
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



B U I L D I N G M O D E L S F RO M M U LT I P L E P O I N T S E T S

W I T H K E R N E L D E N S I T Y E S T I M AT I O N

steven mcdonagh

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2015



Steven McDonagh: Building Models from Multiple Point Sets with Kernel Density Estimation

© 2015



To Mum and Dad.

— Steven



LAY SUMMARY

The point set registration family of techniques involve automatically and accurately

aligning sets of matching points in space. These techniques are used to help solve many

computer vision related problems and consequently find usage in many important appli-

cations. In particular, point set registration can be considered one of the crucial stages

involved in the digital reconstruction of models of physical scenes and objects from real-

world depth sensor measurements. Object shape measurements, recorded from varying

points of view, result in multiple disparate point sets. The problem of aligning these

multiple point sets must be solved before full, watertight model reconstruction can be

performed. This constitutes a complex task that is imperative due to the large number

of critical functions that accurate and reliable full model reconstructions contribute to.

In this thesis we improve the quality and feasibility of model and environment re-

construction through the enhancement of multi-view point set registration techniques.

The thesis makes the following contributions: First, we demonstrate that employing

robust surface inference techniques to reason about the real-world surfaces that range

sensors measure allow us to mitigate measurement uncertainty and also to separate the

problems of model design and viewpoint alignment optimisation. Our surface estimates

provide a novel quality metric with which to inform the point set registration process

and thus aid view alignment. By estimating surfaces directly from sets of points and

performing experiments on a variety of point datasets we demonstrate that we have

developed an effective solution to the simultaneous multi-view registration problem.

We then focus on constructing a distributed computation framework capable of solv-

ing high-throughput computational problems. We present a novel computational model

that we call Semi-Synchronised Task Farming (SSTF), capable of modelling and sub-

sequently solving computationally distributable problems that benefit from both inde-

pendent and dependent distributed components and a level of communication between

process elements. We demonstrate that this framework is a novel schema for parallel

computer vision algorithms and evaluate the performance to establish computational

gains over serial implementations. We couple this framework with an accurate pre-
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diction model to provide a novel distributed-computation-time inference tool. This

framework proves appropriate for instantiating expensive real-world algorithms with

substantial parallel performance gains and predictable time savings.

Finally, we focus on a timely instance of the multi-view registration problem: modern

range sensors provide large numbers of viewpoint samples that result in an abundance

of depth data information. The ability to utilise this abundance of depth data in a feasi-

ble and principled fashion is of importance to many emerging application areas making

use of spatial information. We develop novel methodology for the registration of depth

measurements acquired from many viewpoints capturing physical object surfaces. By

defining registration and alignment quality metrics based on our surface inference frame-

work we construct an optimisation methodology that implicitly considers all viewpoints

simultaneously. We use a data-driven approach to consider varying object complexity

and guide large view-set alignment. By aligning large numbers of partial, arbitrary-

pose views we evaluate this strategy quantitatively on large view-set range sensor data

where we find that we can improve registration accuracy over existing methods and

contribute increased registration robustness to initial misalignment. This allows large-

scale registration on problem instances exhibiting varying object complexity with the

added advantage of massive parallel efficiency.

In summary, we propose novel view alignment methodology and practical routes

to solving all stages of the process when tackling large sets of sensor measurements

representing varying viewpoints of physical objects.
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ABSTRACT

One of the fundamental problems in computer vision is point set registration. Point

set registration finds use in many important applications and in particular can be con-

sidered one of the crucial stages involved in the reconstruction of models of physical

objects and environments from depth sensor data. The problem of globally aligning

multiple point sets, representing spatial shape measurements from varying sensor view-

points, into a common frame of reference is a complex task that is imperative due to

the large number of critical functions that accurate and reliable model reconstructions

contribute to.

In this thesis we focus on improving the quality and feasibility of model and envi-

ronment reconstruction through the enhancement of multi-view point set registration

techniques. The thesis makes the following contributions: First, we demonstrate that

employing kernel density estimation to reason about the unknown generating surfaces

that range sensors measure allows us to express measurement variability, uncertainty

and also to separate the problems of model design and viewpoint alignment optimisa-

tion. Our surface estimates define novel view alignment objective functions that inform

the registration process. Our surfaces can be estimated from point clouds in a data-

driven fashion. Through experiments on a variety of datasets we demonstrate that we

have developed a novel and effective solution to the simultaneous multi-view registra-

tion problem.

We then focus on constructing a distributed computation framework capable of solv-

ing generic high-throughput computational problems. We present a novel task-farming

model that we call Semi-Synchronised Task Farming (SSTF), capable of modelling and

subsequently solving computationally distributable problems that benefit from both

independent and dependent distributed components and a level of communication be-

tween process elements. We demonstrate that this framework is a novel schema for

parallel computer vision algorithms and evaluate the performance to establish compu-

tational gains over serial implementations. We couple this framework with an accu-

rate computation-time prediction model to contribute a novel structure appropriate for
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addressing expensive real-world algorithms with substantial parallel performance and

predictable time savings.

Finally, we focus on a timely instance of the multi-view registration problem: modern

range sensors provide large numbers of viewpoint samples that result in an abundance

of depth data information. The ability to utilise this abundance of depth data in a

feasible and principled fashion is of importance to many emerging application areas

making use of spatial information. We develop novel methodology for the registra-

tion of depth measurements acquired from many viewpoints capturing physical object

surfaces. By defining registration and alignment quality metrics based on our density

estimation framework we construct an optimisation methodology that implicitly con-

siders all viewpoints simultaneously. We use a non-parametric data-driven approach

to consider varying object complexity and guide large view-set spatial transform opti-

misations. By aligning large numbers of partial, arbitrary-pose views we evaluate this

strategy quantitatively on large view-set range sensor data where we find that we can

improve registration accuracy over existing methods and contribute increased regis-

tration robustness to the magnitude of coarse seed alignment. This allows large-scale

registration on problem instances exhibiting varying object complexity with the added

advantage of massive parallel efficiency.
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Part I

I N T RO D U C T I O N





1
INTRODUCTION

A fundamental objective of computer vision involves simulating the human visual sys-

tem and advancing the theory underlying artificial systems capable of extracting mean-

ingful information from light sensors and images. Biological visual perception plays a

hugely significant role in allowing humans to understand, interact with and navigate

in their surroundings. Humans are highly capable of performing natural tasks such as

recognising a familiar person, manipulating physical objects and moving within their

environment. These examples provide a selection of the many complex tasks that still

present difficult challenges for computers and autonomous systems. To illustrate why

these remain challenging, the type of visual system we aim to simulate should first be

well defined. A visual system is a collection of devices that transform measurements of

light into information about spatial and material properties of a scene. Such a system

contains visual sensors such as eyes in the case of the human or digital sensors (e.g.

cameras) in the case of the computer, and computational units such as the brain for

the human or the CPU for the digital system. While these sensors record the intensity

of light that hits the photosensitive cells (pixels in the case of digital cameras), the

computational units decipher the measured values to infer the characteristics of the

scene that is being observed.

We require models to interpret the captured measurements of light and to then derive

meaningful information from them. Such models are generally a simplified representa-

tion of the physical world. Relevant model classes include image formation models that

attempt to provide good explanations for the appearance of object surfaces and 3D

models that aim to provide a geometrical understanding of the perceived scene. It is

in this sense that building good 3D models of an observed scene provides a set of im-

portant challenges for computer vision. A large body of work and research has been
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4 introduction

carried out on this topic stretching decades, and continuing in recent years, however

the task constitutes a set of challenging problems that remain to be completely solved.

Depth information and global object shape can be acquired using depth sensing

systems and 3D scanners in a similar way that reflectance, illumination and positional

properties can be captured utilising 2D imaging devices and object movement can be

measured with motion capture devices. This thesis focuses on challenges relating to the

former of these, namely acquiring and measuring the 3D shape of real-world objects

using measurements of the real world obtained from depth sensors.

3D vision and perception is difficult even for humans in some instances. This can be

observed by e.g. considering the many well known examples of 3D optical illusions and

related visual phenomena. Even the healthy adult human brain is capable of making

mistakes and incorrect inferences relating to what is being perceived in a surrounding

3D environment. This reinforces the fact that designing computational 3D vision (i.e.

constructing algorithms that allow the computer to perceive the 3D world as a human

would) requires solving exceedingly difficult sets of interrelated problems. The motiva-

tion to undertake these challenges and the merit of finding good solutions is however

substantial. The topic of 3D vision is well reviewed in [165] with an overview of practical

computer vision based applications provided by [264]. Modern and thorough treatments

of computer vision topics are given by several authors (see e.g. [96, 251, 93]).

1.1 vision and 3d modelling

Two dimensional images alone are inadequate to understand the full complexity of

our environment. Reasoning about the 3D geometrical information contained in an

environment allows for more complete explanations of objects that exist in a scene

and a more detailed understanding of components that objects consist of. It is well

understood that observing objects from varying viewpoints or illumination can change

object appearance subtly or indeed drastically. Using only 2D image observations, it can

be difficult to accurately obtain global and local object attributes such as position, size,

shape and additional fine detail. However, in the case of humans, by simply handling

or touching an object it often becomes possible to infer 3D object shape and facilitate

more complex tasks e.g. object recognition and classification. The addition of simple

tactile modes often allow humans to naturally conceptualise and infer a 3D model
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(object representation) purely from the sensing of shape. It is by combining both visual

observations and 3D object models that humans are able to interpret their physical

surroundings. For both natural and autonomous visual systems to be efficient, it is

thus essential to have 3D models of the environment.

The pipeline that produces 3D models from images is often divided into the steps of:

(1) information extraction involving the extraction of 3D information from 2D observa-

tions. Extracted information typically takes the form of 3D points in space (coordinates)

or surface normals and (2) modelling where the task is to fuse all previously extracted

3D information into a compact 3D representation (model) of observed objects or scenes.

Digital 3D models typically take the form of e.g. meshes, clouds of points, a 3D grid of

voxels or implicit surfaces. Algorithmic pipelines used to produce such 3D models have

proved successful and useful tools in a large and varied selection of application areas.

Examples include:

• Reverse engineering

• Face and gesture recognition

• e-Heritage

• Industrial quality control

• Autonomous vehicles

• Medical image analysis

To briefly characterise these examples; reverse engineering of object shape allows the

measurement and analysis of geometric form enabling tasks such as distance measure-

ment, symmetry checking and deformation control. By using 3D models to understand

the structure of objects, improved production quality can be obtained [92, 269]. Im-

provements have also been made to the quality and robustness of face and gesture

recognition when dealing with complex backgrounds and changes in appearance by

utilising object shape (e.g. [1]). The additional application of e-Heritage [20, 132] in-

volves digitally preserving objects of important cultural heritage value. The loss and

deterioration of valued historical objects can be mitigated by capturing object shape

and enabling digital preservation in areas where objects are deteriorating or facing

destruction due to e.g. natural weathering, disaster or war.
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The further example application area of quality control involves e.g. minimising con-

struction defects. Such defects, experienced during object construction, are often costly

yet preventable. 3D models are now commonly utilised for expansion and renovation

projects in many construction sectors and quality control [6]. The tasks of spatial rea-

soning for e.g. autonomous driving and vision in hostile environments [46, 47] have

additionally received much attention of late, especially from the robotics community

with organisations and competitions such as the DARPA grand challenges [38], spurring

research in the field. Sensing and localisation capabilities constitute one of the main

challenges in this domain and therefore reconstructing accurate environment geometry

is again of key importance.

In medical imaging domains, 3D models are able to aid many image analysis tasks and

have proven to be effective in segmenting, tracking, matching and classifying anatomic

structure (e.g. [177]). Furthermore, if accurate 3D models can be constructed in this

domain, they are able to support intuitive interaction, allowing medical scientists and

practitioners to exercise their image interpretation expertise enabled by additional spa-

tial information and models [179].

In summary there are many contemporary application areas where successfully build-

ing and reasoning about geometric models is a driver of novel work and are of prime

importance. While such modelling techniques prove useful, accurately constructing a

digital 3D scene or object by hand is both time consuming and difficult. Automating

the 3D modelling pipeline is of key significance for the computer vision community

and has accordingly attracted much interest that we will go on to survey in detail, in

Chapter 2.

A central component of automating the digital 3D object reconstruction pipeline, for

use in the highlighted fields, is the automated fusion of the extracted 3D information

into compact models. In practice this typically involves solving the global registration

problem, the alignment of all sensor viewpoints into a common frame of reference

(see section 1.3). Contemporary depth sensors are able to rapidly provide orders of

magnitude more depth information than has traditionally been considered, making

optimising this fusion process challenging. In this thesis we claim that utilising this

recent abundance of available data is however important and beneficial (e.g. in terms of

model quality, completeness, accuracy). Accordingly, a key contribution of this work is

the methodology for solving the global registration problem whilst considering modern,
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large depth measurement datasets and investigate the benefits afforded by fusing such

large sets of sensor views. We claim that solving the global registration problem for

large view-sets in an accurate and feasible manner is both coveted and an obligatory

requirement of modern modelling pipelines, owing in part to the progress of state-of-the-

art depth measurement hardware. This thesis therefore provides valuable contributions

to addressing problems that arise in the registration of large sets of point clouds. In

the following sections we briefly outline the synthetic 3D modelling pipeline (1.2 - 1.3

and then formalise the thesis hypothesis and contributions (1.4 - 1.5).

1.2 synthetic 3d modelling

As discussed, obtaining accurate 3D models with synthetic systems is a highly chal-

lenging task relative to biological counterparts (e.g. the human eye). A 2D projection

of an observed scene, recorded using a single digital camera, does not provide enough

information to infer metrically accurate 3D geometry in the general case. To success-

fully extract a 3D surface; multiple samples from varying viewpoints are needed. By

observing the same 3D spatial point from varying viewing positions, it becomes possi-

ble to retrieve its 3D coordinates. From a set of observations, it is therefore possible

to reconstruct the 3D surface corresponding to overlapping regions between 2D images.

Using multiple viewing positions is a popular technique and inferring 3D coordinates

to carry out the information extraction step of the considered pipeline is well studied

under the area of multi-view geometry [120].

Additionally recent progress in consumer-grade, direct depth acquisition devices such

as structured light approaches, commodity depth cameras and LiDAR sensors are able

to generate large view-set depth data. Consumer-grade range cameras have thus be-

come a suitable data source for creating digital 3D models of physical objects. Range

cameras are capable of generating large view-set, 3D point clouds that constitute popu-

lar scene or object representations in the vision and robotics communities for e.g. scene

reconstruction and SLAM applications [135, 190, 76, 121, 261, 86]. Sensors are typically

low cost, fast and possess an acceptable level of accuracy for many tasks. Contemporary

examples of depth sensors in this class include the Microsoft Kinect [183], PrimeSense

Carmine [209] and Asus Xtion Pro Live [10]. These sensors are able to provide high

frame rate data streams that potentially result in large view-set registration problem
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instances. In particular, such acquisition devices are typically able to return both depth

data and colour images of scene or object, retrieving both the 3D shape and a colour

image of an object from a fixed viewpoint. The acquired 3D image in this case is

commonly known as a range image. The information extraction step (using multi-view

geometry) can be omitted in such cases. However, from a single scene viewpoint, parts

of the scene are occluded (possibly self-occluded) due to such sensors lacking an om-

nipresence. From this single viewpoint it is only possible to acquire a part of the scene

or object. Therefore, multiple range images, acquired from various positions are needed

to acquire all parts of the scene or object. In addition to consumer grade structured

light and time-of-flight cameras, the quality of alternative technologies such as 3D laser

scanning can also produce very dense high quality 3D point cloud data. Particularly if

metric accuracy is an important property of the captured data, depth acquisition typi-

cally makes use of active optical devices. Such sensors are able to acquire high quality

and dense point sets captured in the sensor field of view (FOV).

A range image, acquired by any of the studied acquisition methods, is obtained

in a local coordinate system from the individual sensor viewpoint. Full models often

require the collection of dozens or hundreds of views in order to build complete 3D

models of the object or scene of interest. When starting from a set of independent

views (that each lie in their own local reference frame) and, holding the hypothesis

that sufficient view overlap and object surface coverage exists, it is possible to obtain a

3D model through the introduced modelling pipeline that can be partitioned into view

registration, integration and surface reconstruction steps.

Active and passive depth sensors only measure the visible surface of a target scene

and therefore only provide a partial view of an entity due to (self)-occlusions, blind

areas or otherwise missing data. The reconstruction of complete and accurate models of

physical entities from depth-sensor measurements therefore requires data from multiple

viewpoints such that sufficient information can be acquired to minimise occluded areas

and to redundantly measure surface detail in an effort to average out errors found in

individual frames.

As we note, constructing such models from partial views typically involves the fusion

and global registration (alignment) of sensor viewpoints into a common reference frame.

The point set registration task is a fundamental problem in computer vision and in par-

ticular, forms a crucial component of the 3D modelling pipeline. The recent highlighted
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progress in depth sensor quality and measurement rates now afford rich, large depth

data sets that present new challenges in terms of how best to reason about, utilise and

take advantage of such profuse point data resources for the registration task. Address-

ing the related questions that such challenges pose form the body of work in this thesis.

In this work we develop novel methodology for the registration of large collections of

depth measurements i.e. sets of sets of points: {{(xi,j , yi,j , zi,j)}i}, typically acquired

from varying viewpoints i of physical object surfaces. The wide ranging applicability of

point set registration has lead to a large body of work on the topic (see 1.3 and Chap-

ter 2). Yet, with large point data sets now routinely generated by the outlined depth

capture methods, there is renewed motivation to develop novel applications capable of

utilising these data and exploring the resulting advantages that doing so brings. This

reasoning underlines and influences the direction of work undertaken in the thesis.

Figure 1: The model reconstruction pipeline.

1.3 3d point set registration

The crucial stage of the modelling process, considered in this work, is the global regis-

tration (alignment) of all sensor viewpoints in a common reference frame. The spatial
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transformations that relate point sets / range images are in general unknown and finding

them is necessary to register all overlapping point sets into a global coordinate system.

This process is commonly known as range image or point set registration [226] and is

one of the central problems tackled in this thesis. This problem is typically tackled

either by identifying correspondences between adjacent viewpoints or by minimising

cost functions that model the viewpoint alignment quality. Once range images have

been aligned (registered) they can be merged and integrated into a single 3D model

(e.g. a mesh or cloud of points) that can be utilised by e.g. the aforementioned example

application areas. Application requirements are normally focussed on accuracy, robust-

ness, automatism and computational speed. In this thesis, after exploring registration

accuracy and robustness, we go on to investigate methodology that also enables the

latter requirement regarding computational feasibility.

We summarise the 3D modelling process in Figure 1. One of the most critical tasks

for the automation of a 3D modelling pipeline is automating the outlined registration

step. A large body of previous work exists in particular for the two view and relatively

small multi-view set cases of registration. In these forms, the registration step of the

pipeline has attracted a large amount of interest in recent decades. Aligning overlap-

ping range images using geometry is the most popular approach to 3D registration and

extensive study of progress to date is surveyed in Chapter 2. When using geometry to

guide the registration process discriminative feature descriptors are often used to iden-

tify sparse key-point correspondences that allow estimation of spatial transformations

between viewpoints. Popular descriptors include the position of the key-point and the

normal or curvature on the surface at this point. Alternatively a dense 3D registration

approach, typically able to afford finer adjustment towards the desired solution, involves

the minimisation of a cost function that models the quality of alignment. Proposed cost

functions typically represent the distance between two aligned range images or the geo-

metrical distribution of points. Impressive progress and seminal registration techniques

[21, 163, 14, 137] have been proposed and many studies surveying 3D point registration

exist (see Chapter 2 sections 2.1 - 2.2) however with the advent of recent commodity

depth sensing hardware, able to afford hundreds or thousands of viewpoints quickly, new

methodology able to cope with and harness this abundance of readily available data is

clearly required. While depth data can now easily be collected in massive volumes, in

raw form it does not provide a semantic understanding of the environments captured.
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Such data does however provide an opportunity to discover and understand variability

in shapes, both in terms of their geometry and their arrangements. Registering large

view-sets of multiple range images remains challenging and generates theoretical and

computational questions that remain open such as how best to register hundreds or

thousands of viewpoints simultaneously as part of a modelling pipeline. In this thesis

we explore methodology capable of handling this new excess of available depth data

and explore the model reconstruction accuracy benefits that a wealth of well registered

viewpoint data can afford.

1.3.1 Point registration: problem classes

The 3D point set registration component of the modelling pipeline essentially involves

solving the problem of bringing together two or more shapes that represent parts of the

same object. As outlined, registration constitutes a critical and necessary stage in 3D

modelling (see section 1.1) however the goal of finding an optimal registration between

several instances of the same object (or distinct but similar objects) and bringing the

3D data into a common global frame of reference is commonly utilised in additional

pipelines and problem classes. Problem classes can be arranged into the following cat-

egories and the interested reader may consult [200, 252] for further discussion of cate-

gories that successful registration techniques may be applied to.

Model reconstruction. Model reconstruction is the main problem class concerning point

set registration considered in this thesis. As discussed the aim of model reconstruction

involves creating a complete object model from partial 3D views obtained using a depth

sensing system. Due to sensors not being omnipresent it is rare that a single depth view

is able to capture complete object structure, due to (self-)occlusions and sensor field of

view. By capturing an object from multiple points of view and making use of successful

viewpoint registration, one is able to produce an alignment between the partial overlap-

ping views resulting in a complete object model, also known as a mosaic (see Figure 1).

When treating multiple viewpoints, often registration is first applied between pairs of

views [21, 221]. The entire model can then typically be reconstructed using multi-view

registration refinement [130, 221]. It is the proposal of novel multi-view registration

methodology (Chapter 3) and the application of these contributions to extremely large
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view sets (Chapter 5) that comprise the core contribution of this thesis. As stated in

section 1.1, the model reconstruction process can be applied to many application areas.

