feasible path approach can be utilised for other maintenance scheduling
problems with declining performance characteristics.

5.1 Introduction and motivation

For the sustainability of human life fresh water is of paramount necessity. The demand
for fresh water has increased over the years at a rate of about 1% per year as a function
of population growth, economic development, changing consumption patterns, etc. In
addition, the industrial and domestic demand for water is increasing significantly, with
the vast increase in demand for water occurring in developing countries. Moreover,
due to climate change, long durations of drought are occurring, with drier regions
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becoming ever drier. Currently, approximately 3.6 billion of the world’s population
live in potentially water-scarce areas at least one month per year. Furthermore, water
quality has deteriorated over the years due to pollution, primarily affecting countries
with higher population and economic growth, as well as lack of wastewater manage-
ment systems [136]. Therefore, there is a great need to find alternative affordable
sources for fresh water in order to accommodate the current demand not only for
human consumption, but also for industrial use.

Desalination is an alternative way to provide a reliable and sustainable source of water
due to the large availability of seawater. [137] reported that the Persian Gulf area has
the biggest concentration of installed desalination capacity in the world, totalling
around 9.2 million megalitres per year, with 96% of this capacity located in the Gulf
Cooperation Council (GCC).

Seawater desalination involves the use of RO for the selective purification of seawater
from impurities such as ions, molecules and larger particles. This is achieved by raising
the hydrostatic pressure of the seawater above its osmotic pressure, thus reversing the
flow of seawater due to osmosis through a semi-permeable membrane. The osmotic
pressure is determined through the presence of ions such as Na+and Cl−. Pure water
emerges from the low pressure side, known as the permeate stream, whilst the reject
stream, known as brine, exits from the high pressure side. This is shown in Figure 5.1.1
where the symbols F , Co and Pr denote flow rate, concentration and pressure, respect-
ively, while subscripts f, r, perm, b and w indicate the feed, reject, permeate, bulk and
wall, respectively. The brine is rejected in a number of ways depending on location,
cost and environmental impact [124]:

(i) Discharge back into the sea.

(ii) Disposal to evaporation ponds.

(iii) Injection into deep subsurface wells.

Typically, RO networks feature RO modules, booster pumps and turbines for energy
recovery.

Fouling is a major issue in RO networks as it causes the decay in membrane per-
formance over time. Fouling in seawater desalination is caused by precipitation of
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Figure 5.1.1: Reverse osmosis process schematic

insoluble salts and the growth of bacteria on the membrane surface, which results in
a restriction to the flow of water through the membrane. Membranes are required to
be cleaned in order to regenerate their performance, so product requirements, such
as the concentration and flow rate demand are met. Cleaning of membranes can be
either mechanically, by introducing a high shear rate at the membrane surface through
periodical back-flushing, or chemically, by acid washing and using biocides to remove
precipitates and destroy bacterial growth, respectively [135]. This is costly and can
constitute a significant proportion of operating costs. Therefore, the economics of the
process can be immensely affected by cleaning considerations [124]. Currently, in prac-
tice simple greedy heuristics are used to determine the cleaning schedules for reverse
osmosis networks (RONs), which results in poor solutions that negatively impact the
process economics.
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5.2 Problem formulation as an optimal control prob-

lem

The effect of fouling is modelled through an exponential decay in the membrane per-
meability, Km, which is described as in Equation (5.1):

Km = Km0 exp
(
−t ′

τ

)
(5.1)

where Km0 is the permeability in the initial clean condition, i.e. when the membrane
is regenerated, τ is the decay constant and t ′ is the elapsed time since the last cleaning
which is defined as follows

ṫ ′ = 1 (5.2)

The type of membranes considered are DuPont B-10 hollow fibre RO modules and
their performance is modelled using the unified RO performance model (UROPM),
which was developed by [37] based on the Kimura-Sourirajan analysis (KSA) model
for RO desalination plants using a graphical analytical method. This model applies to
highly rejecting RO membranes, where Cow ≫Coperm. Using this model, the permeate
flow rate, Fperm, can be predicted via Equation (5.3), which features the membrane
permeability, Km, the number of RO modules, Nm, the membrane surface area, Sm,
the net pressure difference between the bulk operating pressure and that of the per-
meate streams, ∆Pr, the osmotic pressure difference between the membrane wall and
permeate streams, ∆π, and the membrane correction factor, γ .

Fperm = NmSmKm(∆Pr−∆π)γ (5.3)

The pressure difference across the membrane, ∆Pr, is calculated as shown in Equa-
tion (5.4):

∆Pr = Prb −Prperm (5.4)
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The bulk pressure can be defined as the arithmetic mean value of the operating pressure
on the high pressure side of the membrane, i.e. feed and reject streams, as shown in
Equation (5.5):

Prb =
Prf +Prr

2
(5.5)

Since the permeate operating pressure is much less than that of the bulk operating
pressure, Prperm can be ignored in Equation (5.4) with insignificant loss in accuracy.
Therefore, the pressure difference across the membrane can be simplified as

∆Pr =
Prf +Prr

2
(5.6)

The pressure drop across the membrane modules depends on the membrane type [152]
and is also a function of the membrane permeability. The increase in pressure drop as
a result of fouling will need to be compensated by increasing the feed pressure and/or
restricting the feed flow rate to meet the product quality requirements. For attaining
results that can be compared to published ones from case studies in literature, the
pressure drop across the membrane modules is assumed to be constant, as is shown in
Equation (5.7):

Prf −Prr = Prdrop (5.7)

The osmotic pressure difference across the membrane, ∆π, is expressed through Equa-
tion (5.8).

∆π = πw −πperm (5.8)

where the membrane wall osmotic pressure can be considered to be equal to the bulk
osmotic pressure, πb, as under normal operating conditions the membrane wall con-
centration, Cow, is only 2% greater than the membrane bulk concentration, Cob, [55].
Therefore, πw can be defined as the arithmetic mean value of the osmotic pressure of
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the solute on the high pressure side of the membrane:

πw =
πf +πr

2
(5.9)

The osmotic pressure,πf,r or perm, of each stream is linearly related to its concentration,
via

πf,r or perm = πoCof,r or perm (5.10)

In the above equation, πo is the osmotic pressure constant. Since the membrane
wall concentration, Cow, is normally one hundred times bigger than the permeate
concentration, Coperm, in highly rejecting membranes, Coperm can be ignored with only
minimal loss in accuracy of Equation (5.8). Hence, Equation (5.8) becomes

∆π =
πo(Cof +Cor)

2
(5.11)

For hollow fibre membranes, ∆Pr is not constant due to the small inner radius of the
fibres. Therefore, a correction factor, γ , which is a function of membrane geometry
must be included in order to take the mean overall driving force through the hollow
fibre membrane into account. This factor was developed by [6] and is defined in
Equation (5.12).

γ =
η

1+ 16Kmµvrol f ls
r4

i ρf

(5.12)

where µv is the dynamic viscosity of water, ro is the outer radius of the membrane
fibre, ri is the inner radius of the membrane fibre, l f is the membrane fibre length, ls
is the membrane fibre seal length, ρf is the density of water at the inlet, and η is the
membrane specific coefficient.

The density of the feed, i.e. seawater, can be calculated using Equation (5.13):

ρf = ρ
water +0.001Cof (5.13)
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where ρwater is the density of pure water (1000kg/m3) and Cof is the solute concen-
tration measured in ppm.

The membrane specific coefficient, η , is determined via

η =

tanh
[(

16Kmµvro
r2

i ρf

)0.5( l f
ls

)]
(

16Kmµvro
r2

i ρf

)0.5( l f
ls

) (5.14)

Using the UROPM, the permeate concentration can be predicted through Equa-
tion (5.15).

Coperm =
DmCob

Km(∆Pr−∆π)γ
(5.15)

where Dm is the solute transport parameter and the membrane bulk concentration,
Cob, is assumed to be equal to the arithmetic mean concentration across the high
pressure side, Coave. This assumption holds due to the low permeability of the hollow
fibre membranes and the relatively low permeate concentration which leads to an
insignificant concentration polarisation [38]. The arithmetic mean concentration across
the high pressure side is calculated via

Coave =
Cof +Cor

2
(5.16)

The flow and material balances within an RO membrane unit can be expressed through
Equations (5.17) and (5.18), respectively.

Ff = Fr +Fperm (5.17)

FfCof = FrCor +FpermCoperm (5.18)

The operating cost (OC) to be minimised is the total operating costs which consists
of the sum of the operating costs due to membrane cleaning or regeneration (MOC),
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the energy consumption by the booster pump (POC) minus the energy recovered by
the turbine (TOC). The general objective is shown in Equation (5.19):

OC = MOC+POC−TOC (5.19)

A network consisting of four RO membrane units is considered here (units A, B, C and D).
Using the time discretisation scheme outlined in Figure (1.2.4) and binary variables
yn,p, shown in Equation (1.11), the objective can be written as

OC =
NP

∑
p=1

[
CFC

(
1− yA,pyB,pyC,pyD,p

)
+

NU

∑
n=1

CVCNmn(1− yn,p)

]

+CEL

tF∫
0

(KWb(t)−KW t(t))dt ∀n, p (5.20)

In Equation (5.20), the membrane regeneration cost consists of: (i) a fixed cost, CFC,
for each period in which cleaning occurs despite the number of units (NU) being
cleaned in any period, and (ii) a variable cost per module, CVC. Hence, this cost
model boosts simultaneous cleaning actions in any given period rather than single
cleaning actions. KWb and KWt are the electrical duties of the booster pump and
turbine, respectively. The same value of electrical power cost, CEL, is associated with
both the booster pump and turbine.

The electrical duty of the booster pump is defined as follows

KWb =
Fb,in(Prb,out −Prb,in)

1000ηe f f ρb,in
(5.21)

where Fb,in is the booster pump feed mass flow rate, Prb,in is the booster pump inlet
pressure, Prb,out is the booster pump outlet pressure, ηe f f is the efficiency of the booster
pump, ρb,in is the density of seawater at the inlet of the booster pump, and the unit
1000 converts power from W into kW.
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The electrical duty of the turbine can be defined as Equation (5.22).

