12 research outputs found

    A review of point set registration: from pairwise registration to groupwise registration

    Get PDF
    Abstract: This paper presents a comprehensive literature review on point set registration. The state-of-the-art modeling methods and algorithms for point set registration are discussed and summarized. Special attention is paid to methods for pairwise registration and groupwise registration. Some of the most prominent representative methods are selected to conduct qualitative and quantitative experiments. From the experiments we have conducted on 2D and 3D data, CPD-GL pairwise registration algorithm [1] and JRMPC groupwise registration algorithm [2,3] seem to outperform their rivals both in accuracy and computational complexity. Furthermore, future research directions and avenues in the area are identified

    Registration of 3D Point Clouds and Meshes: A Survey From Rigid to Non-Rigid

    Get PDF
    Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole. Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization. Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques. We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends

    Group-wise similarity registration of point sets using Student’s t-mixture model for statistical shape models

    Get PDF
    A probabilistic group-wise similarity registration technique based on Student’s t-mixture model (TMM) and a multi-resolution extension of the same (mr-TMM) are proposed in this study, to robustly align shapes and establish valid correspondences, for the purpose of training statistical shape models (SSMs). Shape analysis across large cohorts requires automatic generation of the requisite training sets. Automated segmentation and landmarking of medical images often result in shapes with varying proportions of outliers and consequently require a robust method of alignment and correspondence estimation. Both TMM and mrTMM are validated by comparison with state-of-the-art registration algorithms based on Gaussian mixture models (GMMs), using both synthetic and clinical data. Four clinical data sets are used for validation: (a) 2D femoral heads ( 1000 samples generated from DXA images of healthy subjects); (b) control-hippocampi ( 50 samples generated from T1-weighted magnetic resonance (MR) images of healthy subjects); (c) MCI-hippocampi ( 28 samples generated from MR images of patients diagnosed with mild cognitive impairment); and (d) heart shapes comprising left and right ventricular endocardium and epicardium ( 30 samples generated from short-axis MR images of: 10 healthy subjects, 10 patients diagnosed with pulmonary hypertension and 10 diagnosed with hypertrophic cardiomyopathy). The proposed methods significantly outperformed the state-of-the-art in terms of registration accuracy in the experiments involving synthetic data, with mrTMM offering significant improvement over TMM. With the clinical data, both methods performed comparably to the state-of-the-art for the hippocampi and heart data sets, which contained few outliers. They outperformed the state-of-the-art for the femur data set, containing large proportions of outliers, in terms of alignment accuracy, and the quality of SSMs trained, quantified in terms of generalization, compactness and specificity

    Groupwise point pattern registration using a novel CDF-based Jensen-Shannon Divergence

    No full text

    Groupwise point pattern registration using a novel CDF-based Jensen-Shannon divergence

    No full text
    In this paper, we propose a novel and robust algorithm for the groupwise non-rigid registration of multiple unlabeled point-sets with no bias toward any of the given pointsets. To quantify the divergence between multiple probability distributions each estimated from the given point sets, we develop a novel measure based on their cumulative distribution functions that we dub the CDF-JS divergence. The measure parallels the well known Jensen-Shannon divergence (defined for probability density functions) but is more regular than the JS divergence since its definition is based on CDFs as opposed to density functions. As a consequence, CDF-JS is more immune to noise and statistically more robust than the JS. We derive the analytic gradient of the CDF-JS divergenc

    A Probabilistic Framework for Statistical Shape Models and Atlas Construction: Application to Neuroimaging