Multimodal registration. If several views of the same object or scene are acquired from

different modalities (types of acquisition system) then the alignment task becomes

multi-modal registration. Registered information from different modalities can be com-

bined for comparison purposes or for creating multi-modal object models. This registra-

tion problem instance is typical in medical imaging where e.g. MRI and CT sensor data

or MRI and PET scans [167, 233] can be co-registered. See [200] for further discussion

on medical image registration. The large scale computational methodology proposed in

this thesis (Chapter 4) has additionally been utilised in a medical image registration

setting [212].

Model fitting. By finding optimal transforms between partial 3D depth data, acquired

from a physical object, and a known model of the object (e.g. a CAD model) model

fitting can be performed. The common applications of performing this task include

robotic object grasping [107, 196] and (model-based) object tracking [67]. Model fit-

ting has historically been applied to rigid bodies with recent work extending this to

deformable objects [48].

Object recognition. If a database of known 3D models is possessed, one can perform reg-

istration between each model and a partial 3D depth sensor view (query) as a means

for finding the best available matches. This problem is often regarded as more chal-

lenging than model fitting [200] as there is a decision point regarding which database

model (if any) provides a correct match. This is recognition-by-fitting [264] and such

techniques have been applied to both 3D face recognition [31, 36, 229] and object re-

trieval [101, 254]. The registration task component for this problem class often becomes

more challenging in cluttered environments, containing many objects [139, 182, 13].

1.3.2 Point set registration: problem formulation

The point set registration problem can be formalised as follows; given a pair of view-

points D and M, representing two sets of points (partial 3D viewpoints of the same
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object), the problem of registration involves finding parameters θ of the transformation

function T (θ, D) that brings D into the best spatial alignment with M. By convention,

in the two view case, we name D and M the data and the model and point sets are typ-

ically represented as point clouds or triangulated meshes [43]. In this thesis we utilise

point cloud data representations from a variety of data sources and depth sensors.

In the two-view case, the moving view D (the data-view) and the fixed view M

(the model-view) can be aligned by solving the registration problem that estimates the

parameters θ∗ of the transformation function T that satisfy:

θ∗ = arg min
θ

E(T (θ, D), M)

where E is an error function that quantifies the registration error. Figure 2 illustrates a

typical input and result of the elemental two-view registration process, searching for an

optimal rigid spatial transform between two viewpoints of the same rigid body object.

(a) Dragon dataset pre-registration

(horizontal view)

(b) Dragon dataset post-

registration (horizontal view)

(c) Dragon dataset pre-

registration (isometric

view)

(d) Dragon dataset post-

registration (isometric

view)

Figure 2: An example of the Iterative Closest Point registration algorithm applied to two point

clouds. Starting pose (Figures 2a, 2c) and views post-registration (Figures 2b, 2d).

Dragon model data provided by the Stanford 3D Scanning Repository [258].

The moving data-view (depicted in red) and model-view (blue) point sets provide mea-

surements for different portions of the surface with non-zero overlap (Figure 2a, 2c).
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The optimal transformation parameters found1 are applied in the function T (θ, D) and

the resulting registered views are rendered for comparison (Figure 2b, 2d).

Extending this formulation to generalise to the case of multiple views; consider a trans-

form Gi taking the data in a common global frame of reference into the coordinate

frame of view i. Similarly, let Tij be a transformation resulting from an optimal pair-

wise registration transforming the points of view j into the coordinate frame of view

i.

If perfect (noise-free) pairwise registrations can be found then Tij ∗Gj and Gi share

an identical frame of reference for all view pairs i and j. When formulating multi-view

registration in this manner, the task commonly becomes one of finding a set of rigid

motions from each view to a common global frame of reference yet also satisfying the

locally optimal, potentially conflicting transform constraints obtained from the pairwise

registration of i, j view-pair permutations.

This problem is often formulated as an error minimisation. By defining an error

Err to minimise (e.g. Euclidean distance between point locations) and composing local

and global components such that optimal pairwise transforms found are applied in the

global frame of reference, we can seek to minimise the function:

Err =
∑
i

∑
j∈Neighb(i)

∑
p∈P
‖Tij ∗Gjp−Gip‖2 (1)

Here Neighb(i) is typically the set of all views that exhibit sufficient overlap with view i

and this formalisation of the multi-view problem is similar to (for example) the approach

taken by Pulli [210], where the error function E is defined to be the Euclidean distance

between point locations (see Eq 1). In this case, p ∈ P represent a set of (arbitrarily

chosen) spatial points P such that ‖P‖ ≥ 3 to define registration unambiguously. More

recently [263] formulate the problem in a similar manner yet adopt a different measure

of error that derives from the fact that any rigid transformation is in fact a screw

motion; thus defining a screw distance.

This generalised registration quality formulation is similar in spirit to a standard ICP

error [21], but differs in that (1) here error is measured between identical points in

potentially differing spatial positions, not distinct points in correspondence (2) p ∈ P

need not be a set of sampled points from any particular view i.

1 In this example an instance of the classical ICP algorithm [21] is used for demonstration.
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While this formulation (Eq 1) is adequate for small instances of the multi-view prob-

lem, studying extremely large sets of viewpoints introduces compounding problems in-

volving prohibitive combinatorial view pairing considerations. Even in instances where

valid and meaningful view combinations are reliably known a priori, the task of finding

pairwise motion parameters for each pairing may become excessively time-consuming,

costly and pairwise optimal may not be globally optimal. This observation motivates

the alternative objective formulations presented in the current work, solving the multi-

view registration problem to provide motion parameters that bring each viewpoint into

a consistent global frame of reference, without treating pairwise registration explicitly.

The resulting formulations retain the ability to solve the multi-view registration prob-

lem yet remain applicable to large view-set problem instances (Chapter 3 provides our

exposition).

1.3.3 Point set registration: problem extensions

The point set registration problem, formulated above, is a heavily studied problem

in computer vision. However, several extensions of the generic task remain challenging

and related open questions continue to emerge. The registration problem becomes more

difficult when (1) more than two views must be brought into the same frame of reference

(multi-view registration - section 1.3.2), (2) registration must be performed in cluttered

scenes and (3) registration includes deformable objects. Figure 3 (adapted from [200])

illustrates a taxonomy of these advanced registration problem sub-classes and current

challenges relating to each.

Figure 3: A taxonomy of advanced registration tasks and the related challenges posed. Figure

adapted from [200].
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This thesis will predominantly focus on the advanced point set registration problem

instance concerning multi-view registration. Previous work in this area of the outlined

taxonomy is treated in Chapter 2 accordingly. When the number of viewpoints to be

registered is greater than two, the set of views must all be transformed into a global

frame of reference by applying multi-view registration techniques. The view registration

process attempts to find optimal spatial transforms aligning all viewpoints into a global

frame of reference. Figure 4 provides a schematic example of where such a technique

fits into the model reconstruction pipeline.

(a) (b)

Figure 4: A model reconstruction example. Incomplete depth information relating to an object-

of-interest is captured from varying viewpoints using multiple sensor poses (see 4a).

Figure 4b shows the merged views in a common coordinate system post-registration

(see text for detail). Images adapted from examples generated by Alessandro Negrente

[200]. 3D data and object model attributed to [102]. Best viewed in colour.

Multi-view registration has often historically been attempted as an additional step

after pairwise registration has been performed between combinations of pairs of view-

points. Oft-cited issues with such multi-view registration strategies are error accumula-

tion, error propagation and the level of automation achieved in the process. Alternative

forms of preparatory coarse initialisation such as manual alignment have also been

utilised, see Chapter 2. If viewpoints are registered in a linear or chained pair-wise

fashion, local pair-wise alignment error may propagate between viewpoint pairs and

grow. Additionally if a full model must be reconstructed from a large number of scans,

the view order may not be available and therefore may have to be manually specified

for pair-wise combinations.
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This thesis develops novel methodology that attempts to address these multi-view

specific problems by treating viewpoint alignment as a global optimisation problem

rather than a chain of sequential local alignments. The tactic of performing registration

simultaneously among all viewpoints has been attempted and utilised previously (see

Chapter 2 section 2.2) as the noted benefits of avoiding sequential registration error

accumulation and propagation are desirable. However such global optimisation is often

known to be computationally expensive and we find that registration methods often

scale with variables such as the number of viewpoints to be aligned and the density of

point sets utilised. Such computational cost considerations are in conflict with our goal

of exploring multi-view registration in cases where hundreds or thousands of viewpoint

measurements may be available. It is this combination of the favourable properties

of global optimisation and large scale problem instances that primarily motivate the

methodology and ideas developed and investigated in this thesis.

1.4 summary and outline

In this chapter we introduce the standard 3D modelling pipeline and defined the view-

point alignment and point set registration components of such a framework. Point set

registration is a well studied problem yet specific problem instances leave issues that re-

main to be solved. Specifically, advances in sensor hardware and progress in depth acqui-

sition procedures provide new challenges and tests for multi-view registration methods

aiming to firstly accommodate hundreds or thousands of viewpoints, finding globally

optimal alignments and secondly utilise the benefits that such large data sets are able

to afford the multitude of noted 3D modelling application areas. These observations

motivate the work proposed in this thesis. In particular prominent problems remain to

be addressed when modern depth scanners, capable of providing extremely large sets

of measurements, are made use of. Real-time depth scanners, for example, provide an

explosion of the number of depth data measurements that can be acquired in relatively

short time periods. If viewpoint registration components are required in scenarios util-

ising such sensors then exhaustive search should likely be avoided and more effective

point matching strategies and error evaluation functions should be exploited. Both (1)

quantitative registration error evaluation functions, capable of capturing the nature

and intrinsic properties of large scale multi-view alignment problem instances and (2)
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their implementation utilising robust and scalable frameworks are needed to handle

the noted explosion of available depth data to provide desirable results that can e.g.

contribute to high quality modelling pipelines in timely fashion.

In this thesis we firstly define a density estimation technique that we propose meets

the former of these requirements. We show how kernel density estimation can be utilised

to construct an estimate of a sampled surface, based on measured spatial data and ap-

ply this technique to data samples from a variety of depth sensors. We proceed to

illustrate how this tool can be utilised to enable the extraction of useful information

from sampled data (e.g. for viewpoint registration). Registration errors can typically

be attributed to a lack of high-level, cross-viewpoint understanding about the entities

represented in the scene. We claim that by designing models that incorporate a global

level of understanding about object and scene shape and combining this with the abil-

ity to accommodate many sensor measurements we apply our techniques to challenging

datasets of increasing size and complexity whilst leveraging the confidence that many

sensor samples afford. The latter claim, that such techniques should be implemented in

robust and scalable frameworks enabling the accommodation of data sets on an order

of magnitude afforded by modern depth sensors, is then investigated by the proposal

of a distributed and parallelisable task farming framework. Finally our multi-view reg-

istration theory and our contribution of a scalable and parallelisable framework are

combined to explore the feasibility and benefits of performing multi-view registration

with extremely large view sets under such an implementation in practice.

1.5 thesis claim

An important premise of this thesis is that large view-sets and an abundance of depth

data are beneficial in terms of model completeness and accuracy and can be utilised ad-

vantageously when tasked with modelling object surfaces and shape. By implementing

a methodology capable of building models of object surfaces from large sets of partial

viewpoints, we aim to exploit the hypothesis that discrepancies, due to e.g. measure-

ment error or sensor noise, between measured surface data and estimated models will

tend to zero if enough samples are present. This premise can be captured in the follow-

ing claim:
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By registering partial views simultaneously to a robust surface estimate, it is possible to

improve registration accuracy over sequential approaches by distributing errors evenly

between overlapping viewpoints. Object surfaces can be robustly estimated from coarsely

misaligned partial views using density estimation techniques and such estimates can be

utilised to reliably guide simultaneous point cloud registration. This approach exhibits

an inherent ability to handle data from many viewpoints simultaneously and improves

registration and reconstruction accuracy over existing techniques by exhibiting robust-

ness to initial coarse misalignment of view-sets.

This thesis defends this claim by designing techniques that aim to accommodate and

leverage an abundance of viewpoint information for the registration task. By utilising

large viewpoint datasets and quantitatively evaluating registration results produced by

the proposed methodology we assess the claimed benefits of accounting for increasingly

large and complex viewpoint data.

A main pragmatic goal of the thesis is to facilitate accurate simultaneous registration

of large sets of point clouds in a global coordinate frame. By employing data-driven

density estimates we aim to estimate object shapes, contributed to by large quantities

of depth sensor viewpoints. Both the computational speed of density estimation and

quality of resulting models typically depend on the number of data samples available.

Intrinsic properties of non-parametric density estimation dictate that estimation quality

improves as the number of available samples increases however estimation often also

becomes more expensive. This non-parametric estimation property essentially dictates

that the cost of building models will increase as the number of available samples to

be utilised increases. We mitigate the computational cost of the proposed approach by

additionally introducing a parallelisable framework capable of distributing the workload

and overall improving methodology feasibility. View sets experimented with in the latter

chapters of this thesis are on an order of magnitude that is infeasibly large for traditional

serial and sequential point cloud registration methods to accommodate. The potential

available benefits of building models of objects and scenes from data sources containing

viewpoint counts that are 1− 2 orders of magnitude greater than traditionally available

can thus be explored.
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1.6 outline

In summary the remainder of the thesis consists of five chapters and is structured as

follows:

• In Chapter 2 the state of the art of point set registration is summarised and

additionally an overview of contemporary distributed computing and task farm-

ing techniques is provided. Areas of interest are highlighted and open challenges

identified.

• Chapter 3 presents a novel simultaneous multi-view registration technique that

makes use of kernel density estimation theory. Details of how the proposed ap-

proach enables the registration of a set of point clouds are presented. The strategy

does not make use of direct point pair correspondences or require any view order-

ing information. The work presented in this chapter is published as follows:

Simultaneous registration of multi-view range images with adaptive

kernel density estimation. S. McDonagh and R. B. Fisher. 14th IMA Confer-

ence on Mathematics of Surfaces. pp 31–62, Birmingham, 2013 [176].

• In Chapter 4, we introduce a framework that we call Semi-Synchronised Task

Farming (SSTF). The proposed framework provides a principled method for im-

plementing computationally expensive problems in a distributed fashion across

heterogeneous compute clusters. By formulating compute problems as a collection

of parallelisable subtasks and enabling a level of communication between subtasks

we present a framework and novel computation model able to produce predictable

speed-up improvements to computationally expensive yet non-trivial work. The

framework presented in this chapter was introduced in:

Applying semi-synchronised task farming to large-scale computer vi-

sion problems. S. McDonagh, C. Beyan, P. X. Huang and R. B. Fisher. Inter-

national Journal of High Performance Computing Applications, 2014 [178].

Additionally the computational framework has recently been utilised to perform

2D intensity image registration:
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Laminar and Dorsoventral Molecular Organization of the Medial En-

torhinal Cortex Revealed by Large-scale Anatomical Analysis of Gene

Expression. H. L. Ramsden, G. Sürmeli, S. McDonagh and M. F. Nolan. PLOS

Computational Biology, 2015 [212].

• Chapter 5 presents an implementation of our proposed multi-view registration

strategy under our distributed SSTF framework. This facilitates simultaneous

registration of extremely large sets of point clouds in feasible time frames. With

this system we explore the available benefits of performing feasible, large-scale

view registration and building object models and scenes from data sources con-

taining view counts that are 1− 2 orders of magnitude greater than traditionally

available. The work therefore explores improving view registration and model

reconstruction quality when applying our point set registration framework to

extremely large sets of object viewpoints that potentially contain multiple and

redundant depth samples of physical points captured from varying views. This

is made feasible through the use of our distributed framework introduced in the

preceding chapter.

• Finally, Chapter 6 concludes and summarises the work carried out in this thesis

and provides discussion on potential future direction for large-scale point set

registration in relation to the conclusions attained in this work.
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L ITERATURE REVIEW

The topic of image registration has produced a large body of work and remains the

subject of extensive effort. Interest stems from the challenging nature of the associated

fundamental problems (e.g. point correspondence definition, transformation model se-

lection) and the importance of solving these challenges for various applications. Initial

efforts focused on registering 2D images as these originally constituted the most com-

monly available data. The related early survey paper of [144] mainly covers work based

on image correlation. Several exhaustive reviews of general-purpose image registration

methods have additionally been produced since e.g. [37, 277, 290]. Registration tech-

niques applied particularly in medical imaging are summarised in [268, 156, 167, 124].

Restricting scope to surface based registration, medical imaging applications are sur-

veyed by Audette et al. [11] while volume-based registration is reviewed in [74]. Addi-

tionally registration methods applied in remote sensing settings have been described

and evaluated in [95] and [186].

With the advent of active 3D sensors (e.g. structured light sensors, laser range find-

ers) and the progress of passive stereo vision, registration of 3D image data has also

grown into a substantial topic in the computer vision literature and a review of the

evolution of range image registration methods can be found in [226]. Additionally the

recent rapid advances of commodity depth sensing hardware (e.g. Kinect [183]) afford

abundant, widely available streams of high frame rate, low-cost depth data. A main con-

trasting characteristic of depth image data, relative to 2D images, is that working with

depth images (or other range data) allows 3D scene and target geometry information

to become directly available. This has presented new possibilities and new challenges

for the topic of image registration.

25
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In this chapter we provide a survey of the state of the art in range image and point

cloud registration techniques. A registration technique’s efficacy is determined by its

accuracy and the computational complexity of its component algorithms. We review

several classes of techniques that have been utilised for the task of point cloud registra-

tion in the literature. The objective here is to provide a high-level overview, we leave

more detailed comparisons of methods, related to the work presented in this thesis, for

consideration in the chapters that follow. We begin by considering two-view point set

rigid and non-rigid registration approaches in section 2.1 and review techniques that

concern multi-view registration in section 2.2. We discuss methods attempting to solve

large view-set problem instances and methodology to evaluate registration quality in

section 2.3 and touch on related distributed computation issues, relevant to this thesis,

in section 2.5. Finally we conclude with a summary in section 2.6.

2.1 two-view point set registration

Many algorithms have been presented for both rigid and non-rigid point set registration.

The typical goal of these algorithms is to recover correspondences between points, a

transformation1 to align the point sets, or both. Commonly these algorithms involve

an iterative dual-step update, alternating between point correspondence search and

transformation estimation. When considering only two scans or viewpoints (pairwise

registration) the problem can be considered well studied in the computer vision litera-

ture. Early work on pairwise point set registration and scan alignment was performed

by Faugeras and Herbert [89], Horn [128] and Arun et al. [9]. In each of these exam-

ples the authors obtained closed-form expressions for a single rigid transformation that

minimised the least squares error between the two point sets.

The influential Iterative Closest Point (ICP) algorithm proposed by Besl and McKay

[21] is the most popular method for rigid point set registration due to its simplicity and

low computational complexity. ICP iteratively assigns point correspondences based on

the closest distance criterion (considering minimum Euclidean point distance pairs be-

tween sets) and then finds the least-squares rigid transformation that best aligns the

two point sets using the found correspondences. Figure 5 depicts the basic algorithm.

The literature contains work exploring additional metrics for spatial point set registra-

1 transforms can be sub-categorised as rigid, non-rigid and pointwise deformations
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tion (e.g. photometric constraints [232, 259]) however distance metrics remain popu-

lar. When utilised for point cloud registration, this approach typically starts from a

coarsely aligned seed pose and iteratively revises a transformation (typically composed

of rotation and translation in the rigid case) to minimise the distance between pairs of

neighbouring points in the two point clouds. Subsequent proposed variants of ICP affect

all attributes of the algorithm including the selection and matching of point correspon-

dences and the minimisation strategy (see e.g. [54, 94]). Variants have modified the

point pair matching strategy by e.g. rejecting conflicting point pairs or weighting corre-

spondences with similarity measures, and varying the minimisation metric (e.g. point to

(tangent)-plane distances [54]). Recent work carries out robust correspondence search

utilising a novel graph matching strategy in combination with graduated nonconvexity

and concavity [281]. Additional work has involved altering the measures of alignment

error and employing data structures (e.g. k-d trees) to facilitate fast point pair search.

The family of techniques broadly based on local iterative decisions thus are generally

susceptible to local minima (for example, when poor initial coarse view alignment is

provided). ICP and variants typically therefore require that the initial position of point

sets be adequately close.

Figure 5: The fundamental Iterative Closest Point algorithm [21] for registering two point sets.

Point pair correspondences and optimal spatial transforms are alternatively found

and this process iterates to convergence.
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Probabilistic variants have been developed (e.g. [213, 23]) in order to produce an alter-

native to assigning hard point correspondences between point sets. These methods com-

monly use soft assignment of correspondences that establish a global correspondence

between all combinations of points according to some probability. This strategy effec-

tively generalises the binary assignment of correspondences found in the original ICP.

Among these methods are the Robust Point Matching (RPM) algorithm introduced by

Gold et al. [106], and its later variants [213], [58]. In [56] it is shown that alternating

soft assignment of correspondences and transformation refinement in a RPM setting

is equivalent to the Expectation Maximisation (EM) algorithm, where one point set is

treated as a set of GMM centroids and the other point set is treated as data points. Sev-

eral further rigid registration point set methods (e.g. [142],[276],[64],[23],[111],[164] and

[180]) explicitly formulate point set registration in a Maximum Likelihood (ML) estima-

tion framework to fit GMM centroids to data points. These methods re-parameterise

GMM centroids by a set of rigid transformation parameters (representing translation

and rotation). The EM algorithm, used to optimize the likelihood function, consists of

two steps; an E-step to compute the probabilities and an M-step to update the transfor-

mation. Common to such probabilistic methods is the inclusion of an extra distribution

term to account for outliers ([213, 276]) and annealing to avoid local minima (poor

registrations). Such probabilistic methods have been shown to offer improved perfor-

mance over the original ICP algorithm, especially in the presence of noise and outliers.

