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Grundy number on P4-classes 1

Júlio César Silva Araújo a,2 Cláudia Linhares Sales a,2

a Departamento de Computação - Universidade Federal do Ceará
Fortaleza, CE - Brazil.

Abstract

In this article, we define a new class of graphs, the fat-extended P4-laden graphs, and we show a
polynomial time algorithm to determine the Grundy number of the graphs in this class. This result
implies that the Grundy number can be found in polynomial time for any graph of the following
classes: P4-reducible, extended P4-reducible, P4-sparse, extended P4-sparse, P4-extendible, P4-lite,
P4-tidy, P4-laden and extended P4-laden, which are all strictly contained in the fat-extended P4-
laden class.
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1 Introduction

Given a graph G = (V, E), a k-coloring of G is an assignment of k colors to the vertices of G

in such a way that adjacent vertices have distinct colors. The chromatic number of G, χ(G),
is the minimum integer k such that G admits a k-coloring. The problem of determining
χ(G) is NP-hard [6]. Therefore, the evaluation of the performance of fast vertex coloring
algorithms is a relevant problem. The greedy coloring algorithm is a linear vertex coloring
algorithm. Given an order θ = v1, . . . , vn over V , the greedy algorithm to color the vertices of
G assigns to vi the minimum positive integer that was not already assigned to its neighbors
in the set {v1, . . . , vi−1}. A coloring obtained by an execution of this algorithm is usually
called as a greedy coloring.

The maximum number of colors of a greedy coloring of a graph G, over all the orders θ of
V (G), is the Grundy number of G and it is denoted by Γ(G).

Determining the Grundy number is NP -complete even for complements of bipartite graphs
[10]. In fact, given a graph G and an integer r it is a coNP -complete problem to decide if
Γ(G) ≤ χ(G)+r [10] or if Γ(G) ≤ r×χ(G) or if Γ(G) ≤ c×ω(G) [2], where c is a constant and
ω(G) is the size of a maximum clique of G. However, there are polynomial time algorithms
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to calculate the Grundy number of the following classes of graphs: cographs [4], trees [5] and
k-partial trees [9].

2 Fat extended P4-laden graphs

We start this section by introducing some definitions. Let G = (V, E) be a graph and S a
subset of V (G). We denote by G[S] the subgraph of G induced by S. We say that M is a
module of a graph G if, for every vertex w in V \M and every pair of vertices x and y in
M , either w is adjacent to both x and y or w is not adjacent to both x and y. The sets
V and {x}, for every x ∈ V , are trivial modules, the last one being called as a singleton

module. A graph is prime if all its modules are trivial. We say that M is a strong module

of G if, for every module M ′ of G, either M ′ ∩M = ∅ or M ⊂ M ′ or M ′ ⊂ M . The modular
decomposition is a form of decomposition of a graph G that associates with G a unique
modular decomposition tree T (G). The leaves of T (G) are the vertices of G and a set of
leaves of T (G) having the same least common ancestor in T (G) is a strong module of G. Let
r be an internal node of T (G), M(r) be the set of leaves of the subtree of T (G) rooted on r,
and V (r) = {r1, . . . , rk} be the set of children of r in T (G). If G[M(r)] is disconnected, then
r is called a parallel node and G[M(r1)], . . . , G[M(rk)] are its components. If Ḡ[M(r)] is
disconnected then r is called a series node and Ḡ[M(r1)], . . . , Ḡ[M(rk)] are the components
of Ḡ[M(r)]. Finally, if both graphs G[M(r)] and Ḡ[M(r)] are connected, then r is called
a neighborhood node and {M(r1), . . . , M(rk)} is the unique set of maximal strong proper
submodules of M(r). The quotient graph of r, denoted by G(r), is G[{v1, . . . , vk}], where
vi ∈ M(ri), for 1 ≤ i ≤ k. We say that r is a fat node, if M(r) is not a singleton module.

A graph is a spider if its vertex set can be partitioned into three sets S, K and R in such a
way that S is a stable set, K is a clique, all the vertices of R are adjacent to all the vertices
of K and to none of the vertices of S and there is a bijection f : S → K such that, for all
s ∈ S, either N(s) = f(s) (and it is a thin spider) or N(s) = K − f(s) (and it is a fat

spider).