    Get PDF
    Accurate and reliable registration of shapes and multi-dimensional point sets describing the morphology/physiology of anatomical structures is a pre-requisite for constructing statistical shape models (SSMs) and atlases. Such statistical descriptions of variability across populations (regarding shape or other morphological/physiological quantities) are based on homologous correspondences across the multiple samples that comprise the training data. The notion of exact correspondence can be ambiguous when these data contain noise and outliers, missing data, or significant and abnormal variations due to pathology. But, these phenomena are common in medical image-derived data, due, for example, to inconsistencies in image quality and acquisition protocols, presence of motion artefacts, differences in pre-processing steps, and inherent variability across patient populations and demographics. This thesis therefore focuses on formulating a unified probabilistic framework for the registration of shapes and so-called \textit{generalised point sets}, which is robust to the anomalies and variations described. Statistical analysis of shapes across large cohorts demands automatic generation of training sets (image segmentations delineating the structure of interest), as manual and semi-supervised approaches can be prohibitively time consuming. However, automated segmentation and landmarking of images often result in shapes with high levels of outliers and missing data. Consequently, a robust method for registration and correspondence estimation is required. A probabilistic group-wise registration framework for point-based representations of shapes, based on Student’s t-mixture model (TMM) and a multi-resolution extension to the same (mrTMM), are formulated to this end. The frameworks exploit the inherent robustness of Student’s t-distributions to outliers, which is lacking in existing Gaussian mixture model (GMM)-based approaches. The registration accuracy of the proposed approaches was quantitatively evaluated and shown to outperform the state-of-the-art, using synthetic and clinical data. A corresponding improvement in the quality of SSMs generated subsequently was also shown, particularly for data sets containing high levels of noise. In general, the proposed approach requires fewer user specified parameters than existing methods, whilst affording much improved robustness to outliers. Registration of generalised point sets, which combine disparate features such as spatial positions, directional/axial data, and scalar-valued quantities, was studied next. A hybrid mixture model (HMM), combining different types of probability distributions, was formulated to facilitate the joint registration and clustering of multi-dimensional point sets of this nature. Two variants of the HMM were developed for modelling: (1) axial data; and (2) directional data. The former, based on a combination of Student’s t, Watson and Gaussian distributions, was used to register hybrid point sets comprising magnetic resonance diffusion tensor image (DTI)-derived quantities, such as voxel spatial positions (defining a region/structure of interest), associated fibre orientations, and scalar measures reflecting tissue anisotropy. The latter meanwhile, formulated using a combination of Student’s t and Von-Mises-Fisher distributions, is used for the registration of shapes represented as hybrid point sets comprising spatial positions and associated surface normal vectors. The Watson-variant of the HMM facilitates statistical analysis and group-wise comparisons of DTI data across patient populations, presented as an exemplar application of the proposed approach. The Fisher-variant of the HMM on the other hand, was used to register hybrid representations of shapes, providing substantial improvements over point-based registration approaches in terms of anatomical validity in the estimated correspondences

    Building models from multiple point sets with kernel density estimation

    Get PDF
    One of the fundamental problems in computer vision is point set registration. Point set registration finds use in many important applications and in particular can be considered one of the crucial stages involved in the reconstruction of models of physical objects and environments from depth sensor data. The problem of globally aligning multiple point sets, representing spatial shape measurements from varying sensor viewpoints, into a common frame of reference is a complex task that is imperative due to the large number of critical functions that accurate and reliable model reconstructions contribute to. In this thesis we focus on improving the quality and feasibility of model and environment reconstruction through the enhancement of multi-view point set registration techniques. The thesis makes the following contributions: First, we demonstrate that employing kernel density estimation to reason about the unknown generating surfaces that range sensors measure allows us to express measurement variability, uncertainty and also to separate the problems of model design and viewpoint alignment optimisation. Our surface estimates define novel view alignment objective functions that inform the registration process. Our surfaces can be estimated from point clouds in a datadriven fashion. Through experiments on a variety of datasets we demonstrate that we have developed a novel and effective solution to the simultaneous multi-view registration problem. We then focus on constructing a distributed computation framework capable of solving generic high-throughput computational problems. We present a novel task-farming model that we call Semi-Synchronised Task Farming (SSTF), capable of modelling and subsequently solving computationally distributable problems that benefit from both independent and dependent distributed components and a level of communication between process elements. We demonstrate that this framework is a novel schema for parallel computer vision algorithms and evaluate the performance to establish computational gains over serial implementations. We couple this framework with an accurate computation-time prediction model to contribute a novel structure appropriate for addressing expensive real-world algorithms with substantial parallel performance and predictable time savings. Finally, we focus on a timely instance of the multi-view registration problem: modern range sensors provide large numbers of viewpoint samples that result in an abundance of depth data information. The ability to utilise this abundance of depth data in a feasible and principled fashion is of importance to many emerging application areas making use of spatial information. We develop novel methodology for the registration of depth measurements acquired from many viewpoints capturing physical object surfaces. By defining registration and alignment quality metrics based on our density estimation framework we construct an optimisation methodology that implicitly considers all viewpoints simultaneously. We use a non-parametric data-driven approach to consider varying object complexity and guide large view-set spatial transform optimisations. By aligning large numbers of partial, arbitrary-pose views we evaluate this strategy quantitatively on large view-set range sensor data where we find that we can improve registration accuracy over existing methods and contribute increased registration robustness to the magnitude of coarse seed alignment. This allows large-scale registration on problem instances exhibiting varying object complexity with the added advantage of massive parallel efficiency
    corecore