A comprehensive review of ICP variants is found in [221]. Recently probabilistic gener-

ative model based approaches have also been extended to construct algorithms capable

of jointly registering multiple point sets [87] and we survey the array of multi-view

approaches in the following section.

Addressing matching speed improvement, Blais and Levine [25] minimise a Euclidean

distance cost function calculated on sets of control points and utilise simulated anneal-

ing to perform a projection-based ICP. Silva et al. [238] adopt a similar approach but

use genetic algorithms with a surface inter-penetration measure. In [16], a randomised

ICP over a multi z-buffer structure is proposed. The structure is capable of represent-

ing overlapping portions of the viewpoints and accelerates operations on them. An

improved force-based optimisation method is also proposed by Eggert et al. [83], [84].

Alternative representations of rigid rototranslations have also been explored. Quater-

nion representation of rototranslation transforms [128] are made use of in several global
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registration works including [15], [235], [236] and [263]. In [15] it is demonstrated that

the optimal translation can be decoupled and solved independently from the optimal

rotation. The approach is based on iteratively finding rotation solutions by moving one

view at a time while keeping the other viewpoints fixed in space. A similar decoupling

is exploited in the work of Sharp et al. [235, 236] where optimisation over the graph of

neighbouring viewpoints in a quaternion space is done and then closed form solutions

are obtained using the cycles of a graph decomposition. One of the advantages of this

method is that it does not require the computation of point correspondences and can

be combined with any pairwise alignment algorithm to generate an estimation of the

relative motion between each pair of views.

Previous work of key foundational importance, highly relevant to the correspondence

methodology proposed in this thesis is found in [265]. This work provided the origi-

nal contribution of extending image correlation techniques to the point set registration

problem, using kernel correlation (KC). A kernel correlation affinity measure is de-

fined as a function of the point set entropy between two point sets to be registered.

This registration method has the advantage of an intuitive interpretation and conver-

gence properties, with the proposed algorithm comparing favourably to both ICP and

EM-ICP based methods. Maximum KC between only two points corresponds to the

minimum Euclidean distance between them however, when dealing with multiple point

distances, it’s not immediately obvious what is being optimised. Interestingly the au-

thors highlight the observation that maximising their KC (essentially a product of

kernels) turns out to equate to minimising the Euclidean distance, but in the sense

of an M-estimator (in the case of the Gaussian kernel that they make use of). This is

related to the work that will be proposed in this thesis in that we make use of similar

robust kernel methodology to define (novel) objective functions for the purpose of per-

forming the (multi-view) registration task while still taking advantage of all the useful

properties of a kernel based optimisation highlighted in [265].

In summary, the registration of two-view point set data is a well studied problem.

The standard ICP methodology [21] involving iterative search for point correspondences

followed by defining optimal transforms can be considered the most popular strategy.

This iterative approach has been applied to many problem instances and is relatively

straightforward to implement making it a popular choice. The well understood short-

comings of the original version make it somewhat limited by current standards however
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several strong variants and work inspired by ICP (e.g. [55, 188]) allow the strategy to

cope with a wide range of scenarios. The interested reader can examine comprehensive

surveys of the wide array of two-view registration techniques in a number of reviews

[37, 221, 181, 226, 252, 204]. When multiple views are to be considered, additional

complications arise which we discuss in the following section.

2.2 multi-view point set registration

When considering multiple views, view poses must be transformed into a global refer-

ence frame using a multi-view registration technique. Common issues with multi-view

registration involve automation of the process, error accumulation, error propagation

and loop closure issues. Reducing error accumulation when view sequence ordering is

available allows for registration to be performed in a pairwise fashion between consec-

utive views. In general, even if all the pairs are visually well registered misalignment

typically appears when the full model is reconstructed due to the accumulation and

propagation of sequential, incremental registration error. Multi-view registration tech-

niques often introduce additional constraints that reduce the global error. This strategy

is commonly embodied by solving simultaneously for a global registration, exploiting

the interdependences between all views at the same time. In this sense multi-view regis-

tration generalises the case of two-view registration and often poses a more challenging

problem. Typically ten or more views are utilised to reconstruct a complete object

model, where each viewpoint overlaps a number of neighbouring scans. Creating accu-

rate 3D models of real objects is a primary goal of several application domains such

as industrial reverse engineering [269], visual inspection [34], cultural heritage preser-

vation [271], robot localisation and navigation [30] and biological and medical imaging

[220].

Two popular approaches to multi-view registration are sequential (local) registra-

tion and simultaneous (global) registration. Early sequential techniques such as those

proposed by Chen and Medioni [54], Masuda and Yokoya [173] simply align pairs of

overlapping views in turn. The points of each aligned view are then merged into a

meta-view until each view has been aligned by registering the next scan directly with

all merged data from the previously processed and registered views. A potential prob-

lem with this meta-view approach was highlighted by Pulli [210]; if several scans are



2.2 multi-view point set registration 31

added to a meta-view, a shell of finite thickness will likely be created. When yet an-

other scan is registered with the meta-view, ideally the new view would move into a

central position among the previously aligned scans however by minimising a standard

point-to-point distance metric (or similar) the new scan is likely to stick to the outer

or inner shell of the meta-view (see Figure 6). Due to such potential drawbacks, final

solutions are in general suboptimal if no global optimisation of view positions is per-

formed. When many views are registered in a sequential fashion by designating a base

scan or another previously registered viewpoint as model data (e.g. using pairwise ICP)

the resulting registrations may have low quality when combined.

(a) Piece of the meta-view (b) Ideal registration for a

new scan

(c) Likely new registration

Figure 6: A common problem with the meta-view approach. Figure adapted from [210].

Sequential techniques additionally require that view sequence order is known or manu-

ally specified in advance, using prior knowledge to guide which pairs of scans alignment

should be attempted between. This information is now often available (e.g. using mod-

ern video-rate active depth cameras) however it remains a necessity that each pair of

registration candidate scans has substantial overlap to result in successful registration.

When a coarse alignment initialisation is unavailable, an alternative sequential strategy

involves exhaustively attempting to register each pairwise combination of viewpoints

and implementing a method for determining registration success between scan pairs (e.g.

visual assessment or quantitative resulting overlap measurement). Exhaustive pairwise

matching strategies quickly become infeasible as the number of scans (viewpoints) grow

large. Such approaches have, however, proved popular due to method simplicity and

the relatively cheap and fast solutions that are offered despite the noted issues involv-

ing pairwise error accumulation and propagation that may lead to globally suboptimal

results.
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Popular pairwise schemes [21, 54] are still often utilised as components in multi-view

approaches. Multi-view registration schemes of this type were considered by numerous

researchers [19, 84, 15, 238, 236, 279]. Pairwise registration error accumulation and

propagation is addressed by Bergevin et al. [19] where points in each view are matched

with all overlapping views and a rigid transform that registers the active scan is com-

puted using the matching points from all overlapping views. By organising pairs of

views in a network structure they enable simultaneous and iterative alignment error

minimisation. By making use of all overlapping views this approach attempts to dif-

fuse errors among all viewpoints as the process is iterated to convergence. Converging

to a steady-state using this approach may be slow and computationally expensive. A

similar iterative approach that computes the “mean rigid shape” of multiple point sets

was proposed by [201] but point correspondences had to be specified manually as a

point matching algorithm was not included. An early numerical solution is proposed by

[249] where the registration problem is mapped onto a physically inspired model where

a minimum of potential energy is found with an iterative numerical method based on

gradient descent yet slow convergence may occur (particularly with cases of near de-

generate point sets). Further early multi-view work by Eggert et al. [83] constrain the

point pairings such that points of each scan match with exactly one other point and

then minimise the total distance between paired points. The transformation update is

then solved for by simulating a spring model. The registration work presented in this

thesis is similar to the work of Eggert et al. in that we minimise an energy system rep-

resenting scan positions but we do not constrain points to an individual point-to-point

match (see chapter 3 for further detail). A review of comparable early multi-view reg-

istration methods [201, 249, 15, 16] was carried out by Cunnington and Stoddart [65]

and further recent works, that this comparison pre-dates, are outlined in more recent

comprehensive surveys [226, 200, 252].

Global multi-view techniques attempt to mitigate the discussed sequential registra-

tion problems by taking all scans into consideration at once, thus attempting to spread

registration error evenly between all overlapping views. Extensions of the ICP algorithm

in particular have been proposed for simultaneous registration of multiple range images,

however handling multiple range images simultaneously will often dramatically increase

computational time for an ICP style approach. As shown by [84] it takes O(r2Nlog(N))

operations to find all point correspondences across pairs of r point sets with N points
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each. Computing potential correspondences is generally the most time consuming step

and such methods therefore become impractical as the number of range images become

large. One of the early fully simultaneous registration works was proposed by Pulli

[210] where following pairwise scan alignments, each pair of registered scans are used

as constraints in a multi-view step. As introduced in the previous chapter, the goal

of diffusing the pairwise errors is achieved by first aligning the scans in a pairwise

fashion and then utilising these pairwise alignments as constraints in a simultaneous

step. The aim is to evenly distribute the pairwise registration error, but the method

itself is still based on initial pairwise alignments. Pulli’s algorithm remains a method of

choice for many multi-view point set registration applications (the Scanalyze software

[227] provides a popular implementation). Formally Pulli attempts to keep the distor-

tion D(U) of the points from a set U within a given tolerance ε where we define D(U) as:

D(U) =
∑
u∈U

∑
(i,j)∈V

Pi(u)− Ti,j(Pj(u))2

In this formulation Pi(u) is a transformation that transforms a point u into the

coordinate system of view i while Ti,j is the transform that maps the coordinate frame

j into the coordinate frame i (as found by the pairwise registration between the two

frames) and V is the set of neighbouring view pairs for which pairwise registration

is carried out. The set of points U on which to perform this greedy approach must

be specified and Pulli suggests that these points can be sampled uniformly from the

overlapping areas of the scan views. Since only the space of transformations is explored

in this approach, memory usage is small as there is no need to retain all of the points

from all views in memory at once. This allows for global registration on data sets that

are too large to keep directly in memory. There is, however, no guarantee that optimal

solutions are found. Williams and Bennamoun [279] took a similar approach attempting

to minimise a similar distortion on a set of sampled points, computing the minimisation

using an iterative approach and optimising individual transforms using singular value

decomposition.

Failure modes of the method that remain include the handling of multiple closures

problem (from the acquisition of complex objects) as well as when the number of view-

points to align increases up to a point that the underlying heuristic fails to converge

to the global minimum of the error function. Our experimental work in chapter 5 (and

other recent work [27] explore these failure modes further.
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Another early simultaneous method was introduced by Neugebauer et al.[189] where

a distance metric is minimised (in a least-squares sense) between overlapping range

images and a signed distance function is utilised to create an intermediate volumetric

model. By treating the role of multi-view registration as projecting a point transfor-

mation onto a common frame of reference, these methods attempt to reduce the ac-

cumulated pairwise registration errors. This can be achieved by limiting the difference

between the position of point instances when transformed by the differing pairwise regis-

trations. This effectively moves each scan, relative to its neighbours, as little as possible.

In a similar fashion to [189], Huber and Hebert [131, 130] more recently use a global

consistency measure on a graph of pairwise matching viewpoints and look for globally

connected sub-graphs on which they then solve a multi-view point-to-plane distance

minimisation problem. Such graph based representations, that typically assign sensor

viewpoints to nodes, are used to define overlapping viewpoints by making use of edge

weighting and connectivity. Such representations can in turn help to define heuristics

and algorithms to better condition the problem or to retain feasible computational cost.

Alternative options in practice favour a greedy approach (e.g. [210]) to limit the dif-

ference between the locations of point sets as they are positioned in two frames (when

transformed by relevant pairwise registration transforms).

In [131] a global optimisation process searches a graph constructed from pairwise

view matches to provide a connected sub-graph containing only correct matches, us-

ing a global consistency measure to eliminate incorrect but locally consistent matches.

Further approaches use global and local pre-alignment techniques to select overlap-

ping views and compute a coarse alignment between all pairs of views. In [168] a

pre-alignment is performed, first extracting global features from each view, namely

extended Gaussian images. Conversely in [147], a pre-alignment is computed by com-

paring the signature afforded from feature points. After these have been compared the

best view sequence is estimated by solving a Travelling Salesman Problem (TSP).

In [46] a method is proposed that attempts to distribute registration errors evenly

between all views. It operates in the space of estimated pairwise registration matrices,

however ordering of the views is required. Automating registration especially when the

full model is composed of a large number of scans, the view order might not be avail-

able and therefore should be manually specified. Pottman et al. [206] develop a method

based on a first order kinematical analysis that exploits local quadratic approximates
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of the squared distance function associated with the surfaces to be aligned. This is

investigated further in [207] where a geometric optimisation strategy is proposed and

a theoretical framework is introduced in order to better interpret empirical results re-

ported in previous work (for instance ICP-based methods exhibiting linear convergence)

and in addition constrained non-linear least-squares approaches based on Newton-like

descent algorithms which have been shown to lead to fast (locally quadratic) conver-

gence. A recent scheme by Zhou et al. makes use of a clustering based approach to

mitigate the effects of large accumulative registration errors and heavy scanning noise

[288].

Recently Torsello et al. [263] introduced a method that extends [210], by representing

view transforms as dual quaternions to project pairwise alignments onto the same refer-

ence frame and by framing the multi-view registration problem as the diffusion of rigid

transformations over the graph of adjacent views (to aid error diffusion). Correspon-

dences are allowed to vary and be updated while alternating between point correspon-

dence choice and optimisation over the rigid transformation space (but convergence of

the procedure is not discussed). This produces a similar global strategy to our frame-

work outlined in the following chapter (see chapter 3). By alternating between the

diffusion method and ICP pairwise alignment the authors apply the proposed method

to real-world data where alignment performance similar to that of Pulli [210] is observed.

A further simultaneous registration method for dense sets of depth images employing a

convex optimisation technique for obtaining a solution via rank minimisation is intro-

duced in [260, 259]. The work concerns depth images directly rather than point cloud

data and extends previous work on simultaneous alignment of multiple 2D images. In

[88] initial coarse alignment is performed by proposing a voting scheme to discover view

overlap relationships and then LM-ICP [94] is extended to multiple views in order to

minimise a global registration error as part of their automated registration pipeline.

Bonarrigo and Signoroni [26, 27] extend a global registration technique that aligns

sets of range images using an “Optimization-on-a-Manifold” (OOM) framework previ-

ously proposed by Krishnan et al. [153, 154]. The original OOM framework proposes

an unconstrained optimisation procedure that exploits translation and rotation decou-

pling. By making use of optimisation methods that work explicitly on the constrained

manifold of rotations, SO(3), they solve for the vector of all view rotations. The method

guarantees a closed form transform that simultaneously registers all range images in the
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noiseless case. This is under the assumption that a set of perfect correspondences are

provided and the authors concede that the requirement for apriori knowledge of point

correspondences from overlapping scans can be viewed as a major limitation, as this is

usually not the case in practice. However, the algorithm is able to work in conjunction

with methods like ICP [21], providing a general framework for multi-view registration.

In the presence of noisy correspondences, this analytical solution becomes an initial

estimate for any general iterative scheme. Fixing the correspondence set during a min-

imisation process provides one route to alleviating correspondence search cost. This

has the advantage of making computation cost per iteration independent of the num-

ber of data points in each view. In the case of [154] each minimisation iteration involves

finding only the inverse of 3× 3 matrices, one for each view. It is this lack of correspon-

dence updating that can be considered an enabling factor when attempting to obtain

computationally affordable techniques for large view-sets (and the associated large cor-

respondence sets of size n). Registration techniques that request exact (true) point

correspondences between views as input for the task of finding closed form solutions

to optimal view-set alignment are an unreasonable requirement for real scenarios and

this proves a major limitation for practical applications. In real scenarios (e.g. where

data is gathered from depth sensors and possesses only a reasonable initial alignment

between views) the obtained initial point correspondences are often far from perfect.

The main novel extension that Bonarrigo and Signoroni add to the Krishnan et al.

framework [154] is an improvement that allows point correspondences to be updated

during the optimisation process. The method involves an error minimisation over the

manifold of rotations via an iterative scheme based on Gauss-Newton optimisation that

is similar to the optimisation process proposed in this work. In summary, the point

correspondence sub-problem is generally considered to be a very important component

of the registration process. The discussed methods are based on correspondence sets

computed out-of-core, other work updates correspondences in an iterative manner and

further work attempts to avoid using correspondences altogether. Another important

aspect of the registration process involves the robustness of the found solutions. In [33] it

is shown that, in the case of pairwise point set alignment, taking the intrinsic geometry

of the underlying manifold into account for the purpose of registration significantly

increases robustness with respect to poorly initialised poses.
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Toldo et al. [262] recently proposed a global registration approach based on embed-

ding the well-known Generalized Procrustes Analysis (GPA) mathematical theory in an

ICP framework. The method iteratively minimises a cost function considering all views

simultaneously and the overall strategy can be considered similar in this respect to the

work presented in Chapter 3 of this thesis. Toldo et al. perform iterative minimisation

that considers all views simultaneously but rely on mutual correspondences; matches

are defined between points that are mutually nearest neighbour and appropriate view

transforms are found by employing GPA to find solutions that minimise the distance

between mutual neighbours. The work of [262] shares the opinion of this thesis that

considering all views simultaneously benefits overall result quality; however we propose

a novel strategy on how point correspondences should be considered and handled when

large numbers of view points are utilised (see Chapter 3 for further detail).

The work of Toldo et al. is theoretically sound, based on the well-known GPA the-

ory and gives an efficient and elegant method to automatically align views in an ICP

framework. The authors show experiments demonstrating their method’s effectiveness

for multi-view problem instances. A variant of the method, where point correspon-

dences are non-uniformly weighted (using curvature similarity) is also presented. The

approach can be applied in any case where the alignment of multiple views is required

to be automatically refined and the algorithm is able to reach a global minimum even

when scan pre-alignment is only roughly defined. Furthermore, the approach exhibits

superior accuracy in every experiment (conducted in [262]) compared to the baseline

technique of employing a classical ICP to multi-view datasets sequentially. The recent

approach presented in [262] can be considered among the state-of-the-art methods for

true simultaneous multi-view registration, and we thus consider the work of Toldo et

al. to be a suitable candidate to compare the novel registration work introduced in this

thesis with (see Chapter 3 for further detail).

A summary of multi-view registration algorithms is provided in Table 1. A broad ar-

ray of alignment constraints, point correspondence rules and spatial transform finding

methods have been proposed. We find that only a subset of the surveyed literature pos-

sess the desired properties and attempt the specific problem instances that we aim to

explore further in this thesis (e.g. [210, 263, 260, 27, 88]). In the following chapters we

predominantly compare the registration work introduced in this thesis (quantitatively

and qualitatively) with: a baseline sequential ICP approach, the work of Pulli [210] and
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the work of Toldo et al [262]. The work of [210], although now dated, meets all of the

criteria we aim to investigate and the algorithm still proves a popular choice for current

practitioners (e.g. the popular Scanalyze implementation [227]) due to the well under-

stood methodology and favourable registration results for large view sets. Commonly,

these attributes enable additional works (that also meet our problem instance criteria

[263, 88, 26]; c.f. Table 1) to compare registration results directly with the methodology

of [210].

As noted, the work of Torsello et al. [263] is similar in spirit to that of Pulli [210]

and is shown to exhibit similar registration results in noise level experiments for all

explored error metrics except translation error ∆T (see [263] for detail). Additionally

the technique refines motion using pairwise ICP registration by alternating between 10

steps of ICP and their novel diffusion process until convergence. In [263] it is conceded

that this pairwise registration alternation strategy clearly helps to avoid local minima in

their experiments (but does not incur a noticeable penalty in running times due to their

frugal diffusion process). For this alternation strategy to be utilised, unlike [262] and the

work introduced in this thesis, pairwise view knowledge is required, potentially making

multi-view registration not achievable if none is available. It should additionally be

noted that Torsello et al. [263] and Bonarrigo et al. [26] do not optimise correspondences,

which are considered fixed or allowed to vary in alternation with the optimisation of the

rigid transformations (but the convergence of such procedures is not discussed). Due to

the noted registration result similarity, and [263, 26] comparing directly with the work of

[210], in this thesis we perform direct experimental comparison with [210] thus providing

a common experimental test-bed yet also facilitating qualitative proxy-comparison with

more recent methods. Future work may utilise additional implementations or datasets

to facilitate further direct methodology comparison (e.g. with [263, 26]).

By extending the pairwise LM-ICP registration framework of Fitzgibbon [94] to multi-

view, the work of [88] introduces an additional true simultaneous view optimisation

strategy independent of pairwise registration information and utilises sculpture and

statue themed datasets; Capital (100 views), Madonna (170 views) and Gargoyle (27

views). In practice quantitative registration results using an average registration error

(mm) are only reported for Bunny (10 views) and Gargoyle (27 views) datasets due to

their reference baseline implementation (the Pulli Scanalyze [210, 227] system) crashing

for any datasets larger than 30 views (see [88] for detail). Since results that would allow
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quantitative comparison of large view-set datasets are not available in the original work

of Fantoni et al. [88], in this thesis we decide not to evaluate direct comparison with

the methodology of [88], however their registration error (mm) results on small view-

set data are observed to produce a c. 2% performance improvement in comparison

to the implemented Scanalyze system [227, 210] (see [88] for detail). By performing

our own quantitative comparison with the Scanalyze system [227] we again allow for

comparison-by-proxy to [88], for small view-set cases.

By evaluating our work directly with the methodology of [262] we provide comparison

to additional work that does not require pairwise view-set knowledge (c.f. [210, 263]).

Such methodology is applicable to situations where no pairwise information is available.

We note that the recent method of Toldo et al. [262], although not applied to large view

sets in the original work, provides state-of-the-art multi-view registration performance

in instances where no pairwise information is required and the method also proves

amenable to large view set experimentation in practice. Furthermore, an additional

example of a true simultaneous multi-view registration approach provides a logical and

challenging comparator to the work introduced in this thesis.