A graph G is split if and only if it is {C5, C4, C̄4}-free, which is equivalent to say that V (G)
can be partitioned in two sets S and K such that S is a stable set and K is a clique. A pseudo-

split graph is defined as a {C4, C̄4}-free graph. Moreover, given a split graph G = (S∪K, E),
its vertex set can be partitioned into three disjoint sets S(G), K(G) and R(G) such that
S(G) is composed by all the vertices of S which are not adjacent to at least one vertex in
K, K(G) is the neighborhood of the vertices in S(G) and R(G) = V (G)\{S(G) ∪ K(G)}.

Giakoumakis [3] defined a graph G as extended P4-laden graphs if, for all H ⊆ G such that
|V (H)| ≤ 6, then the following statement is true: if H contains more than two induced P4’s,
then H is a pseudo-split graph. An extended P4-laden graph can be completely characterized
by its modular decomposition tree, as follows:

Theorem 2.1 ( [3]) Let G = (V, E) be a graph, T (G) be its modular decomposition tree and

r be any neighborhood node of T (G), with children r1, . . . , rk. Then G is extended P4-laden

if and only if G(r) is isomorphic to:

(i) a P5 or a P̄5 or a C5, and each M(ri) is a singleton module; or

(ii) a spider H = (S ∪ K ∪ R, E) and each M(ri) is a singleton module, except the one

corresponding to R and eventually another one which may have exactly two vertices; or

(iii) a split graph H, whose modules corresponding to the vertices of S(H) are independent

sets and the ones corresponding to the vertices of K(H) are cliques.



We say that a graph is fat-extended P4-laden if its modular decomposition satisfies the
Theorem 2.1, except in the first case, where G(r) is isomorphic to a P5 or a P̄5 or a C5,
but the maximal strong modules M(ri), 1 ≤ i ≤ 5, of M(r) are not necessarily singleton
modules.

3 Grundy number on fat extended P4-laden graphs

From now, let G = (V, E) be a fat-extended P4-laden graph and T (G) its modular decompo-
sition tree. Since T (G) can be found in linear time [8], we propose an algorithm to calculate
Γ(G) that uses a bottom-up strategy. We know that the Grundy number of the leaves of
T (G) is equal to one and we show in this section how to determine the Grundy number of
G[M(v)], for every inner node v of T (G), based on the Grundy number of its children.

First, observe that for every series node (resp. parallel node) v of T (G), the Grundy number
of G[M(v)] is equal to the sum of the Grundy number of its children (resp. the maximum
Grundy number of its children) [4]. Thus, we only need to prove that the Grundy number
of G[M(v)] can be found in polynomial time when v is a neighborhood node of T (G).

The following result is a simple generalization of a result due to Asté et al. [2] for the Grundy
number of lexicographic product of graphs:

Proposition 3.1 Let G, H1, . . . , Hn be disjoint graphs such that n = |V (G)| and let V (G) =
{v1, . . . , vn}. Let G′ be the graph obtained by replacing vi ∈ V (G) by Hi, in such a way that

there exist all the edges between the vertices of Hi and Hj, i 6= j, if and only if vivj ∈ E(G).
Then for every greedy coloring of G′ at most Γ(Hi) colors contain vertices of the induced

subgraph G′[Hi] ⊆ G′, for all i ∈ {1, . . . , n}.

Before presenting the next lemma, observe that a greedy k-coloring of G can be viewed as
a partition S = {S1, . . . , Sk} of V (G) in such a way that every vertex in Sj has at least one
neighbor in the color class Si, for all j > i, i, j ∈ {1, . . . , k}.

Lemma 3.2 Let v be a neighborhood node of T (G) such that G(v) is isomorphic to a P5

or a C5 or a C̄5, v1, . . . , v5 be the children of v and Γi be the Grundy number of G[M(vi)],
1 ≤ i ≤ 5. Then Γ(G[M(v)]) can be found in constant time.

Proof (Sketch) Without loss of generality, suppose that v1, . . . , v5 label the children of v

as depicted in Figure 1 and Γi = Γ(G[M(vi)]). In order to simplify the notation, denote by
θi an ordering over M(vi) that induces a greedy coloring with Γi colors, 1 ≤ i ≤ 5.

We calculate Γ(G[M(v)]) by verifying all the possible configurations for a greedy Γ(G[M(v)])-
coloring and by returning the greater value found between all the cases. Suppose that G(v)
is isomorphic to a P5. Let S = {S1, . . . , Sk} be a greedy Γ(G[M(v)])-coloring of G[M(v)].