KWt =
Ft,inηe f f (Prt,in −Prt,out)

1000ρt,in
(5.22)

where Ft,in is the turbine feed mass flow rate, Prt,in is the turbine inlet pressure, Prt,out

is the turbine outlet pressure, ηe f f is the efficiency of the turbine, ρt,in is the density of
brine at the inlet of the turbine, and the unit 1000 is used to convert the power from
W into kW. In order to obtain results which can be compared with those in the open
literature, the pump and turbine are assumed to feature the same efficiency value.

The problem is reformulated as a MIOCP in which, for a network of membranes, the
membrane permeability of membrane unit n is calculated by rewriting Equation (5.1)
as follows

Kmn = Km0
n exp

(
−t ′n
τ

)
∀n ∈ NU (5.23)

where the elapsed time since the last cleaning action for membrane unit n is equivalent
to

ṫ ′n = yn,p ∀n ∈ NU, p ∈ NP (5.24)

As the RO membrane network optimisation is started from a clean condition, the initial
membrane permeability is Km0

n for the first period for all membranes. In consecutive
periods, the initial membrane permeability is related to the membrane permeability at
the end of the previous period by integration in time, and this value is allowed to be
reset through a junction condition when regeneration occurs. This junction condition
for the defined exponential fouling model is presented in Equation (5.25), where the
elapsed time since the last cleaning is reinitialised based on the control variable value.

t ′n(t
initial
p ) = yn,pt ′n(t

end
p−1) ∀n ∈ NE, p = 2, . . .NP (5.25)
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The flow of the permeate is rewritten from Equation (5.3) as

Fperm,n = NmnSmKmn(∆Prn −∆πn)γn ∀n ∈ NU (5.26)

where the pressure difference across the membrane is

∆Prn =
Prf,n +Prr,n

2
∀n ∈ NU (5.27)

the osmotic pressure difference across the membrane is

∆πn =
πo(Cof,n +Cor,n)

2
∀n ∈ NU (5.28)

the membrane geometric correction factor is

γn =
ηn

1+ 16Kmnµvrol f ls
r4

i ρf,n

∀n ∈ NU (5.29)

the membrane specific coefficient is

ηn =

tanh
[(

16Kmnµvro
r2

i ρf,n

)0.5( l f
ls

)]
(

16Kmnµvro
r2

i ρf,n

)0.5( l f
ls

) ∀n ∈ NU (5.30)

and the density of the water at the feed is

ρf,n = ρ
water +0.001Cof,n ∀n ∈ NU (5.31)

The permeate concentration for unit n is calculated by rewriting and combining Equa-
tions (5.15) and (5.16) as

Coperm,n =
Dm(Cof,n +Cor,n)

2Kmn(∆Prn −∆πn)γn
(5.32)



5.3 Similarities with HEN maintenance scheduling problems 137

The flow and material balances for membrane unit n are calculated by rewriting Equa-
tions (5.17) and (5.18), respectively, as

Ff,n = Fr,n +Fperm,n ∀n ∈ NU (5.33)

Ff,nCof,n = Fr,nCor,n +Fperm,nCoperm,n ∀n ∈ NU (5.34)

Operational constraints are added such that cleaning in consecutive periods is not
permitted. This is expressed in Equation (5.35):

yn,p + yn,p−1 ≥ 1 ∀n ∈ NU, p = 2, . . . ,NP (5.35)

Furthermore, all membrane units are set to be online, i.e. operating, during the first
period of the horizon.

yn,p = 1 ∀n ∈ NU, p = 1 (5.36)

Other operational constraints are added based on the product quality requirements,
e.g. overall flow rate and concentration of permeate stream leaving the membrane
network. This is shown in Equations (5.37) and (5.38):

Fperm > Fperm,min (5.37)

Coperm <Coperm,max (5.38)

5.3 Similarities with HEN maintenance scheduling

problems

This section highlights the similarities between the HEN maintenance scheduling prob-
lems and the RO membrane network maintenance problem.
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Both of the aforementioned problems feature decaying performance processes. The
HEN maintenance scheduling problem consists of a linear/asymptotic fouling model
in which the overall heat transfer coefficient declines over time. Similarly, the RO
membrane network maintenance scheduling problem consists of an exponential fouling
model in which the membrane permeability decays over time.

Additionally, in these scheduling maintenance problems a discretised binary control
variable, yn,p, is defined where a decision is made for which heat exchanger unit or RO
membrane unit, n, is cleaned and in which period, p, cleaning takes place. Fouling
is not the only necessary justification for cleaning of units; other reasons include
remaining within operational limitations and achieving product quality requirements.
For HEN maintenance scheduling problems this includes temperature targets, pump-
around targets, among others, whereas for the RO membrane network maintenance
scheduling problem there is a minimum required product flow rate and also a maximum
acceptable concentration for this product stream.

The most important feature that is similar in these problems is the appearance of
the control in relation to the system. In both of these problems, the control appears
linearly in the system thereby leading to bang-bang solutions. Thus, like the HEN
maintenance scheduling problems, the RO membrane network maintenance schedul-
ing problem can be solved as a MIOCP using a sequential feasible path approach.
Assuming not many singular arcs occur in the relaxed MIOCP optimal solution, a
simple rounding up scheme can be used as was performed in the HEN maintenance
scheduling problems.

5.4 Problem solution methodology and implementa-

tion

Similarly to the HEN maintenance scheduling problems in Chapter 4, the implement-
ation is performed in MATLAB® R2016b with its Optimisation ToolboxTM and Par-
allel Computing ToolboxTM [134]. The implementation details are repeated here from
Section (4.3) for the sake of clarity.

The MATLAB® code works as a standard multi-period OCP solver using the feasible
path approach (i.e. sequential approach) by linking together the ODE solver ode15s
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with the optimiser fmincon. The default settings for ode15s are used, with absolute
tolerance of 10-6 and relative tolerance of 10-3. The optimiser fmincon is used with the
SQP algorithm option whilst keeping the remaining settings at their default values:
constraint, optimality and step tolerances of 10-6 using a forward finite difference
scheme for the estimation of gradients. Gradient evaluations conducted via finite
differences are costly and require repeated simulations of the dynamic process model.

Additionally, since this problem is non-convex, 50 runs with different reasonable start-
ing points, which are generated using the randsample function in MATLAB®, are
performed and the best solution is reported. The implementation is performed on a
4GHz Intel Core i7, 16 GB RAM iMac (2014 model) running on macOS Sierra. Par-
allelisation of a loop of 50 runs is performed using the parfor loop in MATLAB®. For
cases where singular arcs appear in the control, the rounding up scheme is employed.

5.5 Case study description

In this section, the case study for the scheduling of cleaning actions in RO membrane
networks is introduced along with its associated data.

A RO membrane network from [124] is considered. The network compromises 94 Du
Pont B-10 RO modules arranged in 4 units, n, where n ∈ NU (NU = {A, B,C, D}) in
a 2 by 2 layout, as shown in Figure 5.5.2. The intake seawater salinity is assumed to
be constant at 35,000ppm and the input flow rate is fixed at 48m3/hr. Likewise, the
booster pump pressure is fixed at 62atm. The modules in each of the units are in a
parallel configuration and the number of modules per unit is Nmn = {27, 27, 20, 20}.
The number of periods considered is NP = 37 for this network.

For this case, the cleaning mode considered is perfect cleaning, the number of days of
operation, ∆tOP = 10days, and no downtime for regeneration is considered, so ∆tCL =

0days. Practically, this is not valid as imperfect cleaning, as well as downtime for
cleaning, will need to be considered. In the case where downtime for cleaning is taken
into account, the product quality requirements must be relaxed as the network is
unlikely to meet product specifications. This is because, when a unit is taken offline,
the permeate flow rate would be significantly reduced. Hence, the product flow rate
requirements will need to be reduced during any cleaning sub-period.



5.6 Computational results and discussion 140

Furthermore, the feed flow rate and operating pressure will need to be manipulated
between defined limits in order to maintain the required quality and flow rate. For the
purpose of achieving results that can be compared to published ones from case studies
in the open literature, perfect cleaning is assumed, the feed conditions are kept fixed
and no downtime is considered. To eliminate downtime, Equation (5.24) is modified
to Equation (5.39):

ṫ ′ = 1 ∀n ∈ NU (5.39)

In this study, both the density, ρ , and dynamic viscosity, µv, were assumed to be con-
stant instead of taking the average between the feed and brine solutions. This decision
was made as their values were not expected to vary by much. [124] showed that there
is an error of less than 7% when these parameters are kept constant for a two-stage RO
network. Furthermore, this reduces the nonlinearity of the model as the membrane
geometry correction factor, γ , becomes practically constant, and only changes slightly
with Km. Input data, solute characteristics, process constraints and cost parameters
for the investigated case study are shown in Table 5.5.1. Constraints shown in Equa-
tions (5.35) to (5.38) are imposed, where the network has to produce a minimum of
21.6m3/hr of product water with salinity below 570 ppm at all times. In addition, a
lower bound on the permeability, Kmn, is imposed such that the permeability is not
allowed to fall below 1.2×10-10 kg/sN for each of the units at all times.

5.6 Computational results and discussion

In this section, computational results for the MIOCP feasible path technique on the
case study shown in Section 5.5 are presented. The best solution obtained is com-
pared in the schedule shown in Table 5.6.2 with the schedule obtained by [124] using
an MINLP formulation. [124] solved this scheduling problem using a discrete and con-
tinuous optimiser, DICOPT++ under the GAMS environment. Their optimisation
solution technique is based on an OA/ER approach.

In the economic comparison, we fixed the solution obtained by [124] and evaluated
it using our model. This is shown in Table 5.6.3 where the best obtained solution
is reported for the case study. Solution metrics, which include the worst cost out of
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Table 5.5.1: Solute characteristics, process constraints, membrane characteristics
and cost parameters for the RO membrane network maintenance scheduling problem.
Adapted from [124].