As will be alluded to in section 2.4, it can be difficult to quantitatively compare

registration methods in terms of registration quality due to factors such as: diversity

of metrics used, experimental conditions, differences in hardware and software and the

large heterogeneity existing in the data sets considered (e.g. creation/acquisition tools

and equipment, synthetic/real (noisy) data, point/vertex density, mesh/point cloud

format, number of views, etc). In [27] it is noted that optimisation convergence trend

studies are valuable but should be carefully verified on real-world data. As discussed

in their work, it is not guaranteed that a better rate of convergence is also always

towards a better minimum, in the case of (for example) multi-view registration problem

instances. A somewhat sparse and disparate coverage in the literature leaves multi-

view registration techniques suffering from a lack of robust and fair methodology for

performance assessment and comparison. It can be difficult in real scenarios to evaluate

and quantify the results of a global alignment and determine the best solution without

resorting to a thorough and time-consuming qualitative analysis of registered views.

In the work presented in this thesis we provide additional methodology towards one

route to tackle a lack of ground truth availability in real world scenarios (see Chapter

5, section 5.4.1.2).
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Table 1: Characteristics of a selection of prominent multi-view registration algorithms

Method Accom.

large
view sets

Accom.

generic
topology

Global

optim-
isation

Alignment constraints Transformation computation

Robust GA (Silva et al. [238]) − X − interpenetration measure genetic algorithm

Signed distance field matching (Masuda [172]) − X − point-point distance minimisation

Geometric model generation (Masuda [171]) − X − point-point distance minimisation

ICP with rand. sampling (Masuda and Yokoya [173]) − X − chained pairwise distance minimisation

Point-to-plane reg. (Chen and Medioni [54]) − X − chained pairwise distance minimisation

Simulated Reannealing reg. (Blais and Levine [25]) − X − control point sampling stochastic optimisation

View network reg. (Bergevin et al. [19]) − X X view-pairs network linear least-squares

Large view set reg. (Pulli [210]) X X X pairwise constraints pairwise constrained optim.

Auto. model building (Gagnon et al. [103]) − X X point-plane distance minimisation

Quadratic cost function reg. (Williams and Bennamoun [279]) − X X generalised ICP distance minimisation

Unit quaternion reg. (Benjemaa and Schmitt [15]) − X X quaternion decoupling distance minimisation

Global reg. with multi-z buffer (Benjemaa and Schmitt [16]) − X X multi-z buffer distance minimisation

Mean rigid shapes (Pennec [201]) − X − mean rigid shape distance minimisation

Physically inspired reg. (Stoddart and Hilton [249]) − X X phys. inspired energy Euler method solving dyn. sys.

Simulated springs reg. (Eggert et al. [84]) − X X force-based energy iter. motion computation

Globally consistent sub-graphs (Huber and Hebert [131]) − X X point-plane global optim. graph search

Least-squares distance reg. (Neugebauer [189]) − X − point-plane iter. least-squares dist metric

Large planar surface reg. (Pathak et al. [198]) X − X plane-based pose-graph relaxation

Reg. using planar features (Previtali et al. [208]) X − X planar features linear least-squares

Coordinate frames (Sharp et al. [235]) − X − optim. inter-frame graph cycles optim. over neighbouring view graph

Frame space reg. (Sharp et al. [234]) − X − inter-frame graph cycles optim. over graph cycles

Dynamic Geometry reg. (Mitra et al. [184]) X X − space-time surfaces linear system

Gen. procrustes analysis (Toldo et al. [262]) − X X procrustes analysis generalized proc. analysis

Graph diffusion (Torsello et al. [263]) X X X dual quaternion view-graph diffusion

Rank min. reg. (Thomas and Matsushita [260]) X X X rank minimisation convex optimisation via Lagrange Mult.

Manifold optim. (Krishnan et al. [153, 154]) − X X unconstrained optim. optim. on a manifold

Improved manifold optim. (Bonarrigo and Signoroni [27]) X X X unconstrained optim. optim. on a manifold

Kinematical analysis reg. (Pottmann et al. [206]) − X X first ord. kinematics iter. compute instantaneous motion

Geometric optimisation reg (Pottmann et al. [207]) − X X geometric optimisation Gauss-Newton

Multi. LM-ICP (Fantoni and Castellani [88]) X X X generalised LM-ICP Levenberg Marquardt

A summary of characteristics for a number of prominent multi-view registration techniques. We define large view sets as documented experimentation with ≥ 100 views. Additional techniques

considered in this chapter do not provide an end-to-end multi-view registration solution for point sets (e.g. they focus instead on multi-view point set integration). Since the focus of this thesis is

predominantly multi-view registration, such techniques have not been included in this table.
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In this thesis we propose a novel simultaneously multi-view registration technique

where view registrations are found through the optimisation of an energy measure de-

fined over the points of the input scans. With every point of the input data we associate

a local measure capturing the likelihood that the point is located on the underlying sam-

pled surface. Using kernel density estimation, a fundamental data smoothing technique,

we make inferences about where surfaces exist based on the data samples available and

use these inferences to align scan views by gradient ascent optimisation over the pose

space parameters. Following pose space optimisation we then refine our kernel density

model estimate iteratively in a similar global strategy to many of the techniques high-

lighted in this chapter. The rationale is that since only a limited number of points are

sampled from the true surface, the position of every surface point is partly uncertain.

By capturing this fact in our density estimation approach we are able to exhibit robust-

ness in the presence of sensor noise and scan misalignment. By optimising parameters

in the transform space with respect to our energy function we reduce the amount of

registration work required since no pairwise point correspondences, view pair scan align-

ment or view order information is required, as is commonly the case in the surveyed

previous work. By requiring neither prior knowledge of view order nor of individual

point correspondences the proposed framework is simple, automated and theoretically

sound. In the following section we consider computational issues when working with

large view set point cloud data.

2.3 large view set considerations

2.3.1 Global optimisation for large view set registration

As surveyed in section 2.2, several heuristic methods have been proposed to handle

the global multi-view registration problem. One emerging alternative strategy to global

multi-view registration involves numerical optimisation (see e.g. [150, 157, 151, 152]).

Global registration has been tackled by several techniques that include the formalisation

and solving of non-convex minimisation problems with constraints related to the rigid

transformations of point sets belonging to the views. The registration work proposed

in this thesis follows such a strategy (see chapter 3 for further detail). Kolev et al. in-

troduced a global optimisation method utilising a continuous convex relaxation scheme.
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Specifically, the authors propose to cast the problem of 3D shape registration as one of

minimising a spatially continuous convex functional. This style of approach often pro-

vides several benefits such as not requiring (the typically expensive) direct point-pair

correspondence search during iterative registration; however, common weaknesses of

optimisation based approaches must be carefully addressed. Large optimisation prob-

lem instances involving non-linear objective functions, expensive function evaluations,

large numbers of optimisation variables (or combinations thereof) can often generate

computational issues. The global nature of large view-set, dense point cloud registration

problem instances provide one such area where optimisation methods need to be well

designed and conditioned in order to reduce the risk of being stuck in local minima or

to otherwise behave inappropriately.

2.3.1.1 Point cloud sub-sampling

Updating point correspondences iteratively as spatial transforms are improved typi-

cally brings an increase in cost proportional to the point correspondence count n (and

view-set size) considered. When considering large view-sets, this cost is generally not

appealing for practical applications if algorithm space and time requirements result in

impractical runtime. A common solution to aid iterative updates for large n is found by

down-sampling point sets (see section 5.4.4.1 for detail of sub-sampling utilised in this

work. Methods to reduce the size of point set samples include feature point extraction

and re-sampling [57, 58, 72], uniform point sub-sampling, feature point extraction and

fusion [59] and image point decimation [110]. These techniques are often used to reduce

the number of points in free-form shapes for feasible registration of large point sets and

other tasks. In practice uniform sub-sampling may be sufficient in many cases yet if

user-designated feature-sensitive sub- and re-sampling is required then more advanced

methods are likely to be required (see [199] for a comprehensive review of simplification

methods).

2.3.2 Point correspondences for large view sets

Rather than exploiting the same point correspondence set throughout the optimisation

process, a common alternative involves updating correspondences while a registration

strategy iteratively refines viewpoint alignment. By choosing to update correspondences
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iteratively, registration accuracy may be improved, potentially at some computational

cost when a typical measure is used (e.g. closest point distances) to find correspondences.

Correspondence updating (and related registration accuracy improvement) tends to

come at the price of heavier computational cost. Increasing view-set count naturally

also increases point correspondence counts. Methods that strike a balance between ac-

curacy and speed are highly sought-after for practical applications. Updating point

correspondences at each iteration can be considered [153] unappealing from a cost per-

spective as this is often a prime contributing factor to method computational expense

[21]. Approaches that update point correspondences iteratively are however advanta-

geous as (providing that a reasonable initial alignment is offered) each iteration will

bring the views closer to an acceptable solution. This in turn improves the correctness

of the next correspondence set until convergence is reached. The registration framework

proposed in this thesis attempts to harness the noted advantages of continuous iterative

assessment and evaluation of individual point positions without requiring direct point

pair correspondence updating (see chapter 3 for further detail).

2.3.2.1 Soft point correspondences

Related to correspondence updating choices are the type of correspondences made use

of. Pairwise correspondence work [106, 110, 159] has progressed the state-of-the-art

of two-view registration by replacing hard point pair correspondences with soft corre-

spondences. This typically involves each point in one point set corresponding somehow

to every point in the other set by some weight similar to the probabilistic techniques

outlined in section 2.1. Robustness to a wide basis of initial coarse misalignment is a

desirable property, when it is recalled that the condition of a reasonable initial coarse

alignment is required for the strategy of iteratively updating correspondences in an

attempt to converge to an optimal registration. The associated computational cost of

these soft correspondence methods has however prevented their practical usefulness,

even for moderately large point sets in the two-view case.

Related work facilitates registration of large sets of unstructured point clouds by

opting not to use point correspondences at all (e.g. [184] use kinematic properties of

space-time surfaces to solve for alignment motion). The work of [184] was also shown to

provide better results than traditional ICP based approaches in terms of handling large

ranges of initial coarse alignment. In [184] objects are scanned at high frame rates and
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large viewpoint sets are handled by avoiding the explicit computation of point corre-

spondences between successive frames altogether. By noting that inter-frame motions

are generally small the underlying temporal data coherence is exploited and several

frames can be integrated at once to directly compute object motion from scan data. In

a further effort to make computation more frugal, [184] avoid performing any form of

global relaxation, noting that this becomes expensive for large view sets. By computing

the smoothness of the underlying space-time surface they avoid computing correspond-

ing points between successive frames however, by neglecting any form of global error

distribution, the method may still be susceptible to alignment error accumulation.

Additional recent extensions attempt to combine the noted robustness and accuracy

benefits that soft correspondences afford with fast execution time in an effort to improve

practical usefulness. By attempting to combine soft correspondences with the efficiency

of traditional ICP style approaches [158] or a General-Purpose-GPU (GPGPU) based

implementation [253], soft correspondence based registration is becoming more feasible.

Additionally, recent alternative methods, used to reduce computational burden, have

been found by employing a more sophisticated correspondence update procedure such

as [27] where sub-sampling of correspondences is used to avoid expensive rototranslation

and matching of entire point sets.

2.4 registration and reconstruction quality evaluation

Evaluating multi-view scan registration quality (and following pipeline component qual-

ity e.g. surface reconstruction) is an active area of investigation where performing rig-

orous and illuminating evaluation can be considered a challenging task in it’s own right.

When attempting to evaluate competing method output, it is often not sufficient to

perform only visual comparison among strategies. Results of differing methodology can

look visually reasonable while containing varying sets of potentially subtle or difficult

to perceive registration or reconstruction flaws. One of the issues that make assessment

challenging is that it becomes difficult to perform quantitative evaluation without a

known object ground truth model or surface. Since such models are not always avail-

able, evaluation techniques can be categorised into two groups; according to whether

or not known ground truth is a requirement.
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In cases where ground truth is not available evaluation tends to concentrate on consis-

tency between method results and partial scan input data. Typical evaluation metrics

for the (post-registration) model reconstruction task have included reconstruction er-

rors [8]; the average Euclidean distance from input points to a reconstructed surface

and, in a similar vein, integration errors [287, 288]; calculating the mean Euclidean dis-

tances between points in a final reconstructed surface and their closest corresponding

points in the input data viewpoints. Reconstruction accuracies have also been quanti-

fied by measuring a mean per-point distance of registered range data to reconstructed

surfaces [283]. A recent method that takes into account global reconstruction and local

registration detail is the method of 3D Gini Coefficients (3DGiC) introduced in [245].

The 3DGiC is a metric that depends on both global consistency and local accuracy of

registration in order to deliver an evaluation based on cumulative distributions of local

surface descriptors.

When a complete ground truth model is available, it can easily be used as part of the

direct evaluation of registration and surface reconstruction results. A range of methods

have been implemented for this purpose including employing mean square errors [270]

of reconstructions against a known ground truth for comparison and measuring recon-

struction standard deviations to a ground truth under varying levels of noise [129]. A

metric named the shape error [138, 205] can be calculated using the ratio between the

volume of the symmetric difference between an estimated surface and the ground truth

and the volume of the ground truth. To measure the accuracy of a reconstruction the

authors of [231] begin by calculating the signed distances between the points in the

reconstructed model and the closest corresponding points of the ground truth model.

This technique outputs a single distance value such that 90% (author suggested level)

of the reconstruction is within the distance threshold of the ground truth model. In the

work of [18] it is proposed that a tri-step method is used to evaluate reconstruction error

where the ground truth models were produced via a commercial optical laser scanner.

In conclusion evaluation methods for multi-view registration and reconstruction can

often be thought of as measures of registration tightness and shape dissimilarity. A

good measure can be thought to satisfy some general requirements [194] desirable for

dissimilarity metrics and some specific properties that can be considered useful for the

particular applications considered in this thesis. In [245] examples of good evaluation

metric properties are discussed and include invariance to rigid transform, robustness to
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small perturbation, generality such that a variety of input data can be accommodated

and applicability providing a measure with means to be utilised in multiple scenarios

(this typically becomes possible when a ground truth model is not a requirement). As

discussed here, there is a body of work detailing surface reconstruction evaluation how-

ever fewer multi-view registration specific metrics are found. In the following chapter

(see 3.5) we introduce novel registration specific metrics by taking into account the

desirable properties considered in this section that allow us to compare multi-view

registration results both quantitatively and qualitatively.

2.5 distributed computation

Distributed computation is explored in this thesis to improve the runtime of compu-

tationally demanding registration. Distributed compute clusters allow the computing

power of heterogeneous (and homogeneous) resources to be utilised to solve large-scale

science and engineering problems. One class of problem that has attractive scalability

properties, and is therefore often implemented using compute clusters, is task farming

(or parameter sweep) applications [239]. A typical characteristic of such applications

is that no communication is needed between distributed subtasks during the overall

computation. However interesting problem instances have also been formulated under

large-scale task farming such that global communication between subtask sets take place

[282]. This allows the formulation of problems that contain subtasks possessing both

independent and synchronised elements. This thesis explores these problem formulation

strategies applied to the problem of global multi-view point cloud registration.

Employing multicore processors to parallelise the task of 3D point cloud registration

in particular has been recently investigated [170] by extending a previously introduced

coarse binary cubes registration approach. In contrast to the work presented in this

thesis, Martinez et al. perform parallel evaluation of prospective transform solutions in

a globalised Nelder-Mead search whereas this thesis explores multicore parallelism at a

granularity that distributes the registration of an entire point cloud (viewpoint) per core.

In chapter 4 we propose a framework called semi-synchronised task farming in order

to address the global simultaneous view registration problem feasibly for very large

point cloud view-sets in problem instances with time constraints. We propose to handle

global communication between task sets with a post task set completion synchronisation
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step, following a round of concurrent computation. Our framework is inspired by the

influential Bulk Synchronous Parallel (BSP) model [267]. The BSP model of parallel

computation is originally defined as the combination of three attributes; (1) A number

of components, each performing processing and/or memory functions; (2) A router

that delivers messages point to point between pairs of components; and (3) Facilities

for synchronising all or a subset of the components at regular barrier intervals (see

Figure 7).

Figure 7: In the BSP model, computations are performed in supersteps where each superstep

consists of three phrases (1) simultaneous local computations of each processor, (2)

communication operations for data exchange between processors, and (3) a barrier

synchronisation to terminate the communication operations and to make the data

sent visible to the receiving processors. Figure adapted from [216].

There have been a number of previous general BSP library implementations, for exam-

ple the Oxford BSP Library [125], Green BSP library [108], BSPlib [126] and Paderborn

University BSP library [28]. They vary in the set of communication primitives provided,

and in how they deal with distribution issues such as reliability (machine failure), load

balancing, and synchronisation. The scalability (and fault-tolerance) of such BSP im-

plementations has not however been evaluated beyond several dozen machines.

In this thesis we apply a task-farming framework, inspired by the BSP model, to

the multi-view registration problem thus providing a novel parallelisation strategy for

point cloud registration. By predicting time savings that our framework provides in

simulation, and validating these predictions on our chosen application in practice, we
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are able to reliably estimate performance gains obtained when using a BSP framework

to tackle resource intensive registration tasks distributed to many cores. The usefulness

of these runtime performance predictions when utilising hundreds of processing cores

and the generalisability of the introduced BSP framework to a range of additional

complex problems, drawn from real-world computer vision tasks, was recently explored

in [178].

2.5.1 Task farming

The task farming model of high-level parallelism has been the basis for much HPC clus-

ter based work with recent examples utilising HT Condor [257], Google’s MapReduce

[68] and Microsoft’s Dryad [134]. The HT Condor framework is able to harnesses idle

cycles from both a network of non-dedicated desktop workstation nodes (cycle scaveng-

ing) and dedicated rack-mounted clusters. The framework then employs these cycles to

run coarse-grained distributed parallelisation of computationally intensive tasks. Task

farming is also common in data centres, for example MapReduce and Dryad both make

use of task farming to schedule parallel processing on large terabyte scale datasets. In

systems such as these a master process manages the queue of tasks and distributes

these tasks amongst the collection of available worker processors. The master process

is typically also responsible for handling load balancing and worker node failure. In the

current work, master and worker node interaction is handled by Sun Grid Engine (SGE)

[105] using a batch queue system similar to the Condor framework. This queueing sys-

tem is responsible for accepting, scheduling and managing the distributed execution of

our parallel tasks. This approach allows the distribution of arbitrary tasks as there is

no requirement for a specialised API.

Dedicated parallel computer architecture has also been employed to develop com-

puter vision systems. In [217] a Beowulf architecture dedicated to real-time processing

of video streams for embedded vision systems is proposed and evaluated. The paral-

lel programming model made use of is based on algorithmic skeletons [61]. Skeletons

are higher-order program constructs that encapsulate common and recurring forms of

parallelism to make them available to application developers. Skeleton-based parallel

programming methodology offers a partially automated procedure for designing and

implementing parallel applications for a specific domain such as image processing. An
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application developer provides a skeletal parallel program description, such as a task

farm, and a set of application specific sequential functions to instantiate the skeleton.

The system then makes use of a suite of tools that turn these descriptions into exe-

cutable parallel code. The system in [217] was tested by implementing simple image

processing algorithms such as a convolution mask and Sobel filter.

In comparison to classical HPC applications, embedded computer vision on dedicated

parallel machines will often be able to offer advantages such as mobile, real-time per-

formance yet places demands on programmers if no high-level parallel programming

models or environments are available such as skeletons or the SGE that we make use

of in this work (see chapter 4 for detail). If these tools are not available then program-

mers must explicitly take into account all low-level aspects of parallelism such as task

partitioning, data distribution, inter-node communication and load balancing. If devel-

oper expertise lies in (for example) image processing, rather than parallel programming,

then accounting for these low-level considerations likely results in long and error-prone

development cycles.

In contrast to [217] in this thesis we perform task farming as opposed to low-level

data parallelism involving geometric partitioning of images for image processing tasks.

This results in a coarser level of abstraction that we apply to high level computer

vision problems involving large data sets such as the discussed large-scale point cloud

registration problems. It is for this reason that we consider the BSP model a good basis

for our framework. The original BSP model considers computation and communication

at the level of the entire program. The BSP model is able to achieve this abstraction

by “renouncing locality as a performance optimisation” [242]. This in turn simplifies

many aspects of algorithm design and implementation and does not adversely affect

performance for most application domains. Low-level image processing however is an

example domain for which locality might be critical so a BSP based framework is likely

not the best choice there.

Parallel and distributed computing systems are designed with performance in mind

and significant previous work has been carried out developing approaches for perfor-

mance modelling and prediction of applications running on HPC systems. In addition

to the BSP inspired framework in this thesis we formulate a performance model al-

lowing the prediction of run time performance of the parallel algorithms implemented

within the framework. Application performance modelling involves assessing application
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performance through system modelling and is also an established field [116]. Several

examples of where this approach has proven advantageous include: input and code opti-

misation [187], efficient scheduling [246] and post-installation performance verification

[146]. The process of computational modelling itself can be generalised to three basic

approaches; modelling based on analytic (mathematical) methods, (e.g. LoPC [100]),

modelling based on tool support and simulation (e.g. DIMEMAS [155], PACE [191]),

and a hybrid approach which uses elements of both (e.g. POEMS [4], Performance

Prophet [202]). In this thesis we choose a hybrid approach and combine basic analyti-

cal modelling inherited from the BSP model with traditional code profiling. Details of

our performance modelling approach are provided in chapter 4, section 4.3.3 and the

approach is then applied to point cloud registration problems, with a detailed perfor-

mance analysis to demonstrate framework scalability in section 4.4. We apply our BSP

inspired framework to large-scale depth image and point cloud registration in chapter

5 and explore the computational benefits this strategy is able to afford using both

synthetic and real large view-set registration problem instances.