We claim that if there exists a vertex u ∈ V (H1) colored by Sk, then Γ(G[M(v)]) = Γ1 +Γ2.
This fact holds because combining the observation that u has at least one vertex colored by
Si, for all i ∈ {1, . . . , k−1}, with the Proposition 3.1, we conclude that Γ(G[M(v)]) ≤ Γ1+Γ2.
On the other hand, if we consider any ordering θ over G[M(v)] that has starts with θ1 and
θ2, we see that the first-fit algorithm over this order will produce a greedy coloring with
at least Γ1 + Γ2 colors. Using the symmetry, we can also prove that if u ∈ V (H5), then
Γ(G[M(v)]) = Γ4 + Γ5.

All the other cases use similar arguments, that is, by finding an upper bound based on the
position of a vertex colored Sk and a lower bound based in an ordering over M(v). The cases



where G(v) is isomorphic to C5 or P̄5 are also proved by using similar arguments. 2

Fig. 1. Fat neighborhood nodes.
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Lemma 3.3 Let v be a neighborhood node of T (G) such that G(v) is isomorphic to a spider

H = (S ∪ K ∪ R, E), fr be its child corresponding to R, f2 be its child corresponding to

the module which has eventually two vertices and Γ(R) be the Grundy number of G[M(fr)].
Then Γ(G[M(v)]) can be found in O(V (G[M(v)])).

Proof (Sketch) If M(f2) is singleton module, then G[M(v)] is a spider. In this case, we
cannot have two colors Si and Sj , j > i, such that both contain only vertices of S. For
otherwise, since S is a stable set, the vertices colored Sj would not any neighbor colored Si,
a contradiction. Thus, Γ(G[M(v)]) ≤ 1 + |K|+ Γ(R). If R = ∅, then an ordering over M(v)
such that all the vertices of S come before the vertices of K induces a greedy coloring with
Γ(G[M(v)]) = 1+|K| colors. If R 6= ∅, we will prove that Γ(G[M(v)]) ≤ |K|+Γ(R). Observe
first that there is at least one color Si occurring in R. Consequently, Si does not occur in K.
Thus, there is no order over M(v) whose greedy coloring returns a color Sj containing only
vertices of S, because a vertex of S colored Sj would not be adjacent to a vertex colored Si.
On the other hand, if θR is an ordering that induces a greedy Γ(R)-coloring of R, then any
ordering over M(v) starting by θR induces a greedy coloring with at least |K|+Γ(R) colors.

The case where M(f2) is not a singleton module is proved using similar arguments. 2

If G(v) is a split graph H and the factors corresponding to vertices of S(H) are independent
sets and the ones corresponding to vertices of K(H) are cliques, then we can use the same
arguments of Lemma 3.3 observing that S, K and R correspond to S(H), K(H) and R(H),
respectively.

Theorem 3.4 If G = (V, E) is a fat-extended P4-laden graph and |V | = n, then Γ(G) can

be found in O(n3).

Proof. The algorithm calculates Γ(G) by traversing the modular decomposition tree of G

in a postorder way and determining the Grundy of each inner node of T (G) based on the
Grundy number of the leaves. The modular decomposition tree can be found in linear time,
the postorder traversal can be done in O(n2)-time and the Grundy number of each inner
node can be found in linear time on the number of vertices of the corresponding module,
because of Lemmas 3.2 and 3.3 and the results of Gyárfás and J. Lehel [4] for cographs. 2

Corollary 3.5 Let G be a graph that belongs to one of the following classes: P4-reducible,

extended P4-reducible, P4-sparse, extended P4-sparse, P4-lite, P4-extendible, P4-tidy, P4-laden

and extended P4-laden. Then, Γ(G) can be found in polynomial time.

Proof. According to definition of these classes [7], they are all strictly contained in the
fat-extended P4-laden graphs and so the corollary follows. 2

The complete proofs of the results in this paper can be found in [1].
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[2] Asté, M., F. Havet and C. Linhares Sales, Grundy number and lexicographic product of
graphs, in: Proceedings of International Conference on Relations, Orders and Graphs and their
Interaction with Computer Science (ROGICS 2008), 2008.

[3] Giakoumakis, V., p4-laden graphs: A new class of brittle graphs, Information Processing Letters
60 (1996), pp. 29–36.
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