Parameter Value
Solute characteristics:
πo [atm/ppm] 7.85×10-4

ρf [kg/m3] 1035
µv [kg/ms] 1.08×10-3

Process constraints:
Fperm,min [m3/hr] 21.6
Coperm,max [ppm] 570
Prdrop [atm] 0.22

Membrane characteristics:
Km0

n [kg/sN] 3×10-10

Dm [kg/m2s] 4×10-6

Sm [m2] 152
τ [day] 328
l f [m] 0.75
ls [m] 0.075
ro [m] 50×10-6

ri [m] 21×10-6

Cost data:
CEL [$/kWh] 0.07
CFC [$] 10,000
CVC [$] 450
ηe f f 0.65
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50 runs of different starting points, mean cost, RSD about the mean value, number
of iterations and function evaluations, are reported in Table 5.6.4. In addition, the
best and worst resultant computational time per run is reported in this table. The
optimum profiles of the membrane permeability, total permeate flow rate and total
permeate concentration are presented in Figures 5.6.3, 5.6.4 and 5.6.5, respectively.

Due to the non-convexity of this problem, a number of local solutions with different
schedules are produced. For the 50 runs performed, the local solutions produced are
nearly bang-bang and in some case entirely bang-bang, in which the relaxed solution
is completely integer. The best solution is produced during the first run where only
4 decision variables out of 148 are fractional. The relaxed MIOCP and the MIOCP
results for the best solution are $197k and $196k, respectively, as shown in Figure 5.6.3.
It is worth noting that, in this case, rounding of the relaxed MIOCP results in an even
better solution in which the cost is reduced by $1k.

Our best solution is the same as that produced by [124] in terms of not only economic
value but also the cleaning schedule, as shown in Table 5.6.2, where all cleaning actions
are common. The optimal schedule consists of a total of 7 cleaning actions, where
membrane units A, B and C are cleaned twice throughout the horizon while membrane
unit D is cleaned only once after 200 days of operation. Membrane unit C is also
cleaned after 200 days of operation as this model encourages simultaneous cleaning
actions.

Generally, cleaning actions are centralised towards the middle of the operating horizon,
where the first cleaning action does not take place until after 100 days of operation
and the final cleaning action takes place after 310 days of operation. This is because,
like the HEN maintenance scheduling problem, at the start of the operating horizon
there is little motive to clean a relatively clean unit and at the end of the horizon
there is insufficient time to recover losses or costs after cleaning. Cleaning only occurs
when fouling and process constraints force cleaning, in order to maintain operability
of the network. For example, the permeability of unit D reaches a low value, close
to 1.6 kg/sN at 200 days, as shown in Figure 5.6.3. Consequently, unit D is cleaned
in the next period to restore its permeability to a clean condition, bringing the total
flow rate of the permeate stream from 22m3/hr up to 23.8m3/hr (see Figure 5.6.4)
and reducing the salinity from 459ppm down to 433ppm (see Figure 5.6.5).

At the start of operation, due to the high permeability of the membrane units, a large
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permeate flow rate with low permeate salinity is produced, resulting in a total permeate
flow rate and concentration of 24.7 m3/hr and 435 ppm, respectively. This is shown
in Figures 5.6.4 and 5.6.5, respectively. With the continuous decay in the membrane
performance due to exponential fouling, the performance of the network deteriorates
over time, producing poorer permeate quality, which has a higher salinity and causes a
reduction in the product water flow rate from the first stage units, i.e. A and B. Thus,
this results in a higher flow rate to units in the second stage, i.e. units C and D, slightly
increasing the product water flow rate from the second stage. Consecutive cleaning
of the membrane units can restore their performance, as shown in Figure 5.6.3, where
the membrane permeability is restored to a clean state (3×10-10 kg/sN), and as shown
in Figure 5.6.4, where the total permeate flow rate produced is increased, as well as in
Figure 5.6.5, where the total permeate salinity is reduced to meet the product quality
requirements.

Similarly to our approach, [124] solved the problem by running multiple scenarios
through varying the initial conditions and selecting the solution that yields the lowest
objective function. However, [124] did not report how many runs were performed
and important details, such as the worst solution, mean value of the solutions, RSD,
etc., were also not reported. In terms of the solution metrics, out of the 50 different
starting points performed, the range of objective values varies by up to $50k from
$197k to $247k with a mean value of $224k, as shown in Table 5.6.4. The RSD about
the mean is larger than that of the HEN maintenance scheduling problems but still
relatively small (6.4% as shown in Table 5.6.4).

The resource usage per run varies significantly in this case study, requiring from 383
CPU s (≈6.4 CPU min) on a 2014 model iMac, with 290 function evaluations in the
best case scenario, up to 11,982 CPU s (≈3.3 CPU hr), with 4,502 function evaluations
in the worst case. [124] only reported the convergence time associated with their best
run which was 2,073 CPU s (≈35 CPU min) on a SunSPARC 10 workstation in
2002. As per Moore’s law [91], this reported convergence time corresponds to ≈32
CPU s in 2014. Thus, the resource usage is more expensive in the MIOCP approach
than that reported by [124] using the OA/ER method. This is because, as explained
in the previous chapter, optimisation gradients are calculated using finite differences
in the MATLAB® fmincon optimiser, whereas these are computed using sensitivity
equations in the GAMS DICOPT++ optimiser, which take less computational time.
From our results, the variation in CPU time between the best and worst cases is by
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Figure 5.6.3: Optimum operating profiles of the membrane permeability for the RO
membrane network.

more than 30-fold, therefore practically it is insufficient to only report the convergence
time for the best solution or that associated with a limited number of runs.

5.7 Chapter summary

In this chapter, it has been shown that the feasible path MIOCP approach is not lim-
ited to HEN maintenance scheduling problems, and can be generalised to other main-
tenance scheduling problems with decaying performance, where the control appears
linearly in the system. A 4 unit RO membrane network which undergoes exponential
fouling has been modelled and the schedule of cleaning actions has been optimised.
The solution through this approach was compared with that of an OA/ER method
and economic results were shown to be similar. The approach put forward in this
thesis proves to be a robust and reliable one, in which the model runs automatically
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Table 5.6.2: Cleaning schedule for the RO membrane network maintenance schedul-
ing problem using MIOCP approach.

Times (days) Membrane Unit
A B C D

10
20
30
40
50
60
70
80
90
100
110 ⊕
120 ⊕
130
140
150
160 ⊕
170
180
190
200
210 ⊕ ⊕
220
230
240
250
260
270
280 ⊕
290
300
310
320 ⊕
330
340
350
360
370

No. of cleaning actions 2 2 2 1
cleaning actions: + MIOCP approach; , [124]OA/ER approach; ⊕ common
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Table 5.6.3: Economic chart for the RO membrane network maintenance scheduling
problem using MIOCP approach. All values in k$

Case MIOCP model [124] model
MIOCP solution
(relaxed MIOCP)

[124] OA/ER
approach solution*

[124] solution

4 units, exponential
fouling, 370 days

196 (197) 196 197

* [124] OA/ER approach solution inputted into MIOCP model

Figure 5.6.4: Optimum operating profile of the total permeate flow rate for the RO
membrane network.
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Figure 5.6.5: Optimum operating profile of the total permeate concentration for the
RO membrane network.
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with ease.

The optimal solutions for the RO membrane network maintenance scheduling problem
are nearly bang-bang. Although this case study required the application of heuristic
approaches, the resulting MIOCP solution is very close to the relaxed one and in some
cases even better.

In the next chapter, an approach for the optimisation of the cleaning schedule in HENs
subject to fouling considering the impact of uncertainty is presented.



Chapter 6

Scheduling maintenance operations
with parametric uncertainty in HENs

In this chapter, a parametric uncertainty version of the MIOCP formulated models
from Chapter 4 is developed and applied to crude distillation unit PHTs situated in
oil refineries. The sensitivity of the overall cost due to fouling to the fouling rate
parameters, overall heat transfer coefficient in the clean condition and fuel cost are
examined. A multi-scenario approach coupled with a feasible path MIOCP approach
is considered for the optimisation of the cleaning schedule with parametric uncertainty.
This is implemented in two case studies: (i) a network consisting of 10 heat exchangers
considering both linear and asymptotic fouling and (ii) a larger network of 25 units
with linear fouling. Results show that for some parameters even small changes in value
can have a large impact on the overall cost due to fouling. Therefore, it is vital to
take parametric uncertainty into account during optimisation of cleaning schedules for
HENs.

6.1 Parametric uncertainty in HEN maintenance sche-

duling problems

The performance of heat exchangers is directly impacted by uncertainties in data.
Heat exchangers are typically over-designed by 70–80%, with 30–50% of which being
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attributed to fouling [3]. Fouling is subject to many parameters with inherent un-
certainty, which can be systematic (e.g. the form of the fouling model, and whether
it should incorporate deposit ageing [105]) and quasi-random (e.g. variation in pro-
cessed fluid composition over time [130]). Extending lab results to real systems is not
straightforward.

Recently, [143] reviewed the progress in quantitative fouling models for crude oil foul-
ing. They reported three areas where systematic uncertainty arises in models for
predicting the fouling rates in crude oil:

(i) The fouling models are semi-empirical and the relationship to crude oil compos-
ition and characteristics has yet to be established, so one cannot predict, for
example, whether linear or asymptotic fouling will be observed in a given unit.

(ii) Fouling rates for complex fluids such as crude oil are rarely studied under con-
trolled conditions. In practice, many operators use fouling models constructed
from reconciliation and interpretation of plant fouling data. These are subject
to uncertainties in measurement and calculation, so the accuracy of the fouling
rate data is low.

(iii) The relationship between fouling rates and crude composition (e.g. source, blend-
ing) is not currently known. In the majority of applications there is variation
in the fouling rate over time, due to changes in the crude being processed. This
is one of the reasons why plant fouling data, used to quantify fouling model
parameters, contain noticeable scatter and variation.