2.6 summary

In this chapter we have highlighted the established history of image registration and

surveyed a number of existing approaches for pairwise and multi-view point cloud

registration in the literature. Most of the techniques incorporate distance minimisation

in one form or another - typically with the use of iterative point pair correspondence

association. Such models iteratively associate point pairs over the set of viewpoints to

be aligned allowing registration algorithms to find sets of suitable spatial transforms

facilitating convergence to good view alignment. Many ICP [21] variants exist and

typically provide modifications to the point matching strategy. However, such low-level

pairwise statistics are often not enough to provide good results in the multi-view case

and therefore various ad-hoc multi-view strategies have been proposed. State-of-the-art

techniques additionally incorporate soft point pair correspondence [106, 253] evaluation

to provide improved tolerance to noisy data and bad initial coarse view alignment at

the cost of additional computational expense. In the case of multi-view registration,

the majority of state-of-the-art registration techniques select one of the point sets as

the “model” and perform pairwise alignments between the other sets and this set. A
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drawback of this mode of operation is that there is no guarantee that the model-set

is free of noise and outliers, which contaminates the estimation of the registration

parameters. Unlike previous work, the proposed method treats all point sets on an

equal footing: they contribute to a kernel density estimation and the task of finding

optimal alignments is cast as an optimisation problem.

Computational cost becomes an important factor when considering the large view-set

data offered by contemporary high frame rate depth sensors and various routes exploit-

ing parallelism at assorted granularities are emerging to address this. As discussed, a

registration technique’s efficacy is determined by its accuracy and the computational

complexity of its component algorithms with a suitable balance between accuracy and

speed being a generally sought-after trait for modern practical applications making use

of 3D point cloud data.
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3.1 introduction

In this chapter we present our point set registration and implicit surface approximation

framework based on density estimation. We show how this framework can be used to

solve the multi-view registration problem enabling the robust registration of multiple

sets of points representing depth measurements sampled from varying viewpoints of

object surfaces. Our approach to density estimation is non-parametric, and provides

an implicit surface estimate using the available point data as evidence. By iterating be-

tween updating this estimated surface shape and improving the alignment of individual

viewpoints in relation to our surface estimate, we bring all partial views into globally

consistent alignment. We apply this approach to 3D surface data, represented by multi-

ple dense point clouds, where we assume that point correspondences between scans and

view order are initially unknown. Given many partial 3D data sets, typically captured

by active or passive depth sensors, from differing viewpoints, our density estimate ap-

proximates the underlying sampled surface and using this surface estimate we define an

energy function that implicitly considers the spatial position of all partial viewpoints

simultaneously. We use this density estimate to guide an energy minimisation in the

transform space, aligning all partial views robustly.

Given many partial object views, we estimate a density function of the point data

to determine an approximation of the sampled surface. With every point of the input

data we associate a local kernel capturing the likelihood that the 3D point is located

on the sampled surface using neighbouring points as evidence. This measure takes into

account the normal directions estimated at the scattered points. Using this density

function we employ an energy minimisation strategy that implicitly considers all view-

55
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points simultaneously. Using the density estimate we guide an energy minimisation in

the transform space, aligning all partial views robustly. We evaluate this strategy quan-

titatively on synthetic and range sensor data where we show improved robustness and

registration accuracy through comprehensive experiments that compare our approach

with a selection of the main competing frameworks for this task.

Our experiments on a variety of data sets demonstrate the advantages of our kernel

density registration approach: First, we show that our density estimate is capable of

accurately representing object surfaces robustly, and demonstrate that these surface

estimates are accurate enough to be used for the task of point set registration. Second,

we apply our kernel density registration approach to themulti-view registration problem,

and show that performance is better than the state-of-the-art on a number of benchmark

data sets.

In this chapter we introduce our non-parametric kernel density estimation technique

to address the point cloud registration problem. After briefly introducing the elementary

components of the canonical kernel density estimation technique, we provide detail on

the importance of bandwidth parameters, how these may be selected and the role

they play in the problem instances addressed in this work. We then go on to describe

our framework for addressing point cloud registration problems utilising kernel density

estimation. We document experiments that provide evidence that this approach gives

improved performance when solving point cloud registration problems. We conclude

the chapter with some discussion and suggestions for future work.

3.2 density estimation

Density estimation techniques provide a set of tools for constructing an estimate of an

unknown density function, based on observed data. The unknown density function rep-

resents an underlying density according to which a large population is distributed. The

observed data points are usually thought of as a random sample from that population.

Density estimation techniques can be split into those that make assumptions about

the form of the density in question, parametrised in some way (parametric estimation),

and, alternatively, those that avoid making such assumptions about the form of the

underlying distribution (non-parametric statistics). The approaches described in this

chapter make use of various tools and concepts from the large body of work that con-
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cerns non-parametric density estimation. In the following sections related foundational

concepts are briefly outlined.

3.2.1 Non-parametric density estimation

When high accuracy or assumption-free density estimation is a requirement, non-parametric

methods are often an appropriate choice. The general formulation of non-parametric

density estimation is an approach to approximate a density function f (x) at any point

x without making assumptions about the form of f . The key idea involves indepen-

dently looking at each point x at which we want to approximate the density and then

deciding which of the available data observations p1, . . . , pN should be used to estimate

f (x) at x. This is typically done by only taking data observations in a neighbourhood

around x into consideration. In such cases only the observations contained in a specified

interval are used to approximate the density f (x) at x.

A simple example in the one dimensional case involves considering data observations

contained in an interval of length 1 centred at x. In this case all observations pi where

the absolute difference from x is greater than 0.5 are ignored in the estimation.

In general if x is a point at which the density function is to be estimated, then A

is a neighbourhood such that a data observation pi contributes to estimate the density

f (x) at x if and only if pi is contained in A. For N observations p1, . . . , pN the density

function at x can then be approximated as:

f̂ (x) ∼=
k

NV

where V is the volume of the neighbourhood A considered and k denotes the number of

data observations contained in A. The general formulation for non-parametric density

estimation can then be found as follows: consider the probability that a point x, that

has been drawn from the distribution f (x), falls into a region A of the sample space.

Call this probability:

P =
∫
A
P (t) dt

Then for a set of N data points, the probability that exactly k of these fall into the

region A can be modelled using a binomial distribution:
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P (k) =

(
N

k

)
P k(1− P )N−k

From the properties of the binomial probability mass function we can estimate the

mean and variance of k
N

as:

E

[
k

N

]
=

1
N
E [k] = P V ar

[
k

N

]
=

1
N2V ar [k] =

P (1− P )
N

As N increases the variance will decrease so in the limit, as N tends to infinity, a good

estimate of P is:

P ∼=
k

N

However, if it is also assumed that region A is so small that the density function, f (x),

does not vary within A, then the probability that x is in A is given by:

P =
∫
A
P (t) dt = P (x)V

where V is the volume enclosed by A. By combining these two results for P , the general

form of non parametric density estimation is reached:

P (x) ∼=
k

NV

To improve how accurate this estimate of P (x) is, the size of V should approach zero.

However if the size of V gets too small the volume will not enclose any of the observed

data points. Therefore, a good compromise must be found, such that V is large enough

to include data points but small enough to give a good estimate of the probability

P (x).

3.2.2 Generalisation

One disadvantage of simply using intervals to define the data point contributions to

the density estimate is that if an observation is in the interval, the distance between x
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and the observation is not taken into account. This may lead to a poor approximation

of the density function at x. For example, when estimating the density at x, if there

are many observations at the edge of the interval but only a few very close to x, this

would not be taken into consideration when estimating the density. It may therefore be

reasonable to give a stronger weighting to observations closer to x than those that are

farther away.

To determine the significance of an observation pi when estimating the density func-

tion at x, a non-negative function G (x, pi) is defined. In the previous formulation above,

G (x, pi) would equal 1 if observation pi was in the unit interval and otherwise G (x, pi)

would be equal to 0, corresponding to the observation being ignored in the estimation

of x.

In the general case, for point x, the function G (x, pi) for i = 1, . . . ,N determines

the significance of the observation pi in the estimation of the density at x. The density

function at x is then approximated as:

f (x) ≈
k (x)

N · V (x)
(2)

where

k (x) =
N∑
i=1

G (x, pi) V (x) =
∫

R
G (x, y) dy

3.2.3 Kernel density estimation

Kernel density estimation constitutes a set of classical non-parametric density estima-

tion techniques that date back to [218] and [197] and reside in the framework outlined

above. Estimating density functions with similar non-parametric techniques (e.g. his-

tograms), can result in density estimates that are not smooth and estimation accuracy

performance can be influenced by e.g. the choice of histogram bin start and end posi-

tions. Using statistical kernels for density estimation attempts to solve these shortcom-

ings. For example, through the choice of a suitable kernel, the estimation provided can

be endowed with properties such as smoothness and continuity.

The kernel density estimation approach involves taking the general density estima-

tion formulation outlined previously and firstly fixing the volume V to be 1 for all x
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and secondly defining the general formulation function G (x, pi) as a one-dimensional

function K (x− pi) that only depends on the absolute difference between x and pi and

not on the actual data point values. This implies G (x, pi) = G (pi,x).

Let u denote the difference x−pi. Then the functionK (u) is symmetric, non-negative

and has integral 1. The function is symmetric since K (x− pi) = K (pi − x) and non-

negative since the general formulation function G (x, pi) is non-negative. A statistical

kernel is a non-negative, symmetric function centred at zero with integral 1. Therefore

we can view K (u) as a kernel. By reconsidering the general formulation of a non-

parametric density estimate (Equation (2)), fixing the volume V (x) to 1 and defining

k (x) in terms of this statistical kernel:

k (x) =
N∑
i=1

G (x, pi) =
N∑
i=1

K (x− pi)

we can approximate the density function at x using the kernel K as:

f (x) ≈ f̂ (x) =
1
N

N∑
i=1

K (x− pi) (3)

3.2.4 Popular kernel choices

The choice of kernel function influences the effect that observed data points have on the

estimation at point x. Popular choices of kernel functions include: uniform, Epanechikov

and Gaussian kernels with further options including triangular, biweight, triweight,

tricube and cosine kernels. Figure 8 gives an illustration of the kernel density estimation

technique for scattered data samples (‘+’ crosses) in one dimension. Local maxima of

the density estimation f̂ (·) (black line) naturally define clusters in the scattered point

data. The kernel choice in the example given is Gaussian (blue).

A uniform kernel takes value 1 if the absolute value of u is less than or equal to

0.5 and 0 otherwise. Note that the estimated density is not smooth since the kernel

summation only takes integer values; the estimated density function will have discon-

tinuities and takes a constant value on intervals of length 0.5. The density estimate is

often prone to local noise in this case. Conversely, a Gaussian kernel never takes the

value zero. Therefore a typical Gaussian kernel considers every observation when esti-

mating the density function at point x, but observations close to x are weighted higher
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than those further away. Density functions estimated using Gaussian (and other e.g.

Epanechnikov) kernels are therefore smooth and typically produce smooth estimates as

can been observed in Figure 8.

Figure 8: Example of the kernel density estimation technique for 1D data points. Data points

are marked with the ‘+’ symbol. Note that local maxima of the kernel estimation

define clusters of the original data. The density approximation f̂ (·) (Equation (3)) at

a given location x is the summation of values contributed by local Gaussian kernels

K, located at each data point.

3.2.5 Kernel bandwidth

The discussed uniform kernel only considers observations with an absolute distance

from x that is smaller than 0.5. In order to extend the neighbourhood of considered

observations, one possibility is to transform the kernel. As an example, if we double

the size of the neighbourhood considered, then the uniform kernel behaves as follows: if

the absolute distance to x is smaller than 1, the uniform kernel takes the value 0.5; if

the distance is greater than 1, it takes the value zero.

This change to the neighbourhood is typically captured by a bandwidth parameter

h > 0. The significance of observation pi can therefore be defined:

K

(
x− pi
h

)
Note that by including this bandwidth parameter h, both the summation of the kernel

contributions k (x), and the volume V , found in the general formulation (Equation (2))

are influenced. The volume V is determined by the fact that the integral of K (u) = 1.

Therefore:
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V =
∫

R
K

(
u

h

)
du = h

Applying these considerations to the general formulation, we obtain the following ap-

proximation of f (x) from N observations p1, . . . , pN as:

f (x) ≈ f̂ (x) =
k(x)

N · V (x)
=

1
Nh

N∑
i=1

K

(
x− pi
h

)
=

1
N

N∑
i=1

Kh (x− pi) (4)

Equation (4) provides the standard kernel density estimate for univariate distributions

where Kh indicates a kernel employing a scalar bandwidth h. The two parameters

required by kernel density estimation have now been established: the kernel function

and the bandwidth parameter. It is widely agreed that the selection of an appropriate

bandwidth h is important. In practice, the choice of the kernel is not as important as the

choice of the bandwidth. A theoretical background for this observation is provided by

[169] who note that kernel functions can be rescaled such that the difference between two

kernel density estimates using two different kernels is small. Implications of appropriate

bandwidth choice are considered in section 3.2.7.

The following section briefly outlines extending kernel density estimation to the mul-

tivariate case and then the process of optimal bandwidth selection is discussed.

3.2.6 Multidimensional kernel density estimation

Multidimensional kernel density estimation provides a natural extension of these esti-

mators to multivariate data. Due to work carried out during recent decades multivariate

kernel density estimation has reached a level of maturity comparable to the univariate

counterparts. In a similar fashion to the univariate case let p1, p2, . . . , pN be a set of

d-variate samples drawn from an unknown multivariate distribution with density func-

tion f (x). The multidimensional kernel density estimate of f (x) can then be defined

as:

f̂H (x) =
1
N

N∑
i=1

KH (x− pi) (5)

where

KH (u) = |H|−
1
2K

(
H−

1
2u
)
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In the multidimensional case the bandwidth is now defined by a symmetric, positive

definite d× d matrix H. Similar to the 1D case this parameter set again dictates the

amount of smoothing induced by the estimate but also now controls a smoothing ori-

entation that was undefined in the case of univariate kernels.

Parametrising this bandwidth matrix typically follows one of three parametrisation

classes. In increasing order of complexity these classes are:

• S the class of positive scalars times the identity matrix

• D diagonal matrices with positive entries on the main diagonal

• F symmetric positive definite matrices

The class of kernels defined by S bandwidth matrices have the same amount of

smoothing applied in all coordinate directions, D matrices allow for varying amounts of

smoothing in each dimension and kernels making use of F matrices allow for an arbitrary

amount and orientation of smoothing in each dimension. Use of kernels employing S

and D bandwidth matrices tend to be widespread due to computational reasons, but

previous work has shown that gains in density estimation accuracy may be obtained

when using kernels that utilise the more general F class of bandwidth matrix [77],

affecting both the size and shape of the kernels used.

3.2.7 Optimal bandwidth selection

In both univariate and multivariate cases, selecting an appropriate kernel bandwidth

is of great importance as this free parameter h (or matrix of parameters H) typically

exhibits a strong influence on the density estimate. The problem of selecting a scalar

bandwidth in univariate cases can be considered well understood [78]. A selection of

plausible optimisation methods exist that couple good theoretical properties with strong

performance in practice (see [141] for a review). Many of these techniques can be

extended to multivariate cases in a straightforward fashion if H is constrained to be a

diagonal matrix (c.f. section 3.2.6 and [273], [224] for further detail). However, imposing

these constraints on the bandwidth matrix may produce decidedly suboptimal density

estimates, even in cases where data dimensions have been pre-scaled or pre-sphered

([272], [79], [78]).
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Using a bandwidth that is too small will often result in an under-smoothed estimate

that is likely to contain many spurious data artefacts. Conversely using too large a

bandwidth can result in an over-smoothed estimate, leading to much of the underlying

structure of the distribution being obscured. A bandwidth that is too small produces

a large variance and a small bias whereas a bandwidth that is too large leads to a low

variance and large bias. It is in this regard that bandwidth selection corresponds to

balancing bias and variance. In some situations, it is sufficient to subjectively choose a

smoothing parameter by looking at the density estimates produced by a range of band-

widths. However, as we note, many proposals providing automated bandwidth selection

strategies are also offered in the statistical literature. Common recommendations for an

appropriate criterion to optimise are briefly outlined below and, with respect to these,

the prevailing classes of methods for automated bandwidth selection introduced.

3.2.7.1 Optimisation criteria

The most popular criteria to measure the performance and accuracy of a density esti-

mate are the Integrated Squared Error (ISE) and the Mean Integrated Squared Error

(MISE). These attempt to quantify the difference between the true density and a given

estimate. As the name suggests, the MISE is the expected value of the integrated L2

distance between the density estimate and the true density function f (the ISE). Since

the ISE can be treated as a random variable that depends on the true function f (x),

the estimator f̂ (x), and the particular random sample that is used to obtain the esti-

mate, it is common practice and appropriate to look at the expected value of the ISE,

the mean integrated squared error. The MISE takes the mean value of the integral to

serve as a measure of error between the true function and the estimate of the function.

In the multivariate case these minimisation criterion are formally defined as follows:

ISE(H) =
∫ [

f̂H (x)− f (x)
]2

dx (6)

MISE(H) = E

∫ [
f̂H (x)− f (x)

]2
dx (7)

These criteria obviously coincide asymptotically but for finite samples the kernel band-

width H that minimises the ISE and MISE may differ. Both metrics (Equations (6),(7))

make use of an L2 norm and unqualified integrals refer here (and in all subsequent in-

stances) to integration over the real line R or whole space. ISE and MISE remain the
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most commonly used metrics due to their tractability and wide spread implementation

in bandwidth selection software. Some authors also consider KL divergence, Hellinger

distance and L1 metrics (e.g. [71]), in attempts to handle cases where L2 metrics are

not appropriate (e.g. robustness to outliers) and report appealing properties such as

ease of error visualisation. A comprehensive comparison of these distance considera-

tions is found in [70]. Once a metric is selected, the optimal bandwidth is obtained by

minimising H over the space of symmetric, positive definite d× d matrices. In the cases

of ISE and MISE this gives:

HISE = arg min
H

ISE(H)

HMISE = arg min
H

MISE(H)

The remaining problem is that the true density function f is generally unknown so these

criteria do not result in closed-form expressions. In such cases, the bandwidth selection

task becomes that of minimising an approximation to the chosen criteria. At the core of

most popular methods involves applying a minimisation strategy to an approximation

of the ISE or MISE. There is no clear consensus on which criterion should be chosen

due to the fact that no single procedure can be considered optimal in every situation.

Some further detail on this debate is given in [266, 160].

3.2.7.2 Bandwidth selection methods

Prominent classes of approach that perform optimal bandwidth criteria minimisation

tasks can be distinguish between using the optimality criteria outlined previously. The

main classes are: Plug-in methods (that typically try to minimise the MISE), rules-

of-thumb, cross-validation methods (that consider the ISE) and variable bandwidth

estimators. Here these approaches are briefly summarised in relation to the bandwidth

selection approach made use of in this work. The interested reader is referred to [122]

for an in-depth review.

Plug-in methods:

Plug-in methods tackle the problem of approximating the MISE minimisation criteria

by using a Taylor series to construct an asymptotic expression, the AMISE (Asymptotic
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MISE), which is then utilised to create tractable bandwidth selectors. Performance of-

ten depends on the choices of pilot bandwidths in practice (intermediate bandwidths

selected in order to approximate the AMISE, defined in terms of higher order derivatives

of the unknown true density f). If good pilot estimators (several have been proposed

e.g. [49]) are employed then good minima (bandwidth choice) have been reported. Due

to this dependency, plug-in methods are not entirely data adaptive as they require pi-

lot bandwidth information to make derivative estimates and may, therefore, perform

poorly for small sample sizes.

In the case of bivariate data, various works have considered plug-in algorithms

[272, 79] for obtaining suitable density estimates and have shown that the bandwidth

found using this strategy converges in probability to the true optimal bandwidth hAMISE.

These algorithms cannot however be directly extended to the general multivariate set-

ting. The underlying principle is that an expression involving an unknown term can be

tackled by replacing the unknown term with an estimate. A comprehensive review of

plug-in methods is provided by [266].

Rule-of-thumb methods:

Simple rule-of-thumb methods attempt to optimise the same criteria as plug-in methods

introduced above and essentially provide a simplified plug-in bandwidth selector. Sil-

verman’s rule-of-thumb [240] is probably the most popular of these. Recall that plug-in

methods make use of further bandwidth estimators to approximate higher derivatives of

f . Silverman’s rule-of-thumb involves simply estimating f ′′ directly using a parametric

normal density. This reference distribution is rescaled to have variance equal to the sam-

ple variance. The approach was originally put forward in [69], where it was proposed for

histograms. This procedure provides a good estimate of the optimal bandwidth if the

true density function is nearly normal. However, if this is not the case (e.g. multimodal

densities) Silverman’s rule-of-thumb is likely to fail. The plug-in approach, introduced

previously, can be considered a refinement to this rule-of-thumb approach.

Cross-validation methods:

Cross-validation bandwidth selectors are the main alternative to plug-in selectors and
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typically attempt to minimise the ISE. These selectors provide a commonly imple-

mented heuristic for selecting kernel bandwidths and are able to find a data-driven

solution without making assumptions about the shape of f (x) or the family of distri-

butions to which the unknown density belongs. Comparing cross-validation with plug-in

methods, the ISE is considered by some an unrealistic target to minimise as it takes the

true density of f into account too much. Methods minimising the ISE can only hope

to obtain good results when the sample at hand is “typical” and reflects the structure

of the true distribution well. This observation often leads to the counter-claim that it

is only reasonable to measure the performance of ISE methods in terms of estimating

f in the average case. Furthermore, cross-validation is said to have stability issues for

large data sets [237] and “often under-smooths in practice, in that it leads to spurious

bumpiness in the underlying density” ([241] pp. 76).

