5 research outputs found

    Grundy Coloring & Friends, Half-Graphs, Bicliques

    Get PDF
    The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order ?, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering ?, i.e., the maximum number of colors that the first-fit coloring requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring has been examined for its structural and algorithmic aspects. A brute-force f(k)n^{2^{k-1}}-time algorithm for Grundy Coloring on general graphs is not difficult to obtain, where k is the number of colors required by the most adversarial vertex ordering. It was asked several times whether the dependency on k in the exponent of n can be avoided or reduced, and its answer seemed elusive until now. We prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal under the Exponential Time Hypothesis, thus settling this question by the negative. The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open question by Panolan et al. [JCSS \u2717]. A natural follow-up question is, how the parameterized complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability on K_{t,t}-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward answering this question. The key combinatorial lemma underlying the tractability result might be of independent interest

    b-Coloring Parameterized by Clique-Width

    Get PDF
    We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This unifies and extends nearly all previously known polynomial-time results on graph classes, and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameterizations of this problem. We show that the problem is FPT when parameterized by the vertex cover number on general graphs, and on chordal graphs when parameterized by the number of colors. Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring problem within the same runtime bound. The running times of the clique-width based algorithms for b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis

    Minimum Stable Cut and Treewidth

    Get PDF
    A stable or locally-optimal cut of a graph is a cut whose weight cannot be increased by changing the side of a single vertex. Equivalently, a cut is stable if all vertices have the (weighted) majority of their neighbors on the other side. Finding a stable cut is a prototypical PLS-complete problem that has been studied in the context of local search and of algorithmic game theory. In this paper we study Min Stable Cut, the problem of finding a stable cut of minimum weight, which is closely related to the Price of Anarchy of the Max Cut game. Since this problem is NP-hard, we study its complexity on graphs of low treewidth, low degree, or both. We begin by showing that the problem remains weakly NP-hard on severely restricted trees, so bounding treewidth alone cannot make it tractable. We match this hardness with a pseudo-polynomial DP algorithm solving the problem in time (?? W)^{O(tw)}n^{O(1)}, where tw is the treewidth, ? the maximum degree, and W the maximum weight. On the other hand, bounding ? is also not enough, as the problem is NP-hard for unweighted graphs of bounded degree. We therefore parameterize Min Stable Cut by both tw and ? and obtain an FPT algorithm running in time 2^{O(?tw)}(n+log W)^{O(1)}. Our main result for the weighted problem is to provide a reduction showing that both aforementioned algorithms are essentially optimal, even if we replace treewidth by pathwidth: if there exists an algorithm running in (nW)^{o(pw)} or 2^{o(?pw)}(n+log W)^{O(1)}, then the ETH is false. Complementing this, we show that we can, however, obtain an FPT approximation scheme parameterized by treewidth, if we consider almost-stable solutions, that is, solutions where no single vertex can unilaterally increase the weight of its incident cut edges by more than a factor of (1+?). Motivated by these mostly negative results, we consider Unweighted Min Stable Cut. Here our results already imply a much faster exact algorithm running in time ?^{O(tw)}n^{O(1)}. We show that this is also probably essentially optimal: an algorithm running in n^{o(pw)} would contradict the ETH

    (In)approximability of Maximum Minimal FVS

    Get PDF
    We study the approximability of the NP-complete \textsc{Maximum Minimal Feedback Vertex Set} problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied problems of this type: \textsc{Maximum Minimal Vertex Cover}, for which the best achievable approximation ratio is n\sqrt{n}, and \textsc{Upper Dominating Set}, which does not admit any n1−ϵn^{1-\epsilon} approximation. We confirm and quantify this intuition by showing the first non-trivial polynomial time approximation for \textsc{Max Min FVS} with a ratio of O(n2/3)O(n^{2/3}), as well as a matching hardness of approximation bound of n2/3−ϵn^{2/3-\epsilon}, improving the previous known hardness of n1/2−ϵn^{1/2-\epsilon}. The approximation algorithm also gives a cubic kernel when parameterized by the solution size. Along the way, we also obtain an O(Δ)O(\Delta)-approximation and show that this is asymptotically best possible, and we improve the bound for which the problem is NP-hard from Δ≥9\Delta\ge 9 to Δ≥6\Delta\ge 6. Having settled the problem's approximability in polynomial time, we move to the context of super-polynomial time. We devise a generalization of our approximation algorithm which, for any desired approximation ratio rr, produces an rr-approximate solution in time nO(n/r3/2)n^{O(n/r^{3/2})}. This time-approximation trade-off is essentially tight: we show that under the ETH, for any ratio rr and ϵ>0\epsilon>0, no algorithm can rr-approximate this problem in time nO((n/r3/2)1−ϵ)n^{O((n/r^{3/2})^{1-\epsilon})}, hence we precisely characterize the approximability of the problem for the whole spectrum between polynomial and sub-exponential time, up to an arbitrarily small constant in the second exponent.Comment: 31 pages, 2 figures, ISAAC 2020, Preprint submitted to Journal of Computer and System Science

    Grundy Distinguishes Treewidth from Pathwidth

    Get PDF
    Structural graph parameters, such as treewidth, pathwidth, and clique-width, are a central topic of study in parameterized complexity. A main aim of research in this area is to understand the "price of generality" of these widths: as we transition from more restrictive to more general notions, which are the problems that see their complexity status deteriorate from fixed-parameter tractable to intractable? This type of question is by now very well-studied, but, somewhat strikingly, the algorithmic frontier between the two (arguably) most central width notions, treewidth and pathwidth, is still not understood: currently, no natural graph problem is known to be W-hard for one but FPT for the other. Indeed, a surprising development of the last few years has been the observation that for many of the most paradigmatic problems, their complexities for the two parameters actually coincide exactly, despite the fact that treewidth is a much more general parameter. It would thus appear that the extra generality of treewidth over pathwidth often comes "for free". Our main contribution in this paper is to uncover the first natural example where this generality comes with a high price. We consider Grundy Coloring, a variation of coloring where one seeks to calculate the worst possible coloring that could be assigned to a graph by a greedy First-Fit algorithm. We show that this well-studied problem is FPT parameterized by pathwidth; however, it becomes significantly harder (W[1]-hard) when parameterized by treewidth. Furthermore, we show that Grundy Coloring makes a second complexity jump for more general widths, as it becomes para-NP-hard for clique-width. Hence, Grundy Coloring nicely captures the complexity trade-offs between the three most well-studied parameters. Completing the picture, we show that Grundy Coloring is FPT parameterized by modular-width.Comment: To be published in proceedings of ESA 202
    corecore