These areas mean that, in practice, scheduling calculations must be able to consider
a range of likely fouling rates.

Heat exchanger design is highly reliant on physical properties, e.g. density, specific heat
capacity, viscosity, thermal conductivity, etc. for estimating heat transfer coefficients
and therefore performing overall heat transfer coefficient calculations. Such physical
properties are susceptible to a certain degree of uncertainty due to measurement er-
rors, extrapolation and interpolation errors, estimation errors, etc. Furthermore, in the
standard methods for heat exchanger analysis, such as the NTU-effectiveness method,
the overall heat transfer coefficient is assumed to be constant and uniform throughout
the heat exchanger. In practice, this coefficient changes along the length of the heat
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Figure 6.1.1: Evolution of fouling resistance in a refinery heat exchanger over a
40 month period. Letters indicate when the unit was cleaned. Rigorous cleaning was
performed at A and E: less intensive cleaning at B, C and D. Dashed lines show simple
linear fits to data following cleaning. Reproduced from [59].

exchanger and is strongly dependent on a number of factors including the fluid thermo-
physical properties and the flow Reynolds number. In a viscous liquid heat exchanger,
the heat transfer coefficient can vary by 10-fold. This occurs when the flow pattern
encompasses laminar, transition and turbulent regions on one side, which leads to the
variation of the overall heat transfer coefficient [126]. [109] highlighted that experi-
mental and/or empirical data for heat transfer coefficients are usually subject to large
uncertainties of over 50% for overall heat transfer coefficients.

These features are evident in Figure 6.1.1, which shows a time series of the fouling
resistance calculated for an industrial shell-and-tube heat exchanger in fouling service.
The instantaneous fluctuations arise from the uncertainties in measurement, data,
collection and calculation. Pseudo-linear trends are evident between each cleaning
event, but the gradient, i.e. the fouling rate, differs in each case.

The scheduling of cleaning actions in HENs is highly dependent on fouling model
parameters and Figure 6.1.1 demonstrates how there can be considerable uncertainty
in these inputs.

Although general scheduling problems with uncertainty have been considered by sev-
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eral authors [35, 42, 58, 70, 83, 125], there has been limited work on HEN cleaning
scheduling with uncertainty. A search through the literature found a few publications,
such as [76, 78]. [76] extended a reformulated MILP model for the planning of HEN
cleaning in chemical plants to include uncertainty in the data. Although the fouling
coefficients, cleaning costs, plant turnaround horizons and the processing of different
crudes at different times are uncertain parameters, they only considered uncertainty in
energy prices. [76] used the standard two-stage stochastic programming model [7, 24]
and constructed the scenarios through sampling energy prices. The sampling was done
assuming normal distributions, with increasing standard deviation for similar months
of the year as the time horizon increases. They compared their stochastic solutions
to deterministic and heuristic solutions and discussed financial risk management op-
tions. [78] studied the effects of uncertainty in parameters, including the future fuel
price used in the furnace, the change of feedstock and the fouling rate of the crude
processed, on the cleaning schedule. They used a reformulated MILP model coupled
with a multi-scenario based approach and showed how the optimal cleaning schedule
can vary when different parameters are considered uncertain simultaneously. Further-
more, their results showed how the model helped determine the best cleaning schedule
to apply when risk is involved.

6.2 Solution procedures for the HEN maintenance

scheduling problem with parametric uncertainty

In this section, an overview of the different mathematical approaches used to describe
uncertain parameters is given. This is followed by a literature review of the method-
ologies commonly used for solving optimisation problems with uncertainty.

Several methods have been employed to describe uncertain parameters within optim-
isation models. Three of these methods were reviewed by [79]:

(i) Bounded form, which is applicable in cases where there is insufficient data to
make use of probabilistic models to describe the uncertain parameters of the
probability distribution. Here, the uncertain parameters, x, are described by an
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interval x ∈ [xmin, xmax], which describes the range of all possible realisations
of the uncertain parameters. xmin and xmax can be determined based on experi-
mental or historical data. In addition, market considerations can be taken into
account to determine these bounds.

(ii) Probabilistic approach, in which uncertainties are characterised by probabilities
associated with events. The probability distribution of the uncertain parameter
can be described by its probability distribution function if it is random and
discrete. However, if the uncertain parameter is random and continuous, the
probability distribution can be described by its probability density function, i.e.
the probability that the uncertain parameter falls within a particular interval.

(iii) Fuzzy description, in which a fuzzy set, based on possibility theory, is defined.
This set is a function which measures the degree of membership to a set. A
high value of the membership function implies a high possibility, whereas a
low value implies a poor possibility. Fuzzy sets are particularly useful for the
description of uncertain parameters in situations where probabilistic data are
not readily available. [4] highlighted that the use of the fuzzy description for
uncertain parameters is advantageous over the probabilistic approach as complex
integration schemes, which are needed for the continuous probabilistic models,
are not required. In addition, they highlighted that unlike fuzzy sets, discrete
probabilistic models need a large number of scenarios. Thus, the solution for
these models requires a high computational expense.

Numerous authors have reviewed the variety of approaches available for dealing with
uncertainty in optimisation problems, including stochastic programming with fixed
recourse, robust optimisation methods, fuzzy programming methods, sensitivity ana-
lysis, parametric programming, among others [4, 21, 30, 49, 79, 119].

6.2.1 Stochastic programming with fixed recourse

Stochastic based programming methods are programs in which data may be con-
sidered uncertain. Here, the deterministic model is transformed into a stochastic
model in which probabilistic distributions are used. The uncertainties are treated as
stochastic variables. Stochastic optimisation has an important assumption, i.e. the
true probability distribution of uncertain data must be known or estimated [47].
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The classical two stage stochastic based approach with fixed recourse was developed
by [7, 24]. Recourse based approaches are those in which some decisions or recourse
actions can be taken after uncertainty is disclosed. In the two stage stochastic based
approach with fixed recourse, decision variables are partitioned into two stages, where
the first stage decision variables are those that have to be taken prior to the experiment,
i.e. prior to the actual realisation of the uncertain parameters. The second stage
decision variables, also known as recourse decision variables, are those that can be
taken after the experiment, i.e. after the actual realisation of the uncertain parameters
[13]. The second stage decision variables can be interpreted as corrective measures or
recourse against any infeasibilities arising due to a particular realisation of uncertainty.
They can also be interpreted as an operational level decision following a first stage
decision and the uncertainty realisation. Furthermore, the two stage formulation can
be readily extended to a multistage formulation [119].

Two stage and multistage stochastic programming approaches with fixed recourse have
been applied to several areas in research and practice, such as the design of distrib-
uted energy systems under uncertainty [87, 146], scheduling of energy systems under
uncertainty [88, 99], multi-activity tour scheduling under uncertainty [113], lot sizing
and scheduling under uncertainty [58], petroleum refinery planning under uncertainty
[71], blood supply chain planning under uncertainty [149], among others.

6.2.2 Robust optimisation methods

Robust optimisation, which was developed by [96], is a proactive approach, whereby
goal programming formulations are integrated with a scenario based description of
problem data. This method generates a series of solutions that are progressively less
sensitive to realisations of the model data from a scenario set. Unlike stochastic
programming, robust optimisation involves the introduction of a penalty function for
dealing with uncertain data. The penalty function is used to penalise violations of the
control constraints under some of the scenarios. The control constraints are those that
involve the control decision variables, i.e. the variables that are subject to adjustment
once the uncertain parameters are realised.

The robust optimisation model takes a multi-criteria objective, where the first term
measures optimality robustness and the second term, which is the penalty term, is a
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measure of model robustness. The solution to the robust optimisation model is defined
as solution robust and model robust if it remains close to optimal for all scenarios of
the input data and if it remains almost feasible for all scenarios, respectively. The
multi-criteria objective involves a goal programming weight, which is introduced as a
product of the penalty function and is used to derive a spectrum of answers that trade-
off solution for model robustness [96]. Robust optimisation methods are advantageous
compared to stochastic programming as no assumptions are needed regarding the
underlying probability distribution of the uncertain data. Furthermore, it provides a
way of incorporating different attitudes toward risk [79].

Robust optimisation methods have been used in many applications, including: (i)
classical logistics problems, such as the capacitated vehicle routing problem with de-
mand uncertainty [132] and the robust traveling salesman problem with interval data
[90], (ii) supply chain problems, e.g. the determination of a joint optimal bundle of
price and order quantity for a retailer in a two stage supply chain under uncertainty
of parameters in demand and purchase cost functions [80], (iii) scheduling problems,
such as in the work of [145], who used robust optimisation and considered passenger
choice behaviours and uncertain market demands in inter-city bus scheduling models,
and in the work of [54], who considered robust scheduling and robustness measures
for the discrete time/cost trade-off problem, etc.

6.2.3 Fuzzy programming methods

Fuzzy set theory can be used to describe uncertainties in parameters in cases where
the information for describing the uncertainties in parameters in terms of probabilistic
models is unavailable. Fuzzy programming can be applied to optimisation problems
with uncertainty. In fuzzy programming, the random parameters and constraints are
considered as fuzzy numbers and fuzzy sets, respectively. A certain level of constraint
violation is allowed and the degree of satisfaction of the constraint is described by the
membership function of the constraint. Here, the objective functions are treated as
constraints, in which the lower and upper bounds of these constraints represent the
decision makers’ expectations [79].

Fuzzy programming approaches have been applied to scheduling problems with un-
certainty. For example, [92] applied fuzzy programming to a multi-objective patient
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appointment scheduling problem with uncertainty in a large hospital. The main aims
of this scheduling problem were to minimise the admission dates of patients along with
the duration of their hospital stay. They formulated this scheduling problem as an
integer linear programming model. Since a significant level of uncertainty exists in
terms of the amount of availability of clinical services in each time frame, [92] used
fuzzy programming to address this multi-objective patient appointment scheduling
problem. Based on their numerical results, they concluded that their proposed model
is a promising approach to the solution of these problems.