A positive point to note is that cross-validation methods allow the selected bandwidth

to automatically adapt to the smoothness of f . This is in contrast to plug-in methods

and Silverman’s rule-of-thumb which are less volatile but not entirely data adaptive and

may therefore not work well for small sample sizes. Plug-in methods often exhibit faster

convergence rates than cross-validation, however making use of the AMISE depends on

asymptotic arguments that arguably have less intuitive interpret-ability than the MISE

(and ISE).

3.2.7.3 Variable bandwidth selection

Common criticisms of the previously surveyed automatic selectors are that cross-validation

tends to under-smooth and suffers from high sample variability while plug-in estimates

deliver a more stable estimate but typically over-smooth. A fixed bandwidth, found by

either approach, may mean that in regions of low density all samples will fall in the tails

of a kernel and result in very low weighting, while regions of high density will find an

excessive number of samples in the central region producing very high weighting. As is

often noted (e.g. [230]), increased smoothing is typically required to counter excessive

variation in the tails of a distribution where data are scarce while less smoothing is

needed near the mode(s) of a distribution to prevent features from being diminished in

the resulting estimate. Several qualities typically present in our point set registration

task (estimates are multimodal and multivariate) result in a bias-variance trade-off
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that drives most global bandwidth choices to estimates that may lack visual appeal

and make feature recognition difficult.

Such situations have motivated the notion of variable bandwidth functions that allow

varying amounts of smoothing depending on local characteristics of the data and the

density being estimated. Introducing a variable bandwidth attempts to fix the high-

lighted problems by varying the width (and shape) of a kernel in different regions of the

sample space. Allowing the bandwidth to vary provides the flexibility to use smaller

bandwidths (and reduce the bias) in regions where there are many observations, and

larger bandwidths (reducing the variance) in regions where there are relatively few ob-

servations. This freedom makes variable bandwidth estimation a particularly effective

technique when the sample space is multi-dimensional [39]. The term variable kernel

estimates was introduced in [32] which took multivariate densities into consideration

and investigated a local bandwidth such that kernels each have their own size and

orientation regardless of where the density is to be estimated. In [32] it is originally

suggested that using a local bandwidth such that h(xi) is the distance from xi to the

k-th nearest data point which remains a popular strategy and also inspires the adaptive

bandwidth selection strategy introduced in this thesis (see section 3.3.4.1 for further

detail).

Further approaches set an individual bandwidth hi for each query point by utilising a

pilot density estimate (i.e. an initial fixed bandwidth kernel estimate of the density, c.f.

section 3.2.7.2). In this manner the work of [3] select each hi to be inversely proportional

to the square root of the density at xi by making use of a pilot estimate to obtain an

initial estimate for f (xi). It is noted by [240] that this method of producing an initial

density estimate is insensitive to the fine detail of the chosen pilot (commonly Gaussian).

Since this initial variable bandwidth work, two main strategies of selection have

evolved. Rather than using a single bandwidth matrix H to estimate f at every query

point x, the first strategy employs a bandwidth matrix H (x) that varies according to

the query point x at which an estimate of f is required. This is referred to as a balloon

estimator and takes the form:

f̂H(x)(x) =
1
N

N∑
i=1

KH(x) (x− pi)
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The balloon estimator was first introduced in the form of the k-th nearest-neighbour

estimator. In [161], H (x) was based on a suitable k such that the bandwidth was a

measure of distance between x and the k-th data point nearest to x. In this way the

kernel width is varied to make it proportional to the density at the query point.

A second variable bandwidth strategy involves having the bandwidth H (Aj) vary

with the set of observed data points Aj in some neighbourhood of the query point xj .

This type of estimator is often known as a sample-point or point-wise estimator and an

initial example of this strategy is attributed to [32]. Analogously it takes the form:

f̂H(Aj) (xj) =
1
N

N∑
i=1

KH(Aj) (xj − pi)

The introduced strategies for density estimators have been studied extensively. Jones

et al. [140] give a comparison of such estimators in the univariate case while Terrell,

Scott and Sain [256, 225] have examined both formulations in the multivariate setting.

Applying variable bandwidth techniques to computer vision problems remains a popular

approach and includes recent work on e.g. background subtraction, blob detection and

hand-written digit recognition, amongst others [62, 185, 255].

In this work we introduce a hybrid balloon estimator using a nearest-neighbour ap-

proach such that the size and shape of each kernel is affected by sample points in

the neighbourhood of the query point. We provide detail of this bandwidth selection

approach in section 3.3.4.2.

3.2.7.4 Discussion

It is clear that there is not a single procedure to determine the optimal bandwidth

in every problem instance. The optimal method in each case depends upon both the

available samples and the particular goal of the density estimate. Many automatic

methods make strong assumptions that go against core ideas of non-parametric density

estimation. Experimentation is nearly always required, as different kernel widths and

shapes may provide different information about the data. Moreover, even bandwidths

selected using asymptotically optimal criteria may show poor behaviour in simulation

([119]). As a consequence, one valid approach is to determine bandwidths by different

selection methods and compare the resulting density estimates. The practitioner is

generally faced with a formidable computational cost for appreciable data set sizes and
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[112] note that this becomes even more prohibitive when models with different kernel

bandwidths must be evaluated to find an optimal model.

Kernel bandwidth values should be influenced by the purpose for which the density is

to be used. This in turn makes the purpose of the density estimate an influential factor in

choosing a bandwidth selection strategy. For example, a good density for estimating an

unknown curve is not necessarily also good for prediction tasks [240, 118]. Nevertheless,

an automatically selected bandwidth (e.g. using the surveyed methods) is often a good

starting point. In the following section, we introduce the kernel and bandwidth selection

choices made use of in this work and justify these decisions in relation to the problem

domain addressed and the techniques surveyed previously. Further detail on bandwidth

selection can be found in [118, 195, 275].

3.3 density estimation for point set registration

3.3.1 Point set registration

Point set representations regularly emerge in a diverse array of applications for com-

puter vision, computer graphics, medical image analysis and reverse engineering. Many

challenging problems in these fields can be addressed by making use of input data for-

mulated as, or summarised by, point sets. We focus on the important problem of point

set registration, which is encountered in areas such as stereo correspondence, shape

matching, feature-based image registration and model-based segmentation.

Point set registration can also be considered one of the crucial stages of surface mod-

elling and surface reconstruction from range data. The ability to easily create three-

dimensional models of physical entities and environments from depth data finds useful

applications in many of the fields highlighted above. Prominent examples include au-

tonomous navigation [278], accelerating the production of special effects and computer

games [289], various medical imaging applications (e.g. [60], [177]) and preserving cul-

tural heritage [133].

A rich history of work exists on registering pairs of point sets (see Chapter 2 for

review) that has resulted in fast and reliable algorithms for the task. The goal of re-

constructing models of scenes and objects from range data has facilitated a natural

progression to the study of the multi-view registration problem which has now also
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gained significant attention in the vision and graphics communities. The process of

estimating transforms between the point sets and generating complete object represen-

tations by fusing information from the partial views into a common coordinate frame

is known as the multi-view registration problem.

Here a statistical method to perform the multi-view registration of point sets is

proposed. Multiple object (or environment) viewpoints can be generated by varying

depth sensor (or target) position. Viewpoint depth information is then represented

by point sets typically in the form of 3D point clouds. The proposed method uses a

non-parametric kernel density estimation scheme. Kernel density estimation is a funda-

mental data smoothing technique where inferences about a population are made based

on finite data samples (density estimation principles are covered in sections 3.2.1 - 3.2.7).

We define a density function that reflects the likelihood that a point x ∈ R3 lies on the

unknown true surface S which is observed by point samples P. This surface estimate is

then used to guide view registration in the sensor transform space as we alternatively

refine view pose positions and our model surface estimate. Many algorithms have incor-

porated an update scheme wherein transforms and correspondences are alternatively

optimised while keeping the other fixed [21], [64], [90], [276] and [57]. By alternating

the update of the transforms and correspondence parameters, the two solutions tend

to mutually improve one another during the process and converge to a reasonable (al-

beit possibly sub-optimal) solution. Data sources and representations made use of in

our point registration work are briefly introduced and the multi-view registration prob-

lem is discussed before going on to formally define our particular density estimation

contributions relating to 3D point cloud data.

3.3.2 Data sources and representations

The Ohio State University range image database [192] is a popular collection of range

images made use of in our experimental registration work. The database contains images

of various objects with depth data available in greyscale GIF and sets of x,y,z fixed-

point measurements that can be used to produce point clouds. The range images are

obtained from both structured-light range sensors (courtesy of Michigan University)

and from Ohio State University’s Minolta 700 range scanner. In addition to the data

sets obtained from real range sensors, the database also contains images from synthetic
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models. The 3D models used to synthesise imagery are also available as part of the wider

OSU 3D database [192]. Example range images of sample objects from this resource

are provided in Figure 9.

Figure 9: Example range images of 6 data sets from the OSU range image database [192].

Further synthetic data sets are created by generating point clouds from simple math-

ematical functions and primitive geometrical shapes (see section 3.5 for details). Ad-

ditionally, point cloud data sets are obtained from physical objects locally by making

use of stereo camera systems. These point clouds are derived, using a standard pin-

hole camera model, from depth maps obtained using propriety stereo correspondence

software [73]. The Microsoft Kinect sensor [183] is also used to capture depth maps

that are made use of in Chapter 5. Further details on locally captured data sets and

experimental work carried out using them are found in Chapter 5.

A point cloud in n-dimensional space can be defined as a set of N points P =

{pi ∈ Rn | i = 1, . . . ,N}. Our experimental work mainly concerns registering point

clouds representing 3D spatial measurements, obtained from depth sensors, thus point

sets experimented with typically constitute sets of triples {(x, y, z) | ∀x, y, z ∈ R3}. In

summary the experimental work in this chapter makes use of a variety of depth sensor

measurement data sets, represented by 3D point clouds, providing varied input data in

an effort to explore and challenge our point set registration framework.

3.3.3 Multi-view registration

An initial coarse alignment of multiple viewpoints can often be found directly from the

sensor scanning system or interactively provided by the user. Modern depth sensors,

capable of capturing many frames per second, often provide a natural coarse alignment

as the spatial transforms between consecutive views are likely to be small. Using such a

coarse alignment as input, spatial registration can then be refined by accurately regis-

tering the overlapping parts of the viewpoints. This refined registration task is typically
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subdivided into the correspondence and alignment sub-problems. The correspondence

problem is defined as: given a point in one scan, determine the samples in other view-

points that represent the same physical point on an object surface. Note that with

data measurements from physical surfaces, an exact correspondence may not actually

be sampled due to sensor quantisation. The alignment problem involves estimating the

motion parameters that bring one scan into the best possible registration with the oth-

ers. Providing a ground truth for either of these objectives renders the other trivial to

solve.

As discussed in Chapter 2 (section 2.2), a simple method for accurately registering

many viewpoints involves sequential registration. The highlighted disadvantages of this

method included error accumulation, propagation and the necessary property that view

sequence order must be known or manually specified due to non-zero view overlap

constraints. In this work, we consider an alternative multi-view registration approach

of simultaneous global registration, where the aim is to align all views simultaneously

by distributing registration errors evenly between overlapping viewpoints. Previous

techniques that fall into this category of approach for tackling the multi-view problem

are surveyed in Chapter 2 (section 2.2).

Specifically, to register multi-view point cloud data from the set of views {V1,V2, . . . ,VM}

we firstly infer the likely true underlying surface structures from the potentially noisy,

coarsely aligned set of views. For each view Vm we wish to register, we use kernel density

estimation to construct a surface approximation Sm that takes into account the cur-

rent position of all other viewpoints {Vn|n = 1, . . . ,M ∧ n 6= m}. We use this inferred

surface to optimise the spatial pose of Vm, transforming the view in pose space and

assessing updated poses by creating and evaluating an energy function defined in terms

of how well the moving view Vm is aligned with the view set surface approximation Sm
(defined by the density estimate).

This process is performed for each viewpoint Vm that we wish to register simulta-

neously. By updating the pose of all views simultaneously to positions of high energy

(collective high density) we effectively move each view to a best fit position that max-

imises the likelihood that the view pose of Vm concurs with the current corresponding

surface estimate Sm (and therefore implicitly with other optimised scan positions). In

the following sections (3.3.4 - 3.3.5) formal detail is provided on the kernel density ap-

proach and energy functions we define and optimise to improve the registration of view
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Vm to inferred surface Sm. Detail on the multi-view alignment aspects of the strategy

are then provided in section 3.4.

3.3.4 Density estimation for 3D point clouds

Here we outline our density estimation approach that provides object surface estimates

from depth data and how we utilise these estimates for point set registration. The

method we introduce for estimating surfaces can be considered a non-parametric den-

sity estimation scheme. Given many partial surface views in the form of sets of depth

samples, we estimate a kernel density function of the data to determine a point-based

approximation of the sampled surface. We use this density to guide an energy minimisa-

tion in the transform space, aligning all partial views robustly. Here robustness implies

that a surface estimation is able to cope with noisy data that may contain a small

fraction of gross measurement errors. A concise introduction into the field of robust

filtering and estimation is available in [248]. In this way, the registration technique that

we develop is capable of handling noisy sets of points, sampled from object surfaces,

that may contain measurement noise and other outliers (see Chapter 5, section 5.4.2.1

for experimental evidence supporting this claim).

By analysing measurement uncertainty and variability in point-sampled geometry

we build a representation that focuses on using discrete surface data stemming from

3D acquisition devices where a finite number of (possibly noisy) samples provides in-

formation about an underlying unknown physical surface. We attempt to capture this

measurement uncertainty by introducing a statistical representation that quantifies,

for each point in space, the plausibility that the point is in a well registered spatial

position in relation to an implicit surface that fits the available data. This produces

a statistically likely generating surface in accordance with measurements offered from

each viewpoint. Our estimate is an adaptation of the generic kernel density estimation

technique outlined previously in section 3.2.6. The six standard steps of a pairwise reg-

istration process [223] note an explicit outlier removal stage. The strategy we propose

here will implicitly assign low weight to outliers to the point of effective exclusion from

consideration and we therefore do not specify an explicit outlier removal step. We use

local density maxima to guide our estimate of where the sampled surface is most likely

to exist and in turn update scan positions in relation to this inferred surface by spatial
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parameter optimisation in the transform space. Here we first discuss kernel and band-

width properties and then move on to multi-view and transform space optimisation

aspects of the approach.

3.3.4.1 Kernels for 3D point cloud density estimates

We implement a kernel function with properties that can be considered suited to the

nature of the multivariate spatial depth data considered in this problem domain. Similar

density kernel components have previously been shown to work well with point cloud

data for e.g. noise cleaning tasks [228]. The first component (of two) that the kernel,

centred on sampled data point pi, contributes to the energy function evaluated at point

x involves a local plane fitted to a spatial neighbourhood of pi. This plane is fitted using

all points located within a spatial distance h (the bandwidth) of pi (see Figure 10 for

a 2D example fit and section 3.3.4.2 for further details on bandwidth selection).

Figure 10: Two dimensional example of our projective distance kernel-component construction.

For the kernel centred on data point pi we find a least-squares line (plane with

trivariate data) fit through the neighbouring sample points (blue) where neighbour-

ing points considered are defined to be within bandwidth distance h. The point µi
is the centroid of the neighbouring points and eigenvectors vli are found using the

local point set covariance.

In practice we fit a least-squares plane (normal ni, centroid µi) to the points pj in

the spatial neighbourhood of pi as dictated by the bandwidth distance h. A method

detailing appropriate selection of values for h is provided in the following section 3.3.4.2.

The centroid µi is the weighted mean of the spatial neighbours of pi and the plane
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normal ni is found by applying singular value decomposition to a weighted covariance

matrix Σi such that neighbouring points pj nearer to pi are given higher weighting:

Σi =
∑

pj∈Neighb(pi)

(pj − µi) (pj − µi)T χ (pj , pi) (8)

where

χ (pj , pi) =
1√(

pxj − pxi
)2

+
(
pyj − pyi

)2
+
(
pzj − pzi

)2

We choose a simple reciprocal Euclidean distance weighting for χ, providing a monoton-

ically decreasing weight function based on spatial distance. Since Σi is symmetric and

positive semi-definite the eigenvalues λli, l = 1, 2, 3, are real-valued and non-negative

such that: 0 ≤ λ3
i ≤ λ2

i ≤ λ1
i and the inverse covariance matrix Σ−1

i can be used to

define an ellipsoid Gi with centre µi:

Gi = {x | (x− µi)T Σ−1
i (x− µi) ≤ 1} (9)

where the least-squares fitting plane is spanned by the two main principal axes v1
i ,v2

i

forming an orthonormal basis and the third v3
i provides the plane normal ni that we

require. A schematic example of this is depicted in Figure 11. If normals are provided

by the scanning device we can use them instead of the fitted estimates.

The distance from spatial point x ∈ Vm to this local fitted plane determines the

value of the first component (of two) that the local energy Km,i (x) contributes. Object

surface structure can be considered locally planar for sufficiently close proximity and

measurement points in well registered positions will therefore lie on or near these locally

planar regions. We orthogonally project x onto the plane and using the squared distance,

[(x− µi) · ni]2, we measure the first term of the local contribution Km,i (x) as:

[h2 − [(x− µi) · ni]2]
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Figure 11: In the 3D case we orthogonally project x (our density query point) to the locally

fitted neighbourhood plane and find the energy contribution of Km,i (x) using ni to

provide our estimated plane normal and µi as our weighted neighbourhood centroid.

The distance from x to this fitted plane (dashed line) dictates the contribution of

the local energy for the plane fit related to sample pi.

The bandwidth h provides the maximal distance that points may lie from pi and

still contribute to the estimation of the local plane that we project the query point

x to. The value of this first Km,i (x) term is therefore greater than or equal to zero

by definition and positions x closer to our locally fitted surface structure are assigned

higher energy than positions that are more distant. We claim that this orthogonal plane

projection term is a useful kernel component as it provides us with a good measure of

point registration error. It can be observed that for sufficiently close proximity, our

3D surface structure can be considered locally planar. Query points in well registered

positions will therefore lie on or near these locally planar regions.

Like many common kernels, an additional assumption is that the influence of point pi
on the estimated density at position x diminishes with increasing distance. To account

for this fact we make use of monotonically decreasing weight functions φi to reduce

influence as distance increases. Our second kernel-component therefore follows [228] and

makes use of a trivariate anisotropic Gaussian function φi, that we adapt to the shape

of ellipsoid Gi (Equation 9). This provides the additional property that the distance

weighting component is adapted to the point distribution in the spatial neighbourhood

of pi. This allows the kernel shape to adapt to the local point distribution. In practice

we estimate φi (·) parameters µi, Σi by reusing the same neighbouring points of pi
according to the bandwidth distance h. From these points we reuse the neighbourhood

mean vector µi and weighted covariance matrix Σi (Equation (8)). Making use of Σi

again in this second term provides an anisotropic weight derived from neighbouring
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points such that their distance from pi dictates their influence on the shape of the

kernel component. In summary, the second contribution to the local kernel is a trivariate

Gaussian weighting:

φi (y) =
1

(2π)3/2 |Σi|1/2
exp

(
−1

2 (y− µi)T Σ−1
i (y− µi)

)

The product of the local projective plane distance term and this trivariate Gaussian

term provide the local kernel contribution, centred on neighbouring point pi, to the

energy function evaluation of point x:

Km,i (x) = φi (x− µi)α ·
[
h2 − [(x− µi) · ni]2

](1−α)
(10)

The points x that we evaluate are spatial samples belonging to view Vm and α pro-

vides a tuning parameter that allows the influence of either kernel component to be

amplified or diminished (see section 3.5 for further detail). This leaves us to define

the full energy function Êm (·) modelling the likelihood that a point x is currently

lying on the unknown true surface approximated using points in the set of views

{Vn|n = 1, . . . ,M ∧ n 6= m}. This involves accumulating and summing the local

Km,i (x) contributed by all points pi in the spatial neighbourhood of x as defined

by the bandwidth h:

Êm(x) =
∑

pi∈Neighb(x)
wiKm,i (x) (11)

We are able to incorporate scanning confidence measures wi ∈ [0, 1] associated with

each measurement point pi by scaling the amplitudes of our energy functions. If no

scanning confidences are provided we use wi = 1 , ∀i.

The main motivation for formulating an energy function based on density estimation

to infer surfaces is our desire to solve the multi-view registration problem. The kernel

method provides a means to infer where physical surfaces exist that (1) improve in

confidence with additional data, (2) has a natural ability to account for outliers and

view misalignment and (3) provide smooth gradients for an (arbitrary) iterative optimi-

sation process, we provide strong justification for our strategy choice. Further, only a
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limited, finite number of sensor points are available to represent underlying continuous

object surfaces and additionally points are typically obtained from a depth sensor that

potentially produces noisy measurements. The location of every point is, therefore, par-

tially uncertain and we make use of density estimation tools in an attempt to alleviate

noted negative effects [137] that measurement noise can have on the quality of point

registration.

Kernel density estimation requires the entire set of data samples to be stored to pro-

duce a density estimate. This has merit in that there is no computation involved in a

model “training” phase because this simply requires storage of the data set. However,

this is also commonly noted to be one of the major weaknesses of the approach [24]

because the computational cost of evaluating the density grows linearly with the size

of the data set. This can often lead to expensive computation if the data set is large,

such as is often the case with the application considered here (sets of spatial point mea-

surements over many viewpoints). This effect can be partially offset, at the expense of

some additional one-off computation. Constructing tree-based search structures allows

nearest-neighbour points to be found efficiently during kernel construction, avoiding the

need to perform exhaustive distance searches on the data set. In practice we make use

of k-d tree structures [17] for this purpose. See Chapter 4 for further options explored

to mitigate computational cost.

