1,510 research outputs found

    Grundy number on P4-classes

    Get PDF
    International audienceIn this article, we define a new class of graphs, the fat-extended P4 -laden graphs, and we show a polynomial time algorithm to determine the Grundy number of the graphs in this class. This result implies that the Grundy number can be found in polynomial time for any graph of the following classes: P4 -reducible, extended P4 -reducible, P4 -sparse, extended P4 -sparse, P4 -extendible, P4 -lite, P4 -tidy, P4 -laden and extended P4 -laden, which are all strictly contained in the fat-extended P4 - laden class

    Grundy dominating sequences on X-join product

    Get PDF
    In this paper we study the Grundy domination number on the X-join product G↩R of a graph G and a family of graphs R={Gv:v∈V(G)}. The results led us to extend the few known families of graphs where this parameter can be efficiently computed. We prove that if, for all v∈V(G), the Grundy domination number of Gv is given, and G is a power of a cycle, a power of a path, or a split graph, computing the Grundy domination number of G↩R can be done in polynomial time. In particular, our results for powers of cycles and paths are derived from a polynomial reduction to the Maximum Weight Independent Set problem on these graphs. As a consequence, we derive closed formulas to compute the Grundy domination number of the lexicographic product G∘H when G is a power of a cycle, a power of a path or a split graph, generalizing the results on cycles and paths given by Brešar et al. in 2016. Moreover, our results on the X-join product when G is a split graph also provide polynomial-time algorithms to compute the Grundy domination number for (q,q−4) graphs, partner limited graphs and extended P4-laden graphs, graph classes that are high in the hierarchy of few P4’s graphs.Fil: Nasini, Graciela Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Torres, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentin

    Compound Node-Kayles on Paths

    Get PDF
    In his celebrated book "On Number and Games" (Academic Press, New-York, 1976), J.H. Conway introduced twelve versions of compound games. We analyze these twelve versions for the Node-Kayles game on paths. For usual disjunctive compound, Node-Kayles has been solved for a long time under normal play, while it is still unsolved under mis\`ere play. We thus focus on the ten remaining versions, leaving only one of them unsolved.Comment: Theoretical Computer Science (2009) to appea

    Complexity of Grundy coloring and its variants

    Full text link
    The Grundy number of a graph is the maximum number of colors used by the greedy coloring algorithm over all vertex orderings. In this paper, we study the computational complexity of GRUNDY COLORING, the problem of determining whether a given graph has Grundy number at least kk. We also study the variants WEAK GRUNDY COLORING (where the coloring is not necessarily proper) and CONNECTED GRUNDY COLORING (where at each step of the greedy coloring algorithm, the subgraph induced by the colored vertices must be connected). We show that GRUNDY COLORING can be solved in time O(2.443n)O^*(2.443^n) and WEAK GRUNDY COLORING in time O(2.716n)O^*(2.716^n) on graphs of order nn. While GRUNDY COLORING and WEAK GRUNDY COLORING are known to be solvable in time O(2O(wk))O^*(2^{O(wk)}) for graphs of treewidth ww (where kk is the number of colors), we prove that under the Exponential Time Hypothesis (ETH), they cannot be solved in time O(2o(wlogw))O^*(2^{o(w\log w)}). We also describe an O(22O(k))O^*(2^{2^{O(k)}}) algorithm for WEAK GRUNDY COLORING, which is therefore \fpt for the parameter kk. Moreover, under the ETH, we prove that such a running time is essentially optimal (this lower bound also holds for GRUNDY COLORING). Although we do not know whether GRUNDY COLORING is in \fpt, we show that this is the case for graphs belonging to a number of standard graph classes including chordal graphs, claw-free graphs, and graphs excluding a fixed minor. We also describe a quasi-polynomial time algorithm for GRUNDY COLORING and WEAK GRUNDY COLORING on apex-minor graphs. In stark contrast with the two other problems, we show that CONNECTED GRUNDY COLORING is \np-complete already for k=7k=7 colors.Comment: 24 pages, 7 figures. This version contains some new results and improvements. A short paper based on version v2 appeared in COCOON'1
    corecore