Also, [101] applied a fuzzy logic based decision support system to a parallel machine
scheduling/rescheduling problem in a pottery company with uncertain disruptions.
The uncertain disruption they considered was glaze shortage and this was defined
by the number of glaze shortage occurrences as well as the glaze shortage duration.
To deal with the glaze shortage disruption, [101] implemented a predictive–reactive
scheduling approach, which was defined by a two-step procedure: (i) The generation
of a predictive schedule that can absorb the impact of the glaze shortage duration
and (ii) the application of rescheduling to cases when the impact of the glaze shortage
disruption is too high. For the rescheduling decision making, they applied fuzzy rules
to determine when to reschedule and to determine which rescheduling method to use.
From their results, they showed that the predictive schedules have good performance
in the presence of uncertain disruptions. In addition, they showed that the fuzzy
inference generates appropriate rescheduling decisions. Other examples where fuzzy
programming methods have been applied include [19, 20, 40, 94, 148, 151], among
others.

6.2.4 Sensitivity analysis and parametric programming

An alternative way for dealing with uncertainty in optimisation problems is to use
analytical tools such as sensitivity analysis (SA) and parametric programming meth-
ods. SA is a useful tool to determine how a given model solution depends upon the
input parameters [79]. [79] described SA as an “important method for checking the
quality of a given model, as well as a powerful tool for checking the robustness and
reliability of any solution”. Online scheduling can be used to potentially correct the
offline scheduling problem solution by accounting for the actual real-time values. SA
in scheduling problems is useful for analysing the variation of the scheduling problem
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solution relative to the variations at the execution time of the estimated values used
by the scheduling policy [100]. SA has been applied to different applications by several
authors, including [51, 52, 65, 81, 121, 144], etc.

Similarly to SA, parametric programming is an analytical tool in which uncertainty in
optimisation problems can be accounted for. The foundation of parametric program-
ming is the consideration of how the solution of a constrained optimisation problem
changes as a function of a parameter [85]. Numerous researchers have contributed to
the single parametric programming case, i.e. how the solution of a constrained op-
timisation problem changes if a change occurs in a single parameter of the problem
formulation, such as [26, 66, 82, 116], among others. However, with the availability of
faster computational power and the development of efficient and robust optimisation
software, this enabled the consideration of multi-parametric programming, i.e. how
the solution of a constrained optimisation problem changes if changes occur in mul-
tiple parameters of the problem formulation [98]. The multi-parametric programming
formulation has been applied by numerous authors to a variety of problems, includ-
ing model predictive control [10, 48, 103], the integration of design, scheduling and
control [29, 102, 120], moving horizon estimation [27, 32, 112], bilevel programming
[31, 39, 117], etc.

6.3 Problem solution methodology and implementa-

tion

A multiple scenario based approach is proposed due to its simplicity and direct imple-
mentation to the MIOCP approach. Here, a simulation is used to evaluate a batch of
scenarios based on the level of uncertainty in each of the parameters in question. An
analysis of the impact of the number of scenarios produced in this scheduling clean-
ing problem on the cost due to fouling is conducted. The impact of uncertainty in
the fouling rate parameters, which includes the linear fouling constant, a, asymptotic
fouling resistance, R∞

f , and decay constant, τ , on the cost due to fouling is assessed.
The sensitivity of the cost due to fouling to the overall heat transfer coefficient in the
clean condition, Uc, and fuel cost, CE, are also analysed. This analysis is performed
by considering uncertainty in one parameter at a time whilst keeping the other para-
meters fixed. For the parametric uncertainty problem, uncertainty is considered in all
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of the aforementioned parameters simultaneously.

This multiple scenario approach gives a larger DAE system by stacking many realisa-
tions of the HEN multiperiod problem whilst applying the same control action among
all scenarios. In the simulation phase, the DAE integrator is overloaded while the
optimisation problem remains at the same size as a single scenario presented to the
optimiser. Here, the number of decision variables is the same among the multiple
scenarios which are solved using the feasible path approach. Hence, the optimiser is
presented with effectively an unconstrained problem, whether a single-scenario case is
used or a multiple-scenario case. The only constraints that may be present in these
formulations are the ones that are associated with the binary variables which are not
dependent on the number of scenarios. This highlights the potency of the proposed
feasible path methodology, in that it can be used effectively to tackle the maintenance
scheduling problem with uncertainty. This strategy is used for the sake of keeping
both the optimisation problem size under control, as well as contributing to reducing
computational time to a practical level. Computational time can be further reduced
owing to this approach being highly parallelisable.

Similarly to the previous chapter, the implementation is performed in MATLAB®

R2016b with its Optimisation Toolbox TM and Parallel Computing Toolbox TM [134].
The ODE solver, ode15s, and the optimiser fmincon are used with the SQP algorithm.
All other settings are kept at their default values. Gradient calculations are parallelised
using the Parallel Computing ToolboxTM and all case studies are performed on a 4GHz
Intel Core i7, 16 GB RAM iMac running on macOS Sierra. Single optimisations are
performed for each scenario, i.e. from a single starting point. Here, all the control
variables’ initial points are set to 1.

6.4 Modification of problem formulation

A similar formulation to the one presented in Section 4.2, where the problem is formu-
lated as an OCP, is used for the HEN maintenance scheduling problem with parametric
uncertainty along with a few modifications:

(i) Multiple scenarios, s, where s ∈ S, are created by generating random values
normally distributed about the mean of each of the uncertain parameters (ā,
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R̄∞
f , τ̄ , Ūc, and C̄E), i.e. a totally random sampling of space and not a systematic

one. This is achieved using the normrnd function in MATLAB®.

(ii) The objective function is modified from Equation (1.12) to Equation (6.1), where
this is now a summation of the mean operating cost from all scenarios and the
cleaning cost.

(iii) The same control action is applied to all scenarios as given in Equation (6.1).

Ob j =

 S

∑
s=1

tF∫
0

Cs
EQs

F(t)
η f

dt

/S+
NP

∑
p=1

NE

∑
n=1

Ccl(1− yn,p) (6.1)

6.5 Modification of case studies

Case studies C and D from Subsections 3.3.3 and 3.3.4, respectively are considered.
Modifications are implemented for the purpose of converting these problems from a de-
terministic case to one with parametric uncertainty. In this section, these amendments
are presented.

6.5.1 Case study C

Modifications for this case study are as follows: The linear fouling constant, a, asymp-
totic fouling resistance, R∞

f , decay constant, τ , and overall heat transfer coefficient in
the clean condition, Uc parameters, which appear in Table 3.3.3, are redefined as the
mean of the associated parameters with uncertainty (see Table 6.5.1). Furthermore,
the cost of fuel, CE, is redefined as the mean fuel cost with uncertainty, C̄E , and is
£2.93/MMBtu. A sensitivity analysis is performed in this case study for each of the
aforementioned parameters with uncertainty to evaluate the impact of the parameter
on the cost due to fouling. In this analysis, RSD values of 5, 10, 15 and 20% about
the mean of each of the examined parameters are considered, and 30 scenarios are
generated.

The impact of the number of scenarios on this scheduling problem is also assessed.
Here, the RSD for each uncertain parameter is set at 10%, while the range of 10 ≤
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S ≤ 50 scenarios is considered in this study. A single realisation for the scheduling of
HEN cleaning actions with parametric uncertainty with linear and asymptotic fouling
models is performed. In these cases, the RSD for each uncertain parameter is set at
10% and 30 scenarios are generated.

6.5.2 Case study D

Similarly, for case study D, the Uc and a parameters are redefined as shown in
Table 6.5.2. The mean furnace fuel cost with uncertainty, C̄E , is £0.34/kW day. A
single realisation for the scheduling of HEN cleaning actions with parametric uncer-
tainty is conducted, where the RSD of the uncertain parameters are set at 10% and
30 scenarios are produced.

6.6 Computational results

In this section, the following computational results are presented: (i) the sensitivity
analysis of the overall cost due to fouling to the parameters with uncertainty, and (ii)
the HEN maintenance scheduling optimisation with parametric uncertainty.

For the 10 unit HEN case study with linear fouling, numerical and graphical results
relating to the sensitivity analysis of the cost due to fouling to the linear fouling
constant, clean overall heat transfer coefficient, and fuel cost parameters are shown in
Tables 6.6.4 to 6.6.5, respectively, as well as in Figures 6.6.3 to 6.6.4, respectively. In
addition for this case, results for the impact of number of scenarios on the cost due
to fouling are shown in Table 6.6.3 and Figure 6.6.2. Numerical results consist of the
minimum, maximum, mean costs for each deviation in the parameter as well as the
associated RSD.

The same is applicable to the 10 unit HEN case with asymptotic fouling where the
results for the sensitivity analysis of the cost due to fouling to the asymptotic fouling
resistance, decay constant, clean overall heat transfer coefficient, fuel cost paramet-
ers and number of scenarios are shown in Tables 6.6.10 to 6.6.9, respectively, and
Figures 6.6.8 to 6.6.7, respectively.
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Table 6.5.2: Data for 25 unit HEN case with parametric uncertainty.

HEX Ūc
(kW m−2K−1)

ā×1011

(m²KJ−1)
1A 0.5 1.9
2A 0.5 1.8
3A 0.5 1.6
1B 0.5 1.9
2B 0.5 1.8
3B 0.5 1.6
3C 0.5 1.9
2C 0.5 1.8
3C 0.5 1.6
1D 0.5 1.9
2D 0.5 1.8
3D 0.5 1.6
4A 0.5 1.5
5A 0.5 1.1
6A 0.5 1.5
4B 0.5 1.6
5B 0.5 1.1
6B 0.5 1.5
7A 0.5 0.8
7B 0.5 0.8
8 0.5 0.8
9A 0.5 0.9
9B 0.5 0.9
10 0.5 0.6
11 0.5 0.6



6.6 Computational results 165

Results for the 10 unit HEN scheduling maintenance problem with parametric uncer-
tainty are shown in Table 6.6.7, Table 6.6.8 and Figure 6.6.6. Table 6.6.7 summarises
the best, worst, average costs as well as the associated weighted average cost, whereas
Table 6.6.8 shows the optimum cleaning schedule associated with the mean cost. Fig-
ure 6.6.6 displays the associated cost against probability curve. The same is applicable
to the 10 unit HEN case study with asymptotic fouling, where results are displayed in
Table 6.6.14, Table 6.6.15 and Figure 6.6.12, as well as the 25 unit HEN case study in
which the results are shown in Table 6.6.16, Table 6.6.17 and Figure 6.6.13.