3.3.4.2 Adaptive bandwidths for estimating point cloud density

As noted in section 3.2.7 one of the difficulties with the standard kernel approach to

density estimation is that the bandwidth parameter h, dictating kernel width, is often

fixed for all kernels. In regions of high data density, a large value of h may lead to

over-smoothing and a washing out of structure that might otherwise be extracted from

the data. However, reducing h may lead to noisy estimates elsewhere in the data space

where the density is smaller [24]. Thus the optimal choice for h may be dependent on

the location within the data space. The standard technique for addressing this problem

involves adaptively defining a unique bandwidth for each kernel (see section 3.2.7.3 for

common approaches).

Multi-view registration tasks commonly contain data sets that exhibit varying levels

of measurement redundancy in surface sampling locations and therefore distinct physi-

cal areas may be sampled at varying densities. In this problem domain, washing out of
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structure tends to manifest as over-smoothing of distinctive surface features and detail

that might prove useful during the registration process. Alternatively reducing a band-

width too much can result in fitting (and fabricating) unwanted surface structure to

small outlying depth measurements caused by e.g. sensor noise. Additionally, constant

kernel bandwidths may not be suitable for view sets with coarse initial alignment or

high sensor noise. For these reasons adaptive kernels are explored in this work as part of

the multi-view point cloud registration process. Here adaptive kernels are instantiated

using balloon-like estimators (see section 3.2.7.3) that make use of nearest-neighbouring

data samples. The k-nearest-neighbour kernel density estimate, originally proposed in

[166], is given by:

f̂h(KNN(x)) (x) =
1
N

N∑
i=1

Kh(KNN(x)) (x− pi) (12)

where h (KNN (x)) provides a kernel bandwidth defined as the Euclidean distance be-

tween the query point x and the k-th nearest-neighbour of point x among the available

point samples:

h (KNN (x)) = mink
(
{|x− pi|

∣∣∣ pi ∈ P}
)

where mink ({d}) is the k-th smallest member of the set {d}. In the case of multi-view

registration; sample x ∈ Vm and we find h (KNN (x)) by considering the Euclidean

distance to members of amalgamated point set P where P is the union of all points be-

longing to viewpoints {Vn|n = 1, . . . ,M ∧ n 6= m}. This KNN Euclidean distance, that

varies with sample location, is the bandwidth value assigned to h in the bi-component

kernel Km,i centred on each point pi (Equation 10) that contributes to the energy eval-

uation at point x. Using this approach, the distance to the k-th neighbour now governs

the degree of density smoothing and again there is an optimal choice for k that is neither

too large nor too small. We concede that this introduces a new parameter that must

be determined however, in comparison to a globally fixed value for h, this approach

inherently allows for adaptive behaviour in the local spatial distribution of data sam-

ples. We note that while density estimation using an optimal fixed global bandwidth,

obtained using e.g. AMISE based techniques (see section 3.2.7.2), allows the density

estimate to converge in probability to the true density f , the integral of a KNN density
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estimate is usually very close to 1, but is not exactly 1 [193]. This implies that the den-

sity estimate produced using k-nearest-neighbour kernels is not a true density model

because the integral over the entire data space diverges [24]. However, in practice we

find this method of bandwidth selection advantageous in conjunction with our kernel

construction as the shape of our local kernels is varied with the Gaussian component

(the shape of the Gaussian is fitted to the local point k-neighbourhood) and we vary

the size of each kernel by defining the projective distance component in terms of the

distance to the furthest nearby neighbouring observation.

Motivation for this adaptive bandwidth selection strategy can be observed in Figure

12. If a small, fixed bandwidth h is used to construct density estimates, local maxima

of Êm(·) can be observed distant from the most likely surface in regions of misaligned

point clouds and large-amplitude noise. During transform optimisation these maxima

may in turn attract data to an erroneous alignment in the registration process. The

alternative of adapting kernel sizes locally by varying h in relation to local density and

requiring a k-neighbourhood contribution to each density estimate leads to larger kernel

sizes in regions of misregistration and large-amplitude noise due to the typically lower

sampling density. The fixed bandwidth density estimation in Figure 12c illustrates such

local maxima.

The globally fixed spatial distance h results in the density estimate at some query

points (Figure 12c) being defined by as many as 25 local kernels yet, in sparser regions,

as few as 2 sample kernels are near enough to take part in local summations at density

query points. Alternatively in Figure 12d we force KNN=25 for kernel building and

therefore the 25 spatially nearest kernels, attributed to the 25 nearest data samples,

contribute to the density estimate at each and every query location x. This allows den-

sity estimate locations, with values defined by inconsistently distributed neighbourhood

samples, to adapt spatially. This in turn helps to dampen the effects of local maxima

and sensor noise. This typically results in smoother and more stable surface estimation

in areas where samples contain large scale measurement noise or view misalignment.

Additionally, scan misalignment has the potential to form “view cliques” during the

registration process, creating regions of unwanted multi-modal density. Cliques are

found when sets of scan views form groups such that views within a clique are well

registered, but the cliques themselves are not well registered to each other. This is a

common problem found in previous multi-view registration strategies and is discussed
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in e.g. [83]. Some typical “view clique” misalignment can be observed in Figure 12a

(enlarged areas). A simple example consists of a set of scans that form two cliques

such that each scan is well aligned within a clique but not between cliques. For point

registration techniques that make use of e.g. minimising exact point pair matching

distances, if each point is always paired with a point member (e.g. the nearest point)

from within its own clique, the intra-clique registration may be satisfying but such a

pairing will prevent the inter-clique registration from improving.

The alternative approach introduced here, involving registering scans to a surface

approximation by way of querying a density estimate, essentially defines a soft corre-

spondence between points (see e.g. [58] for discussion on previous soft correspondence

work). A soft correspondence approach, in conjunction with the introduced adaptive

bandwidth selection strategy, is capable of addressing the “view clique” problem by

selecting appropriate bandwidths that result in density estimates (and surface repre-

sentations) that can merge and consolidate sample regions exhibiting typical “view

clique” behaviour. In comparison, global bandwidth strategies may result in unwanted

multi-modal estimates in such regions.

In Figure 12c energy function values are obtained by querying the planar segment slice

found in Figure 12b using the OSU “Bird” data set. The coarse alignment configuration

of the viewpoints is found in 12a. The energy function provides a surface location

estimate. Function values are represented by colours increasing from deep blue to red.

Figure 12c exhibits a small, globally fixed spatial bandwidth h. The density estimate

at each point draws on local kernel contributions that lie within a spatial distance

h. Misaligned viewpoints and sensor noise (zoomed areas) often result in unwanted

multimodal maxima of our energy function Êm (·), potentially distant from the most

likely true surface. Such ragged surface approximations often prevent views being drawn

into a better registration. Disparate local maxima prevent agreement on the location

of a globally consistent surface.

In comparison, in Figure 12d surface approximation of the data set uses an adaptive

k-neighbourhood to define kernel bandwidth locally. The density estimate at each point

is required to draw on the k-nearest kernel contributions regardless of spatial distance.

Note that our surface approximation becomes a smooth function. Outlying maxima, due

to view misalignment and sensor noise, are well damped and diminished. The possibility

of view cliques developing during registration is reduced. The density stability in the
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highlighted regions is visually improved and misaligned regions are smoothed to form

a consistent surface adaptively.

(a) OSU “Bird” data set exhibiting partial

scan misalignment (see section 3.5.2 for

OSU data details). Note highlighted ar-

eas of view misalignment.

(b) A planar slice through the coarsely

aligned “Bird” data set where our reg-

istration energy function is queried for

exposition. See below for zooms of the

slice region.

(c) Density estimation utilising a small,

globally fixed spatial bandwidth h. See

text for detail, best viewed in colour.

(d) Density estimation using our adaptive

k-neighbourhood to define kernel band-

width locally. See text for detail, best

viewed in colour.

Figure 12: The effects of fixed and adaptive kernel bandwidth choices.

Some further justification for applying an adaptive bandwidth strategy to the registra-

tion problem is provided in Figure 13, where density estimation is applied to synthetic

point cloud data. Figure 13a (left) shows a synthetic data set containing a collection

of 20 individual 3D point sets. Each point set simulates depth scan measurements of

an object from a particular point of view. In practice, we first generate a complete syn-
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thetic geometrical object surface (in the case of Figure 13, from a collection of simple

sphere-like bulbous shapes). Camera/sensor positions are then simulated to generate

each scan viewpoint by sampling point measurements from the synthetic surface area

visible to the synthesised-camera.

(a) Left: A synthetic data set containing 20 point sets representing partial-

view object depth scans in a coarsely perturbed configuration. The pla-

nar slice through the data set indicates where we evaluation our energy

function for visualisation. Right: A visualisation of Êm(·) at points in

the planar slice through our synthetic data set.

(b) The synthetic data set after ten iterative steps of simultaneous viewpoint

pose optimisation in the transform space. The surface approximation is

iteratively improved, see text for details.

Figure 13: Synthetic point cloud data representing object depth scans and related energy func-

tions evaluated at planar slices.

Simple non-symmetric objects and surface structures are used to prevent degenerative

view-registration solutions. Sets of point measurements are created that correspond to

the part of the object in the current field of view (see Figure 14 for an example of a

single resulting point set). The spatial position of each viewpoint is then collected in

the same frame of reference and randomly (rigidly) transformed such that the set of

resulting views represent a coarsely perturbed view configuration (see sections 3.5.1.3–



3.3 density estimation for point set registration 85

3.5.1.4 for further synthetic dataset construction details). Figure 13a (left) shows this

coarsely perturbed collection of viewpoints and a planar slice indicating locations where

the energy function is queried for exposition. Figure 13a (right) shows the Êm(·) energy

function values at the slice region location, represented by colours increasing from deep

blue to red.

(a) Simulated camera/sensor position

and frustum. Each scan viewpoint

is generated by sampling point mea-

surements from the synthetic sur-

face area visible to the synthesised-

camera.

(b) A resulting partial point

cloud representing an ob-

ject viewpoint generated

from the synthetic sphere-

like, bulbous object surface.

Figure 14: Simulated camera/sensor and synthetic point cloud data generation.

The set of scans, Figure 13a (left), exhibit coarse misalignment due to the viewpoint

spatial perturbation, however using a KNN adaptive bandwidth density estimate results

in an energy function with a smooth nature that in turn aids scan pose parameter search.

Figure 13b (left) presents the same data set after iteratively performing simultaneous

viewpoint pose optimisation in the transform space where the registration of the set of

viewpoints is visually much improved and Figure 13b (right) illustrates how the energy

function becomes tighter (and the estimated surface location more confident) due to the

iteratively improved viewpoint alignment combined with our adaptive kernel bandwidth.

This illustrates the benefits of iterating between optimising the latent surface estimation

and optimising the alignment between the estimate and the input partial-view depth

scans. See section 3.4 for registration algorithm details and section 3.5.1 for further

comparison of synthetic data registration results to ground truth poses.

As all viewpoints are simultaneously aligned and brought into positions of tighter

registration, the mean distance between depth sample measurement points (µ inter-

point distance) decreases. As the sampling density of a region increases, our KNN
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adaptive-bandwidth strategy is able to naturally avoid over-smoothing of detail by

intrinsically reducing the spatial area used for density estimation at each query point.

Figure 15 illustrates how the kernel bandwidth size, defined as the KNN Euclidean

distance, evolves during a typical registration process (only the mean value per point

cloud plotted for clarity). It can be seen how kernel bandwidth sizes reduce as we

iteratively apply spatial transforms to each point cloud and draw them into a tighter

alignment. The technique is therefore capable of fitting surface structure to emerging

object detail as viewpoints move into positions of better registration. The registration

strategy takes advantage of this adaptive bandwidth by iteratively switching between

optimising the latent surface shape / location and optimising the alignment of viewpoint

sets in relation to this surface. Sections 3.3.5 and 3.4 provide further detail on this

registration strategy.

Figure 15: Local kernel adaptive bandwidth size (as defined by KNN Euclidean distance) for

each point cloud in a synthetic dataset containing 16 viewpoints. Mean bandwidth

values for each viewpoint are plotted versus viewpoint transform registration itera-

tions. Adaptive bandwidths are seen to decrease in size for each viewpoint during

registration as views fall into tighter alignment.
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3.3.5 Energy functions for evaluating registration quality

The core of the registration strategy involves defining a smooth energy function Êm (·)

(Equation 11) that reflects the likelihood that a point x ∈R3 is a point spatially near the

inferred surface Sm, where Sm is estimated using the current alignment of partial views

{Vn|n = 1, . . . ,M ∧ n 6= m} and the points x we are interested in querying are spa-

tial measurement samples belonging to view Vm. Using this estimate of the underlying

surface we are able to guide view registration by way of optimisation in the transform

space. Once view positions have been simultaneously and independently optimised we

can iteratively re-estimate Êm (·) for each view Vm and therefore aim to produce tighter

and more accurate surface estimates. Moving scans, via optimisation in the transform

space, to find poses that result in high energy values lets us perform registration without

requiring “hard” point pair correspondences, where each point is required to correspond

uniquely to (typically) the closest point in another point set. Discretisation and sensor

sampling quantisation may prevent exact one-to-one (true) correspondences between

point sets. An ideal matching of the underlying geometries, therefore, cannot be guar-

anteed which may prove problematic in some problem instances for “hard” point pair

correspondence based techniques. Softassign [106] and EM-ICP [110] are examples of

work that addressed this problem for the case of two point sets, using weighted multi-

point soft (e.g. probabilistic) matching and avoid forcing hard correspondences between

point sets.

Forcing hard point correspondences can also prove problematic for the case of multi-

view registration. Various surface representations to address this problem have been

introduced such as triangulated surfaces [80], parametric representations [66] and proba-

bilistic distributions [53, 274]. Chui and Rangarajan [57] develop an algorithm extending

the early soft correspondence work of [106] to non-rigid registration. More recently [215]

perform group-wise registration on multiple sets of points, using a Gaussian Mixture

Model based registration. The density function and transform space search approach

that we introduce for the purposes of surface approximation and view registration can

similarly be considered a soft correspondence approach to multi-view registration and

yet also employs the common tactic involving alternating between optimising viewpoint

transforms and correspondences while keeping the other fixed.
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Formally, we define an energy based on the Êm (·) (Equation 11) functions that eval-

uate the spatial positions of all points x belonging to view Vm. By adapting the generic

multivariate kernel density formulation (Equation 5), we build an energy function that

quantifies the quality of the registration between a surface approximation Sm and points

x belonging to view Vm.

Position x is evaluated by accumulating local kernel contributionsKm,i (x) (Equation

10) for each sample point pi ∈ P where P is the set of spatial neighbouring samples

of x in the views {Vn|n = 1, . . . ,M ∧ n 6= m}. Section 3.3.4.2 provided detail on this

choice of using a finite kernel support neighbourhood. In accordance with standard

kernel density estimation, our energy value at point x is defined as the summation of

local kernel contributions. The local contribution Km,i (x) at x is defined using the

bi-component kernel, introduced in section 3.3.4.1 and centred on neighbouring data

point pi. In the following section we specify how these energy function evaluations are

made use of to solve instances of the multi-view registration problem.

3.4 multi-view registration using density estimation

Section 3.3.5 describes an energy function formulated to infer where surfaces are likely

to exist using available point cloud data as evidence. In this section we detail how this

energy is evaluated and minimised to perform the multi-view registration task.

Our multi-view registration approach includes three main stages as illustrated in

Figure 16: (1) coarsely aligned viewpoints are provided as input, (2) non-parametric

density estimation is performed on viewpoint depth measurements to determine where

surfaces are likely to exist, and (3) the alignment, based on the spatial pose of each

point cloud, is evaluated and optimised in relation to this inferred surface. Like [215],

we decouple our group-wise registration into two iterated steps. Views are registered

to the current surface approximation using rigid transforms and then the optimised

view pose positions are used to update surface approximations. We make use of Quasi-

Newton optimisation techniques to iteratively improve registration by optimising pose

parameters in the transform space and the surface approximation is updated by re-

evaluating the density estimation under the updated viewpoint positions.
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Figure 16: Our multi-view registration algorithm based on density estimation. A surface approximation is

estimated for each view using density estimation over the set of remaining viewpoints. The position

of each view is then independently and simultaneously optimised in the transform space. Density

estimates can then be re-computed to update surfaces approximations using the updated view

positions. This process is repeated to convergence.

To optimise the pose of view Vm, the density estimate defined by the set of views

{Vn|n = 1, . . . ,M ∧n 6= m} is queried at points x corresponding to all spatial locations
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of points in point cloud Vm. By querying the density function Êm (·) at each of the

member points x ∈ Vm in this fashion, the current pose of the point cloud Vm can

be evaluated quantitatively. The (negative) summation of these function evaluations

provides the energy to minimise when optimising the pose of Vm:

∑
x∈Vm

Êm (x) (13)

The value of each Êm (x) term in this summation is influenced by the current poses of

the remaining viewpoints collectively. We improve the pose of Vm by searching in a 6D

transform space:

(Txm,Tym,Tzm, θαm, θβm, θγm)

for spatial transforms that result in lower energy. This minimisation firstly evaluates

the current pose of view Vm in relation to what can be thought of as the implicit surface

Sm, defined by the density estimate of the other viewpoints {Vn|n = 1, . . . ,M ∧n 6= m}.

The minimisation process then searches for transforms that provide a better alignment

with this surface estimate Sm. Points x in positions of high density (lying on or near

inferred surfaces) will result in higher values and, therefore, lower energy during this

optimisation process. On inspection we find that our point cloud based surface energy

space is often smooth in practice (see Figures 18,19) and therefore our transform pa-

rameter optimisation search can be guided by utilising approximate derivatives ∇Êm (·)

which we find via finite differencing. In practice we perform a Quasi-Newton optimisa-

tion in the rigid transform parameter space to realise this.

Using gradient information during the minimisation process, such that the energy

function value is decreasing at each step, the convergence of the energy to a fixed

(but possibly local) minimum is guaranteed [280]. Convergence properties for other

point registration methods, such as ICP, are usually difficult to study because their

cost functions, defined by e.g. hard nearest-neighbour correspondences, change from

iteration to iteration as the point configuration evolves. In contrast, our energy function

based on density estimation is defined such that each step of minimisation (within a

surface estimate step – see Figure 16) decreases the same cost function.

Various registration energies have previously been optimised using numerical meth-

ods in a similar fashion [189, 154]. It is noted by [154] that for a large number of
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scans, numerical optimisation may suffer from instability and slow convergence. In an

attempt to avoid these problems we alternate between surface estimation and perform-

ing optimisation on the parameters of each viewpoint individually (yet simultaneously)

thus keeping the parameter space optimisations low-dimensional yet implicitly account-

ing for the position of every other scan with the multi-view surface approximation.

We apply this process simultaneously to the position of each of our M views Vm us-

ing energy functions defined by the current position of the remaining M − 1 views

{Vn|n = 1, . . . ,M ∧ n 6= m}.

Once optimal rigid transforms (Txm,Tym,Tzm, θαm, θβm, θγm) are found for each point

cloud, we apply these to each view Vm and then recompute the M surface approxima-

tions using the new collective viewpoint positions. We iterate this process of simul-

taneous transform parameter optimisation for each viewpoint Vm followed by surface

re-estimation to convergence. In practice we can evaluate process convergence by moni-

toring e.g. (1) change in energy function values, (2) magnitude of transform parameters

found at each iteration, and (3) registration error metrics (see section 3.5.1.1). Our reg-

istration algorithm is formally defined in the following pseudocode:

Input: Range scans V1, . . . ,VM
begin

converged := 0

while (NOT converged)

parallel for m=1 . . .M

Sm = density_estimate(
⋃N
n=1
m 6=n

Vn)

θi = arg max
θ

E(Tθ(Vm),Sm))

end

parallel for i=1 . . . N

Vm = Tθm(Vm)

end

converged = test_convergence(V1, . . . ,VM )

end

end
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As scan registration improves, the local point sampling density typically becomes tighter

and local kernel widths h are able to reduce adaptively to account for this. Our use of an

adaptive kernel width leads to larger kernel sizes in regions of large amplitude noise due

to the low sampling density and smaller kernels where scans are tightly registered. This

decreases the effect of noise by reducing the contribution of noisy local maxima which

in turn aids registration. We also give view cliques a high chance of intersecting during

registration due to adaptive bandwidth addressing the problem of view clique point

pair matching. Experimentally we observe that this results in improved registration of

point sets with large scale noise and point sets that are likely to form local cliques

during registration.

The registration strategy has the effect of pulling viewpoints into alignment with the

inferred surface (and implicitly with other views). We iteratively update the surface

estimate based on updated point cloud poses, find optimal transforms for each view

and then iterate this process. Given a reasonable coarsely aligned seed, we can infer

a surface (see Figure 17 for coarsely aligned scan set) without requiring view order

information and we terminate the procedure either after a fixed number of steps or

when energy convergence is reached (we provide convergence details in the following

experimental section). In summary, this strategy provides a simultaneous global align-

ment strategy for multiple dense point clouds by making use of density estimation. By

selecting a viewpoint merging strategy, the well registered M views can be merged

into a single point cloud, providing suitable input for a surface reconstruction stage or

further applications.

Figure 17: A planar slice of our energy function through coarsely aligned partial scans (Bunny

data set).
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Figure 18: Energy kernel component terms. Visualisation of the planar slice through coarsely

aligned Bunny data set. Left: Orthogonal projection to local plane fit kernel term.

Right: Gaussian kernel term. By using the product of the components (see Figure

19 left) we are able to dampen areas of low density yet retain valid surface shape.

Figure 19: Our product energy function Ê(x) approximating the underlying surface defined by

the coarsely aligned scans. A zoom of the slice region shows function values that are

represented by colours increasing from deep blue to red. The smooth nature of our

function aids the pose parameter search.

