4 research outputs found

    2D mapping using omni-directional mobile robot equipped with LiDAR

    Get PDF
    A room map in a robot environment is needed because it can facilitate localization, automatic navigation, and also object searching. In addition, when a room is difficult to reach, maps can provide information that is helpful to humans. In this study, an omni-directional mobile robot equipped with a LiDAR sensor has been developed for 2D mapping a room. The YDLiDAR X4 sensor is used as an indoor scanner. Raspberry Pi 3 B single board computer (SBC) is used to access LiDAR data and then send it to a computer wirelessly for processing into a map. This computer and SBC are integrated in robot operating system (ROS). The movement of the robot can use manual control or automatic navigation to explore the room. The Hector SLAM algorithm determines the position of the robot based on scan matching of the LiDAR data. The LiDAR data will be used to determine the obstacles encountered by the robot. These obstacles will be represented in occupancy grid mapping. The experimental results show that the robot is able to follow the wall using PID control. The robot can move automatically to construct maps of the actual room with an error rate of 4.59%

    Asymptotically minimal contractors based on the centered form;Application to the stability analysis of linear systems

    Full text link
    This paper proposes a new interval-based contractor for nonlinear equations which is minimal when dealing with narrow boxes. The method is based on the centered form classically used by interval algorithms combined with a Gauss Jordan band diagonalization preconditioning. As an illustration in stability analysis, we propose to compute the set of all parameters of a characteristic function of a linear dynamical system which have at least one zero in the imaginary axis. Our approach is able compute a guaranteed and accurate enclosure of the solution set faster than existing approaches.Comment: 19 page

    Guaranteed SLAM—An interval approach

    Get PDF
    This paper proposes a new approach, interval Simultaneous Localization and Mapping (i-SLAM), which addresses the robotic mapping problem in the context of interval methods, where the robot sensor noise is assumed bounded. With no prior knowledge about the noise distribution or its probability density function, we derive and present necessary conditions to guarantee the map convergence even in the presence of nonlinear observation and motion models. These conditions may require the presence of some anchoring landmarks with known locations. The performance of i-SLAM is compared with the probabilistic counterparts in terms of accuracy and efficiency
    corecore