6.6.1 Case study C

For the 10 unit HEN linear case, the deterministic cost, i.e. the overall minimised
cost without uncertainty, is £260k. Graphical results for the impact of the number of
scenarios on the overall cost due to fouling are shown in Figure 6.6.2, which displays
the spread of the cleaning costs from the mean value for each sample set. Symbol #
indicates the mean cost and is applicable to all figures in this section.

There is no direct correlation between mean overall cost due to fouling and number
of samples. Although the mean cost increases by £62k when the number of samples
are increased from 10 to 40, this value decreases by £8k from 40 to 50 samples (see
Table 6.6.3). This is because of the way in which the sample sets are generated. The
set of samples are independent from each other, i.e. they are not produced by the
addition of 10 more samples to the previous set repeatedly. Sample sets are created
in the same manner for the asymptotic fouling case. The costs due to fouling for each
sample set are broadly dispersed about their mean value. Here, the RSD ranges from
31.1% up to 53.7%, with the largest deviation corresponding to the least number of
samples. In addition, the difference between maximum and minimum cost value for
each sample set is large, ranging from £321k to £500k, as shown in Figure 6.6.2. The
total number of cleanings for the deterministic case is 11, while this ranges from 9 to
11 cleanings with a mode of 10 cleanings when the number of samples are varied (see
Table 6.6.3).

Results concerning the sensitivity of the cost due to fouling to the linear fouling con-
stant, a, show that the sensitivity of the cost is limited. Table 6.6.4 and Figure 6.6.3
show that the mean cost varies by only £4k when the deviation of the linear fouling
rate about its mean is increased from 5% to 20%.
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Moreover, the results are narrowly dispersed about the mean cost, where the vari-
ation in the RSD value lies within the range of 1.1% to 4%. The largest difference
between the maximum and minimum cost is £45.6k for the 20% deviation scenario.
The variation in the number of cleanings between each case is small, increasing from 10
cleanings for the 5% and 10% deviation scenarios to 11 for the 15% and 20% scenarios
(see Table 6.6.4).

Table 6.6.5 and Figure 6.6.4 show that the cost due to fouling is sensitive to CE; the
RSD rises from 4.7% to 15.5% as the deviation of the fuel cost parameter is increased
from 5% to 20%. Furthermore, the difference between the maximum and minimum
value of the overall cost for fouling increases by more than a factor of 3, from £47.4k
to £159k. The overall costs due to fouling are more scattered in this parameter than
the linear fouling rate. In this scenario, the mean cost due to fouling increases by
£12k, from £261k to £273k, when the deviation of the fuel cost parameter is increased
from 5% to 20%.

As expected, the maximum cost increases when the deviation of CE is increased. How-
ever, although the minimum cost decreases, from £157k to £67k, when the deviation
of CE is increased from 5% to 10%, this value increases to £109k when the deviation is
increased by 10% further. Generally, the minimum cost should decrease with increase
in deviation for well sampled scenarios. This is also observed in the results for the
sensitivity of the cost due to fouling to Uc (see Table 6.6.6) and in the asymptotic
case (see Tables 6.6.10 to 6.6.13) . In contrast to the impact of a on the schedule,
the number of cleanings here does not change with the level of deviation in CE and
remains constant at 10 cleanings.

Results for the sensitivity of the cost due to fouling to the overall heat transfer coeffi-
cient in the clean condition, shown in Table 6.6.6 and Figure 6.6.5, reveal that the cost
associated with the HEN cleaning problem is highly sensitive to this parameter. The
RSD increases from 17.2% to 60.7% when the deviation of this parameter is increased
from 5% to 20%. Moreover for each scenario, there is a large difference between the
maximum and minimum cost, e.g. over 7 times and over 16 times in the 10% and 20%
deviation scenarios, respectively. Generally, the number of cleaning actions required
here remain constant at 10 and only increases by 1 in the 20% deviation scenario.

For the case with parametric uncertainty, we show one realisation where each of a, Uc

and CE parameters are considered uncertain simultaneously. Here, we set the deviation
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of each of these parameters to 10% with a fixed number of samples, of 30. The results
in Table 6.6.7 show the P90, P50 and P10 cost values. The P90 is the cost level with
10% probability of exceeding and 90% probability to under run. This value is £397k,
as shown in Table 6.6.7, and is considered a conservative estimate of the cost due to
fouling. P10 is the cost value with 90% probability of exceeding and 10% probability
to under run; this more optimistic value is £168k. The P50 cost, also known as the
50th percentile, is the median and is £276k. In this case, this value is equivalent to the
mean cost due to fouling resulting in a normal curve, i.e. symmetrical distribution of a
cost against probability curve with no skew, as shown in Figure 6.6.6. The associated
full width at half maximum (FWHM) and standard deviation (SD) is £202k and £86k,
respectively. The weighted average cost is the sum of all outcomes times the respective
probabilities, and given that we have a normal curve, this value is very similar to that
of the P50, with only £1k difference, as shown in Table 6.6.7 . Overall, the anticipated
cost associated with this realisation is £277k ± 31.1% in comparison to a cost of £260k
without parametric uncertainty.

Table 6.6.8 compares the cleaning schedules for the linear fouling case with and without
parametric uncertainty. All exchangers except unit 2 are cleaned the same number of
times in each scenario. In the parametric uncertainty case, unit 2 is not cleaned at
all, while it is cleaned once in the deterministic case. There is a limited number of
common cleaning actions with only 1 for unit 10 during the 12th month. Moreover,
the parametric uncertainty cleanings actions sometimes take place earlier than the
deterministic ones and other times later. However, these cleanings are always within
2 periods of each other.

In terms of resource usage, convergence for the deterministic problem of the linear foul-
ing case required 446 CPU s (7.4 CPU min) over 13 SQP major iterations and 2,269
function evaluations, i.e. simulations. The corresponding problem with parametric un-
certainty required ≈36 times more resource usage totalling 16,160 CPU s (4.5 CPU hr)
with 16 SQP major iterations and 2,921 function evaluations.

Results for the effect of the number of samples on the cost due to asymptotic fouling
displayed in Table 6.6.9 show that the mean cost due to fouling varies from £476k to
£552k in comparison to £507k for the deterministic case. As with the linear fouling
case, due to the sample sets being independent from each other, there is no direct
relation between the mean cost due to fouling and the number of samples considered.
In this case, with every increase of 10 samples there is an increase in the mean cost
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Table 6.6.3: Effect of number of samples for 10 unit HEN case (linear fouling).

No. of samples 10 20 30 40 50
Mean cost [k£] 234 274 276 296 288
RSD [%] 53.7 34.3 31.1 34.6 36.0
Minimum cost [k£] 40.8 94.0 87.1 98.9 43.7
Maximum cost [k£] 523 519 408 546 544
No. of cleanings 9 10 10 11 10

Figure 6.6.2: Effect of number of samples for 10 unit HEN case (linear fouling).

Table 6.6.4: Sensitivity of linear fouling rate for 10 unit HEN case.

Deviation of linear fouling constant [%] 5 10 15 20
Mean cost [k£] 262 266 265 266
RSD [%] 1.1 2.2 3.2 4.0
Minimum cost [k£] 257 254 247 247
Maximum cost in [k£] 267 275 279 293
No. of cleanings 10 10 11 11
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Figure 6.6.3: Effect of linear fouling rate for 10 unit HEN case.

Table 6.6.5: Sensitivity of fuel cost parameter for 10 unit HEN case (linear fouling).

Deviation of fuel cost parameter [%] 5 10 15 20
Mean cost [k£] 261 266 265 273
RSD [%] 4.7 8.7 13.5 15.5
Minimum cost [k£] 235 215 180 196
Maximum cost [k£] 283 311 338 355
No. of cleanings 10 10 10 10

Table 6.6.6: Sensitivity of overall heat transfer coefficient parameter for 10 unit HEN
case (linear fouling).

Deviation of overall heat transfer coefficient parameter [%] 5 10 15 20
Mean cost [k£] 252 269 299 303
RSD [%] 17.2 38.2 43.0 60.7
Minimum cost [k£] 157 67.4 109 50.2
Maximum cost in [k£] 338 483 620 836
No. of cleanings 10 10 10 11
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Figure 6.6.4: Effect of fuel cost parameter for 10 unit HEN case (linear fouling).

Figure 6.6.5: Effect of overall heat transfer coefficient parameter for 10 unit HEN
case (linear fouling).
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Table 6.6.7: Cleaning scheduling with parametric uncertainty for 10 unit HEN case
(linear fouling).

Mean cost [k£] 276
RSD [%] 31.1
Minimum cost [k£] 87.1
Maximum cost [k£] 458
P90 [k£] 397
P50 [k£] 276
P10 [k£] 168
Weighted average cost [k£] 277

Figure 6.6.6: Cost versus probability curve for 10 unit HEN case (linear fouling).
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followed by a decrease in this value, e.g. the mean cost increases by £48k when the
sample size is increased from 10 to 20, but decreases by £17k when the sample size is
increased further to 30.

The overall costs due to fouling are scattered about their mean value (as shown in Fig-
ure 6.6.7) and consequently the RSD varies from 18.2% to up to 21.8% (see Table 6.6.9).
In comparison to the linear fouling case, these costs are less dispersed (21.8% max-
imum in this case vs. 53.7% maximum in the linear fouling case), with the largest
RSD corresponding to the largest number of samples. The total number of cleanings
for the deterministic case and parametric uncertainty case are similar (4 vs. a mode
of 3 cleanings).

There are a couple of similarities in the results concerning the sensitivity analysis of
asymptotic fouling parameters, the asymptotic fouling resistance and decay constant
with the linear fouling case:

(i) The sensitivity of the cost to the asymptotic fouling parameters is limited, such
that the mean cost only varies by £13k and £17k across a deviation of 5 to 20%
for the asymptotic fouling resistance and decay constant parameters, respectively
(shown in Tables 6.6.10and 6.6.11).

(ii) There is a tight spread of results about the mean cost (shown in Figures 6.6.8 and
6.6.9), where the RSD reaches a peak of 4.9% and 7% when the deviation of the
asymptotic fouling resistance and decay constant parameters are increased to
20%, respectively.

However, in contrast to the linear fouling constant, there is a larger variation in the
number of cleanings required for the asymptotic fouling resistance, where this ranges
from 3 up to 6 cleaning actions. This is not the case for the decay constant parameter
which shows a limited variation (3 to 4 cleaning actions).

Results for the effect of fuel cost parameter show that the overall cost is more sens-
itive to this parameter than the asymptotic fouling parameters. This is shown in
Table 6.6.12 and Figure 6.6.10, where the RSD varies up to 17.7% for a deviation
of 20% of the fuel cost parameter. In addition, there is an increase in the difference
between the maximum and minimum cost of more than 4 times, from £78.4k to £334k,
over the range of 5 to 20% deviation in the fuel cost parameter. Therefore, there is
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more of a spread in the cost than that associated with the asymptotic fouling para-
meters. Unlike the linear fouling case, a decrease in the mean cost is observed when
the deviation of the fuel cost parameter is increased from 5% to 20%. The number of
cleaning actions required is almost constant and only varies from 3 to 4 in this case.

Similarly to the linear fouling case, the HEN cleaning scheduling problem’s cost is
highly sensitive to Uc, in which the RSD is 36.4% when the deviation of this parameter
is increased to 20% (see Table 6.6.13 and Figure 6.6.11). Moreover, the difference
between the maximum and minimum cost is over 4 times in the 20% deviation scenario.
The number of cleaning actions required is almost constant (3 to 4).

Furthermore, similarly to the linear fouling case, for the asymptotic fouling problem
with parametric uncertainty, we show one realisation where each of the asymptotic
fouling, decay constant, overall heat transfer coefficient and fuel cost parameters are
considered uncertain simultaneously. Again, we set the deviation of each of these
parameters to 10% and fixed the number of samples to 30. The P90, P50 and P10
values are £666k, £502k and £401k, respectively, as shown in Table 6.6.14. In this
case the mean cost is £5k higher than the P50 value at £507k, resulting in a slightly
positively skewed cost against probability curve, as shown in Figure 6.6.12. As this
curve is only slightly skewed, i.e. has an almost symmetrical distribution, the weighted
average cost is equal to the P50 value. Hence, the expected cost associated with this
realisation is £502k± 20.6% in comparison to a cost of £507k without parametric
uncertainty.

The comparison of the cleaning schedules with and without parametric uncertainty in
Table 6.6.15 shows that only exchangers 9 and 10 are cleaned over the horizon of 18
months. Exchanger 9 is cleaned one less time in the parametric uncertainty case than
the deterministic one, giving a total of 3 cleaning actions in the former vs. 4 cleaning
actions in the latter. There are 2 common cleaning actions taking place just before
the midpoint of the horizon.

In terms of resource usage, convergence for the deterministic problem with asymptotic
fouling required 461 CPU s (7.7 CPU min) with 11 SQP major iterations and 2,055
function evaluations. Convergence for the parametric uncertainty case required 8,722
CPU s (2.4 CPU hr) with 7 SQP major iterations and 1,370 function evaluations.
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Table 6.6.9: Effect of number of samples for 10 unit HEN case (asymptotic fouling).

No. of samples 10 20 30 40 50
Mean cost [k£] 476 524 507 552 534
RSD [%] 18.2 16.9 20.6 17.2 21.8
Minimum cost [k£] 316 352 310 360 327
Maximum cost [k£] 635 718 732 795 769
No. of cleanings 4 3 3 3 4

Figure 6.6.7: Effect of number of samples for 10 unit HEN case (asymptotic fouling).

Table 6.6.10: Sensitivity of asymptotic fouling resistance for 10 unit HEN case.

Deviation of asymptotic fouling resistance [%] 5 10 15 20
Mean cost [k£] 508 499 511 512
RSD [%] 1.2 2.5 4.3 4.9
Minimum cost [k£] 493 475 454 457
Maximum cost [k£] 519 528 543 568
No. of cleanings 3 6 4 3
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Figure 6.6.8: Effect of asymptotic fouling resistance for 10 unit HEN case.

Table 6.6.11: Sensitivity of decay constant for 10 unit HEN case (asymptotic fouling).

Deviation of decay constant [%] 5 10 15 20
Mean cost [k£] 508 518 501 508
RSD [%] 1.5 3.0 5.4 7.0
Minimum cost [k£] 493 490 424 428
Maximum cost [k£] 522 546 552 581
No. of cleanings 4 3 4 3

Table 6.6.12: Sensitivity of fuel cost parameter for 10 unit HEN case (asymptotic
fouling).

Deviation of fuel cost parameter [%] 5 10 15 20
Mean cost [k£] 504 503 498 499
RSD [%] 4.3 9.7 13.9 17.7
Minimum cost [k£] 466 404 307 302
Maximum cost [k£] 545 590 641 620
No. of cleanings 4 4 3 4
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Figure 6.6.9: Effect of decay constant for 10 unit HEN case (asymptotic fouling).

Figure 6.6.10: Effect of fuel cost parameter for 10 unit HEN case (asymptotic foul-
ing).
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Table 6.6.13: Sensitivity of overall heat transfer coefficient parameter for 10 unit
HEN case (asymptotic fouling).

Deviation of overall heat transfer coefficient parameter [%] 5 10 15 20
Mean cost [k£] 523 530 587 515
RSD [%] 6.4 18.6 17.5 36.4
Minimum cost [k£] 462 347 411 218
Maximum cost [k£] 590 763 806 895
No. of cleanings 4 4 3 4

Figure 6.6.11: Effect of overall heat transfer coefficient parameter for 10 unit HEN
case (asymptotic fouling).

Table 6.6.14: Cleaning scheduling with parametric uncertainty for 10 unit HEN case
(asymptotic fouling).

Mean cost [k£] 507
RSD [%] 20.6
Minimum cost [k£] 310
Maximum cost in [k£] 732
P90 [k£] 666
P50 [k£] 502
P10 [k£] 401
Weighted average cost [k£] 502
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Figure 6.6.12: Cost versus probability curve for 10 unit HEN case (asymptotic
fouling).

6.6.2 Case study D

For the 25 unit HEN cleaning scheduling problem with parametric uncertainty, one
realisation is performed where each of the linear fouling constant, overall heat transfer
coefficient and fuel cost parameters are considered uncertain simultaneously. Again, we
set the deviation of each of these parameters to 10% and fixed the number of samples
to 30. The P90, P50 and P10 values are £1140k, £925k and £804k, respectively, as
shown in Table 6.6.16. The mean cost is £29k higher than the P50 value at £954k
resulting in the cost vs. probability curve being positively skewed, as shown in Fig-
ure 6.6.13. Here, the weighted average cost is £10k more than the P50 value. Hence,
the expected cost associated with this realisation is £935k± 16.3% in comparison to
a cost of £896k for the deterministic case.

The cleaning schedules for the case with and without parametric uncertainty displayed
in Table 6.6.17 differ. No pattern is observed here and cleaning actions occur earlier
for some units in the parametric uncertainty case in comparison to the deterministic
one and later for other units. There are only 6 common cleaning actions out of a total
of 39 and 37 cleaning actions for the parametric uncertainty and deterministic cases,
respectively.
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Table 6.6.16: Cleaning scheduling with parametric uncertainty for 25 unit HEN case.

Mean cost [k£] 954
RSD [%] 16.3
Minimum cost [k£] 654
Maximum cost in [k£] 1305
P90 [k£] 1140
P50 [k£] 925
P10 [k£] 804
Weighted average cost [k£] 935

Figure 6.6.13: Cost versus probability curve for 25 unit HEN case.

The resource usage is 29,173 CPU s (≈8.1 CPU hr) and 1.26MM CPU s (≈14.6
CPU day) for the deterministic and parametric uncertainty cases, respectively. For
the former case, convergence required 26 SQP major iterations and 23,696 function
evaluations. For the latter case, convergence required 38 SQP major iterations and
34,208 function evaluations.
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6.7 Discussion

The case studies in this chapter have demonstrated how finding that HEN cleaning
scheduling problems exhibit bang-bang control characteristics allows the uncertainty
associated with fouling behaviour and other input parameters to be incorporated in
scheduling calculations. This allows the impact of uncertainty in the fouling beha-
viour(s) to be quantified alongside the sensitivity of the results to the costing para-
meters that appear in the objective function. The former can be considered as a
‘natural’ variation, while the latter can vary simply as a result of budget and mar-
ket considerations. The latter are also likely to vary between installations owing to
differences in network configuration, availability of fuel and other factors.

The methodology presented here therefore allows the significance of each source of
uncertainty to be established and the sensitivity of these factors to be compared. For
instance, if the source of uncertainty in fouling model parameterisation is dominated
by the absence of reliable data, the results can be used to justify the cost of installing
new instrumentation. Likewise, if the schedule is strongly dependent on the costing
parameter, management decisions can be made on the basis of forecasts over the
anticipated operating period.

Furthermore, it is important to highlight that the methodology presented in this
chapter is based on an offline scheduling approach. Adaptive scheduling can be used
for the HEN cleaning scheduling problem, where estimates for the fouling data and
cost data can be refined in ‘real’ time, i.e. online, as one goes along. This will ulti-
mately reduce the impact of uncertainty in these parameters on the overall cost due
to fouling.

6.8 Chapter summary

In this chapter, for the first time a multiple scenario feasible path MIOCP approach
is developed and applied to the scheduling of cleaning actions in HENs which undergo
fouling. The parametric uncertainty model runs automatically with ease without any
failures. Results show that some parameters, specifically the cost of fuel and the
clean overall heat transfer coefficient, have a strong influence on the overall cost due
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to fouling in HEN maintenance scheduling problems. Consequently, comparison of
results with and without parametric uncertainty shows that there is a large difference in
economics for the deterministic case versus the parametric uncertainty one. Therefore,
it is imperative that uncertainty be taken into account during the optimisation of
schedules for HEN maintenance problems and all other general maintenance scheduling
problems where there is uncertainty in the data.

More detailed conclusions and further research directions are presented in Chapter 7.



Chapter 7

Conclusions and future work

7.1 Overview of research work in this thesis

The work presented in this thesis aims to investigate and solve maintenance scheduling
problems for HENs undergoing fouling and operating continuously over time. The aim
of this research is to:

• Design novel strategies for the multiperiod optimisation of scheduling cleaning
actions in the HEN maintenance problem.

• Demonstrate that the strategies developed can be generalised to other decaying
performance maintenance scheduling problems.

• Utilise stochastic programming techniques to deal with uncertainty in data which
directly impacts the HEN maintenance scheduling problem.

The aim was achieved through the following 3 keys points:

(i) Development of an efficient, robust feasible path MIOCP approach based on the
observation that the HEN maintenance scheduling problem exhibits bang-bang
behaviour (Chapters 3 and 4).

(ii) Application of this feasible path MIOCP technique to the scheduling of mem-
brane regeneration in RO membrane network problems (Chapter 5).
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(iii) Development of a stochastic programming version of the feasible path MIOCP
strategy through a multi-scenario approach in order to apply it to the scheduling
of HEN cleaning actions under parametric uncertainty (Chapter 6).

The detailed conclusions for each objective are summarised below.

7.2 Conclusions

7.2.1 Novel reliable techniques for the multiperiod HEN main-

tenance scheduling problem

To accomplish objective I in Chapter 2, a new method for the scheduling of HEN
cleaning actions with the use of the bang-bang behaviour observation is developed.
In Chapter 3, a direct MINLP approach was applied to a range of these case studies
situated in refinery crude oil PHTs using the IPOPT solver in Python: (i) a single
unit, (ii) four units in a serial arrangement, (ii) a 10 unit HEN, and (iv) a larger 25
unit HEN. Both linear fouling and asymptotic fouling models were considered here.
It was observed from the relaxed MINLP solution that these problems exhibit bang-
bang behaviour, and thus can be solved through simple heuristic strategies or B&B
techniques when many singular arcs occur and a rounding up approach is no longer
sufficient to obtain a good solution.

Bang-bang behaviour occurs when the decision variables appear linearly in the system
and is a characteristic of an OCP. As such, the HEN maintenance scheduling problem
is in actuality a MIOCP problem. Hence, in Chapter 4 this problem was solved for the
first time using a feasible path sequential MIOCP strategy coupled with a rounding up
scheme. Junction conditions were introduced, whereby the fouling resistance is reset
to zero when a unit is cleaned. This strategy was applied to all four aforementioned
HEN case studies located in refinery PHTs using the SQP optimiser in MATLAB®.

The quality of the solutions using this feasible path sequential MIOCP approach de-
veloped were compared with that of stochastic search approaches, specifically the BTA
algorithm, and direct MINLP as well as MILP strategies. It was shown that this tech-
nique is highly competitive as it is reliable, robust, and the model runs automatically
with ease. Additionally, convergence is achieved without any failures.
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7.2.2 Generalisation to other maintenance scheduling prob-

lems

To fulfil objective II in Chapter 2, the developed feasible path sequential MIOCP
approach with a rounding scheme was applied to the optimisation of membrane re-
generation schedules for RO membrane networks situated in desalination plants in
Chapter 5. In this case study, there is a decaying performance process whereby the
membrane permeability declines over time due to fouling which must be offset through
cleaning of the membranes in order to restore performance to meet operability and
product quality requirements.

Like the HEN maintenance scheduling problems, this RO membrane maintenance
scheduling problem exhibited bang-bang behaviour as the control variable also ap-
peared linearly in the system here. In addition, similarly to the HEN maintenance
scheduling problem, results here proved that this procedure is robust, efficient and
can be generalised to any other maintenance scheduling problem which possesses a
decaying performance process in which the control appears linearly in the system.

7.2.3 Extension of the technique to include a stochastic pro-

gramming version of the multiperiod HEN maintenance

scheduling problem

There is a significant level of uncertainty in some parameters appearing in the HEN
maintenance scheduling problem. These parameters directly impact the economics
associated with the overall costs due to fouling. Therefore, it is vital that uncertainty
be taken into account when optimising the schedules of HEN maintenance problems.
In order to achieve objective III from Chapter 2, a stochastic programming version
of the feasible path sequential approach is developed in Chapter 6 using a multiple
scenario approach. In this case, the original objective to be minimised is modified
whereby the overall objective is the mean of all scenarios investigated. The control
variable to be optimised is shared among all scenarios developed.

The optimisation of HEN maintenance scheduling under parametric uncertainty is
applied to two case studies situated in refinery PHTs: (i) a 10 unit HEN undergoing
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linear and asymptotic fouling, and (ii) a larger, more complex 25 unit HEN. In terms
of the economic results, the overall expected cost varied by up to just over 30% in
the worst case. Therefore, it is crucial that uncertainty in data is taken into account
when considering the scheduling of HEN maintenance problems, and in addition other
maintenance scheduling problems with decaying performance processes in which data
are highly uncertain.

7.3 Future work

7.3.1 Computational efficiency

In the majority of the work in this thesis, the SQP solver in MATLAB ® has been
used whereby optimisation gradients are calculated through a finite difference method.
In Chapter 4, it has been discussed that gradient evaluations conducted via finite dif-
ferences are costly and require repeated simulations of the dynamic process model.
The computational effort is proportional to the number of finite difference calcula-
tions needed and each finite difference calculation necessitates a full dynamic system
simulation. For large problems, this results in a significant computational effort.

Instead of obtaining gradients needed from the standard finite difference approxim-
ation, gradients can be computed using sensitivity equations. The advantage of this
procedure is that computation time can be markedly reduced. Moreover, the accuracy
and precision of gradient calculations can be increased further. [2] showed that the
gradient computational time can range from a 10-fold decrease for a simple model
when compared to a finite difference method, to a significant 100-fold decrease for a
complex model when compared to finite differences. The IPOPT solver in Python
utilises sensitivity equations for the computation of gradients. The computational
time taken for the 25 unit HEN maintenance scheduling problem was ≈15.3 CPU
hr in the worst case for the sequential approach in MATLAB® using finite differ-
ences for gradient calculations (shown in Chapter 4), whilst this was an average of
≈ 5 CPU s per run when using sensitivity equations for gradient calculations in the
direct MINLP technique in Python (shown in Chapter 3). Therefore, significant im-
provements in computation effort can be achieved by amending the methodology for
gradient computation in these problems.
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7.3.2 Extension to more practical scheduling maintenance mod-

els

In this thesis, it was important to benchmark solutions for HEN maintenance schedul-
ing problems against those in the open literature. As such, certain assumptions were
made to achieve results which can be compared economically with other solution meth-
odologies. In some cases, these assumptions are deemed impractical. For example, as
mentioned in Chapter 1, the cleaning cost is fixed and taken to be independent of the
exchanger size and duty. In practice this is not the case, as units with a larger heat
exchanger area take more effort to clean and will hence have a higher value in cost per
cleaning action.

Another example worth noting is concerned with the scheduling of RO membrane
network maintenance problems. In this case study, no downtime for regeneration
is considered for the sake of comparison purposes. Practically, a downtime would
be needed to be included when cleaning takes place and as such product quality
requirements would need to be relaxed. Otherwise, the network is unlikely to meet
the product specifications if downtime is to be considered.

Future work in this area includes the extension of these maintenance scheduling models
to more practical ones that are not limited to case studies from the open literature
which are in many ways artificially constrained.

7.3.3 Generalisation of feasible path approach to preventive

maintenance problems

Two applications have been explored and applied in this thesis: (i) HENs in PHTs
located in refineries and (ii) RO membrane networks in desalination plants. The
feasible path MIOCP approach is not limited to these two areas and can be applied to
other very important multiperiod maintenance scheduling problems which are based
on discrete decision making.

Applications can be extended to include the generator maintenance scheduling (GMS)
problem which addresses the issue of finding the optimal schedule for planned mainten-
ance outages of generating units in a power system. Regular preventive maintenance of
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generating units prolongs their life-expectancy, ensures safe operating conditions, and
reduces the risk of unplanned outages caused by their failure. There is an increased
difficulty of finding the optimal maintenance schedule for larger power systems, spe-
cifically with increasing demand for electricity leading to a highly constrained system
[122].

Additionally, the feasible path sequential approach can be generalised to the produc-
tion and scheduling of catalyst replacement in catalytic bed reactor processes with
decaying performance. [57] considered the maximisation of profit from these processes
based on selection of the best operating policies over time given the model for decay in
catalyst activity and production. Their optimisation model also ensured that seasonal
customer demands and minimum inventory levels were met.

Further work will consider the aforementioned areas as well as other applications.

7.3.4 Investigation of alternative methods for uncertainty quan-

tification

In this thesis, the HEN maintenance scheduling problem was extended to include
parametric uncertainty. A multi-scenario based MIOCP feasible path method was
proposed and applied to the HEN maintenance scheduling problem with uncertainty.
Alternative approaches for uncertainty quantification were reviewed in Section 6.2,
e.g. robust optimisation methods, fuzzy programming methods, among others. These
methods can be investigated further and applied to the HEN maintenance scheduling
problem with uncertainty. Results from these alternative approaches can be compared
to those produced from the proposed multiple scenario based MIOCP feasible path
approach in this thesis. This can be performed to determine the robustness and
efficiency of each investigated method.
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