3.5 experiments

We compare view alignment results with common and recent multi-view point registra-

tion algorithms. These include a standard chain pairwise ICP [21] approach that makes

use of an anchor scan and performs pairwise alignment for each pair of subsequent

views. By chaining the transforms found, subsequent views can be brought into the ref-

erence frame of the anchor scan. Annealing is used to decide when convergence has been

reached. Although fairly straightforward in isolation, a similar approach is often used
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as an initial registration step for many applications. As an example [288] make use of

this technique as an initial registration step in their cluster based surface reconstruction

work. We also compare to recent multi-view registration work by Toldo et al. [262] who

perform a multi-view alignment by making use of a Generalized Procrustes Analysis

framework. By comparing results with other simultaneous multi-view registration work

we provide analysis of how the methodology proposed here compares to state-of-the-art

solutions for the multi-view registration task. For example, the techniques provided

in [262] have been adopted and made use of in recent systems that succesfully address

practical problems. Examples include the system proposed by [7] that is able to harness

multiple consumer depth cameras to enabled 3D reconstruction of moving foreground

objects. We do however concede, as noted by [263] and others, multi-view registration

techniques tend to have a sparse and varied coverage in the literature. This has led to a

lack of robust and fair methodology for performance assessment and comparison, mak-

ing superlative claims hard to verify. When making use of real-world data sets, where

ground truth alignment is not available, it becomes difficult to evaluate and quantify

the results of global registration and settle for an optimal solution without resorting

to intensive and time-consuming analysis of the registered views. For this reason we

perform a wide range of experiments with both synthetic and real-world data.

3.5.1 Synthetic point cloud data

Point cloud registration experiments are carried out to systematically evaluate the

proposed framework. Experimental results are compared with other recent multi-view

registration work. Firstly, synthetic point cloud datasets were generated to investigate

intrinsic properties of the proposed approach. Synthetic datasets provide a straightfor-

ward resource facilitating the quantitative comparison of registered view output with

ground truth alignment. Synthetic data were created by generating cube and sphere-

based surface models with added Gaussian surface noise. Partial views of these models

were defined by simulating a camera/sensor position and sampling sets of point mea-

surements from the synthetic surface, visible to the synthesised-camera viewpoints. If

sample points are deemed visible (in the line of sight) to the simulated sensor/camera

position, they are added to the point cloud of the corresponding viewpoint (see e.g.

Figure 20 for a resulting set of point clouds).
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After generating individual viewpoints by sampling from simulated camera positions,

views of the synthetic data are perturbed with random (Tx,Ty,Tz, θα, θβ, θγ) rigid trans-

forms (c. 10% of cube side length / sphere diameter translations and 10 degree rotations

in magnitude) to simulate a level of coarse view alignment. The size of the perturba-

tion aims to simulate the accuracy with which an approximate view alignment could

be performed manually.

(a) Aligned ground truth pose. The

dataset contains 15 partial scans with

the colour of each sample point indicat-

ing the scan viewpoint that it belongs

to (1 colour per viewpoint).

(b) The synthetic cube point cloud

dataset with viewpoints in a per-

turbed pose due to random rigid

spatial transforms, see text for fur-

ther detail. Random perturbed poses

such as this provide the input to the

tested registration algorithms.

Figure 20: Synthetic cube point cloud dataset

Registration quality metrics (defined in sections 3.5.1.1 and 3.5.1.2) can be measured

using the viewpoint spatial configurations obtained post-registration. Comparing algo-

rithm view registration results with dataset ground truth alignments (readily available

for synthetic data) provides an obvious assessment tool for registration quality. In the

following section we briefly outline the quality metrics made use of for this task.

3.5.1.1 Statistical error measures

We compute standard RMS residual point pair and mean inter-point distances of the

converged alignment poses. The RMS residuals are computed as the root mean square

distances between the points of every view and the single closest neighbouring point

from any of the other M − 1 views. This gives a measure of the compactness of the



96 multi-view registration using density estimation

scans. With N points in total in the combined data set this provides N distance values

{d1, d2, ..., dN} and the RMS residual is given as:

εrms =

√
1
N

(d2
1 + d2

2 + ... + d2
N ) (14)

For the collection of M views our second RMS metric forces each sample point to

identify the closest neighbouring point in every other viewpoint. This allocates M − 1

distance values to each sample point in the combined data set. Many of the real-world

data sets we experiment with display a non-zero (yet minor) variance in the number of

point samples per view. Therefore by letting ni define the number of points that belong

to viewpoint i, we have
∑M
i=1 ni = N points in total and this second metric therefore pro-

vides (M − 1) ·
∑M
i=1 ni = (M − 1) ·N distance measurements {d1, d2, . . . , d(M−1)·N} for

a set of M views such that view i contributes ni point samples in practice. In a similar

fashion as before:

εgroup_rms =

√
1

(M − 1) ·N
(
d2

1 + d2
2 + ... + d2

(M−1)·N

)
(15)

defines our second RMS metric. This secondary RMS measure is useful in addition to

the first as it penalises the previously discussed “view clique” problem where scans may

exhibit good local registration yet poor inter-clique registration.

The mean inter-point distance µipd considers the average distance between each point

pi and the nearest neighbouring point pj from all other scans combined. This once more

provides n distances and we disallow pairs of points that have the same parent viewpoint.

The mean inter-point distance is therefore:

µipd =
1
n
(d1 + d2 + ... + dn) (16)

This metric attempts to provide an evaluation measure of how tightly a group of

viewpoints has been registered. Well registered sets of scans will typically exhibit a low

mean inter-point distance.

3.5.1.2 Estimating mean inter-point distance

In addition to the outlined error metrics, recent work by Bhattacharyya and Chakrabarti

[22] offers methods for determining the mean distance between a reference point and
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its k-th nearest neighbour among points randomly distributed (with uniform density)

in a D-dimensional Euclidean space. The previous section defined the mean inter-point

distance between each sample point and its nearest neighbouring point from any other

viewpoint as a measure of how tightly a group of viewpoints has been registered. There-

fore the case k = 1 is considered as it is expected that our error metric utilising the

mean inter-point distance µipd (equation 16) will converge to this value when performing

the registration task with datasets that contain viewpoints exhibiting (approximately)

uniform object surface sampling density when in a well registered configuration.

Firstly [22] present a heuristic approach that provides a simple method for estimating

the mean inter-point distance in a space containing N points. For a space containing

N points we denote this heuristic approximation MeanDistheur (N) (see equation 17).

This simple approach involves considering a unit volume of a D-dimensional Euclidean

space with a density of N points. Since the unit volume contains exactly N random

points (including the reference point) we divide this unit volume into N equal parts.

Given that the N random points are distributed uniformly over the unit volume, each

part is now expected to contain a single point. The mean distance between any point

and its nearest neighbour (k = 1) is naively given by the linear extent of each part.

Since the volume of each part is 1/N we expect:

MeanDistheur (N) =

( 1
N

) 1
D

(17)

It is noted that this heuristic estimate of the mean inter-point distance for the k = 1

nearest neighbour is a crude approximation yet provides a fast and potentially useful

estimate. In [22] the authors note that values obtained by this approximation are close

to the exact result only for large values of k, N and D and when the condition N � k

holds. This claim agrees with our simple 3D experimental investigation of the heuristic

where we draw N points uniformly randomly in 3D space (see Figure 21, upper) and

compare the measured µ inter-point distance to corresponding MeanDistheur (N) values

(Figure 21, lower right). In the particular case pertinent to this work (k = 1,D = 3)

we experimentally observe this approximation producing small over-estimations of the

measured mean distance for the relatively small sets of point sample sizes tested (N =

500).
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Figure 21: Top: We draw N points uniformly randomly in 3D space and measure the mean

Euclidean inter-point distance. Lower left: A single trial measuring the inter-point

distance drawing N ∈ {2, . . . , 500}. Lower right: Average measured µipd over 10 trials

(red stars), heuristic approximation (green circles, equation 17) and exact expression

(black dotted line, equation 18).

The work in [22] additionally goes on to describe a means of deriving an exact expression

for the predicted mean inter-point distance. Due to the accuracy considerations outlined

above and given that we are motivated by the particular case k = 1 and D = 3, this

exact expressions is also investigated here. Again letting D be the dimension of a unit

(hyper)cube in Euclidean space, N be the number of points randomly and uniformly

distributed over the space, and defining MeanDist (D,N , k) as the mean distance to a

given points k-th nearest neighbour then [22] provide an exact expression as:

MeanDist (D,N , k) =

 [Γ
(
D
2 + 1

)
]

1
D

π
1
2

 ·
Γ

(
k+ 1

D

)
Γ (k)

 ·
 Γ (N)

Γ
(
N + 1

D

)
 (18)
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For large values of N , we can make use of Stirling’s approximation [109] for the Gamma

function: Γ
(
N + 1

D

)
/Γ(N) ∼ N

1
D therefore for large point density N in practice we

can reduce equation 18 to the following asymptotic form:

MeanDist (D,N , k) ∼

 [Γ
(
D
2 + 1

)
]

1
D

π
1
2

 ·
Γ

(
k+ 1

D

)
Γ (k)

 ·( 1
N

1
D

)
(19)

where Γ (·) is the complete Gamma function (see [22] for further details). Equations

18 and 19 provide us with a reasonable estimate of the theoretical lower bound for our

µipd metric in practice (see Figure 21, lower right).

The registered point samples studied in this work tend to lie on surfaces in 3D space

so aligned view sets are evaluated in relation to the estimate defined in equation 18

by asserting D = 3 and amalgamating all point samples of a registered view set into

a single point cloud then uniformly dividing this amalgamated set into (small) spatial

regions that can be considered locally planar. An octree data structure is used to

achieve this spatial subdivision in practice. By assuming that well registered points will

lie uniformly on small locally planar regions, it remains to count the number of points

N in each (non-empty) octree region and scale the resulting MeanDist (3,N , 1) value

by the ratio of the region (cubic volume) to the original unit cube.

By taking the mean of these MeanDist (3,N , 1) values over the set of small (non-

empty) octree cubic regions we obtain a reasonably accurate approximation to the

theoretical inter-point distance (see Figure 21 lower right) that in turn provides a

sensible lower bound on registration accuracy.

This octree subdivision strategy proves a more accurate estimate than both (1) the

previously introduced heuristic inter-point distance estimate (equation 17) and (2) mea-

suring the MeanDist (3,N , 1) over a single unit cube bounding box encompassing the

entirety of the registered views (registered view point samples are typically far from

uniformly distributed in such a bounding box space). In summary equations 18 and 19

offer a useful indication of how well the view registration task has been performed in

practice. By comparing experimental registration results to this limit it can be ascer-

tained how close to a theoretically optimal view alignment has been achieved.
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3.5.1.3 Synthetic data: Registration quality experiments

For synthetic datasets containing cube like structure, we perform registration exper-

iments by perturbing the view set (containing 15 views) with random rigid transfor-

mations and then applying both the proposed view registration algorithm and the

Procrustes method [262]. By measuring the mean inter-point distance of the view set

iteratively after each rigid transform step, the registration progress is assessed. Experi-

mentally we perform 20 trials involving randomly perturbed view set starting configu-

rations (Figure 20b exhibits a typical starting configuration created by perturbing the

ground truth pose found in Figure 20a). We find 20 trials sufficient to obtain statisti-

cally significant results and provide further detail in section 3.5.1.4. In Figure 22 we

plot mean and standard deviation µipd progress for the measured inter-point distance

averaged over 20 trials for both algorithms. Since the ground truth alignment is avail-

able we are able to measure the µ inter-point distance of the ground truth pose and

compare this to the converged method values and with the theoretical lower bound

provided by equation 18.

For synthetic datasets, where ground truth alignment is available, it can be observed

that the theoretical lower bound (equation 18) underestimates the measured µipd value

of the ground truth pose by ∼ 10% (see Figure 22). We propose that this discrepancy

may be due to the granularity of the spatial octree subdivision strategy chosen to eval-

uate the aligned view set. Given the relatively small discrepancy, comparing converged

µipd results to this lower bound approximation can be considered a valid assessment

of registration quality for datasets where no ground truth alignment is available. For

the simple synthetic datasets experimented with in Figure 22, the proposed multi-

view registration strategy consistently converges to µipd values closest to the measured

ground-truth pose µipd (and also closest to the introduced theoretical lower bound)

experimentally. The coarse seed alignment for each trial is created by perturbing the

ground truth alignment with random rigid transformations and due to the number

of intermediate transforms found and applied by the compared methods varying, the

horizontal step axis is rescaled so timing comparisons are not valid but convergence

behaviour is. Visual assessment of the resulting view poses in comparison to ground

truth pose is carried out in the following section (section 3.5.2.2).
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Figure 22: Mean inter-point distance during registration of synthetic cube data set. Horizontal

step axis rescaled so timing comparisons are not valid but convergence behaviour is

(see text for details). Measured mean inter-point distance and ±1 standard devia-

tion plotted for 20 repeated trials between compared methods. The consistent µipd

value measured for the ground truth view pose (black ‘+’) and predicted inter-point

distance (equation 18, black dotted line) are plotted for comparison.

3.5.1.4 Synthetic data: Registration robustness experiments

Experiments are performed with a synthetic sphere-like, bulbous in shape data set to

investigate the robustness of our method. A repeat experiment was carried out by seed-

ing the synthetic data with random sets of pose perturbations and assessing alignment

algorithm performance on these sets of random seed positions. Seed positions were

again obtained by perturbing each scan from a set with random (Tx,Ty,Tz, θα, θβ, θγ)

transform parameters such that the seed positions resembled coarse manual alignment.

An example perturbed seed position for the synthetic sphere data can be found in

Figure 23b with the ground truth alignment found in Figure 23a.
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(a) Synthetic sphere-like bulbous shape

partial depth scans. Twenty view-

points in ground truth alignment with

one colour per viewpoint.

(b) Each viewpoint perturbed by a random

rigid transform (typical input seed align-

ment for the registration algorithms).

The level of perturbation attempts to

simulate coarse manual scan alignment.

Figure 23: Synthetic sphere-like point cloud datasets.

This experimental work attempts to provide insight into basins of convergence. It in-

volves exploring which algorithms are able to converge consistently and how often gross

alignment errors or failure to converge to a reasonable solution are likely to occur. The

synthetic sphere-like data is initialised with 20 different seed positions and the align-

ment results, produced by the three considered registration algorithms, are compared

using the error measures introduced previously (section 3.5.1.1). We report the three

measures averaged over 20 seed positions for each of the three alignment methods and

also report mean seed position and known ground truth pose metrics. Error bars in-

dicate one standard deviation of the repeated trials. Results are found in Figure 24a.

We note that values resulting from the Procrustes alignment method [262] are again

similar but inferior to our method. We perform a simple paired two-tailed t-test on

the post-registration metrics from the Procrustes alignment samples and those from

our method. We find that all three of our error metrics obtain statistical significance

at the p ≤ 0.001 level between these techniques. We note that the mean differences

(effect size) between the methods on these metrics is small (0.0013, 0.0019 and 0.0012)

and our N = 20 is relatively low. However we observe that the proposed framework

consistently produces lower values in almost every trial, leading to the low p values. A

larger number of trials with more complex synthetic data sets would give more power

to the conclusion and provide further robustness evidence.
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(a) Mean values for our three error measures across 20 registration trials on our sphere-like

synthetic data set. Mean seed position and ground truth positions are also measured for

comparison.

(b) RMS residuals evaluating algorithms using the sphere-like synthetic data set. We display mea-

sured RMS residual values at each transform step for the compared methods and the consistent

RMS residual value measured using the ground truth pose (solid black line) for comparison.

See text for additional discussion, including plateauing convergence behaviour.

Figure 24
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We further analysed the synthetic sphere-like data results by computing RMS resid-

uals at each intermediate transform step of the registration progress (Figure 24b). For

each method, we measure RMS residuals after each spatial transform is applied until

convergence is reached. Give that the number of intermediate transforms applied by

each method varies, for display purposes, we rescale the horizontal step axis to 0− 100

so timing comparisons are not valid but convergence behaviour is. We do not compare

wall-clock run times directly as the algorithm we propose takes advantage of a multi-core

parallel implementation (see Chapter 4 for further multi-core implementation details)

such that the work of individual viewpoint alignment is distributed simultaneously to

multiple processors in practice. Contrastingly, the additional registration techniques we

compare to here are implemented in a serial fashion. The synthetic data set experiment

found in Figure 24b converges on the order of minutes in each of the three cases exam-

ined, but we note that the proposed algorithm is making use of more computational

resources due to the transform space search technique employed and the distributed

implementation.

The global residual of the Procrustes algorithm [262] is comparable to our approach

but converges to a weaker solution on our synthetic sphere dataset in 17 of the 20

trials performed. Both the Procrustes algorithm due to Toldo et al. and the chain ICP

methods exhibit fast initial RMS error convergence (using this dataset) by pulling the

viewpoints close together yet, particularly in the case of the ICP method, they plateau

at suboptimal solutions. This is in agreement with the previous µipd solution quality

convergence experiments performed in section 3.5.1.3. We additionally note that the

convergence of our method exhibits periodic plateauing behaviour for this data set.

This can be explained by the fact that we periodically re-estimate our density based

surface before iteratively optimising viewpoint locations. Viewpoint optimisation may

converge for a given surface estimate, but once the surface estimate is updated using

optimised scan positions the surface estimate typically becomes tighter and more confi-

dent such that further optimisation is possible. This process typically aids registration

and improves alignment accuracy.

For tasks where final registration accuracy is of prime importance one could initialise

alignment by performing a single pairwise ICP iteration before switching to our tech-

nique. Exploring this possibility provides one avenue for future work. The proposed

approach converges to the best final solution in terms of closest to the ground truth
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RMS value in the majority (17/20) of the experimental runs on the synthetic data sets

generated.

Our synthetic data sets are straightforward in construction and provide only simple

surface structure. They are however a useful tool in terms of assessing how close to a

ground truth position a registration algorithm is able to achieve across multiple trials.

Averaged across sets of 20 runs, the proposed framework consistently comes closest to

the introduced theoretical metrics (section 3.5.1.2) providing initial evidence in support

of the claim that, of the tested methods, the introduced method is able to achieve a

view pose configuration closest to a theoretically optimal registration. The introduced

method also displays a wide basin of registration convergence as supported by the

evidence that the method reports values closest to the ground truth pose alignments

across the statistical error measures (section 3.5.1.1) investigated. Performing additional

experiments of this nature that involve increasing the complexity of the synthetic data

surface structure would provide more evidence to support these claims and therefore

provides one potential area for further work.

3.5.2 OSU laser database

Additional experimentation is performed by making use of real data sets consisting of

laser range scans from the OSU/WSU Minolta laser database [192]. The OSU view-

points are produced by a laser scanning process and the subjects made use of here

include: “Angel”, “Bird” and “Teletubby” figurines and a spray bottle (“Bottle”). Fig-

ures 29-32 show these datasets. Each scan viewpoint is composed of between 2500

and 7000 points (pre-processing involved sub-sampling, for computational reasons, the

views to 50% of their original sample points). OSU data sets are obtained by real-world

acquisition, noise is intrinsically present and object point sampling is not necessarily

uniform across views.

The object test sets contain between 11 and 20 viewpoints each and a summary of

the data set properties and kernel bandwidths we use for registration experiments are

given in Table 2. The k-neighbourhood (influencing kernel bandwidth) is chosen for

each data set such that k is 0.5% of the total number of points in the data set. This

method of choosing k results in a varying k value for each data set but the variance of

inter-scan point sample magnitude within each set of explored (intra-)object views is
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Table 2: OSU and synthetic data set statistics

Data set Number of

viewpoints

Mean points

per view

Bandwidth size

k-neighbourhood

Angel 18 6314 k = 560

Bird 18 4521 k = 400

Bottle 11 2883 k = 160

Teletubby 20 2671 k = 270

Synthetic spheres 20 4672 k = 460

low. Therefore by choosing k in this fashion, we find that our resulting bandwidth h is

typically on the order of one to ten times the mean inter-point Euclidean distance of

the coarsely aligned input data (dependent on local alignment and sampling density).

Empirically, this proved to be a reasonable rule for selecting k. An obvious extension

would involve investigating more principled methods for selecting k (e.g. [193] recently

investigated selecting optimal KNN k values for univariate kernel density estimation

bandwidth selection). A different strategy would also be required for data sets con-

taining large point sample magnitude variance between viewpoints. Experimentally we

found that 150 - 600 neighbours per local kernel was suitable in practice for the data

sets explored. We include the exact point neighbourhoods used for our experiments in

Table 2.

3.5.2.1 OSU database bandwidth selection experiments

Varying the percentage of total points used to define the kernel k-neighbourhood size is

explored (see Figure 25). Making use of the “Bird” OSU dataset, we provide evidence

that final object registration quality is not overly sensitive to the value of k selected,

providing some support for the robustness of this simple bandwidth selection strategy.
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Figure 25: Sensitivity investigation of the proposed kernel bandwidth selection strategy. Stable

error metric values provide some evidence that final object registration quality is not

overly sensitive to values of k selected (see text for further detail).

We perform experiments with OSU data sets in order to provide justification for our

kernel bandwidth selection strategy. As noted previously, the chosen method for select-

ing kernel bandwidths involves adaptively defining a k-neighbourhood as a percentage

of the total points of the data set to align. For the experiments previously documented

in this chapter we consistently make use of 0.5% percent.

In Figure 25 the percentage of total points used to dictate the kernel bandwidth k is

varied when performing the alignment task with the OSU “Bird” data set. Viewpoints

are seeded in identical, coarsely aligned states (see Figure 30, left-most column, for

examples of hand aligned seed configurations). Identical coarse seed alignments are

provided to our algorithm such that repeated multi-view registration can be performed

whilst varying kernel bandwidth parameters.

We use the kernel surface approximations defined by the differing kernel sizes to per-

form comparable registration tasks. Starting from identical initial view configurations

(a typical coarse configuration is provided by manual alignment) and fixing the number
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of transform parameter optimisation rounds in each experiment to 10, we evaluate the

final configuration of the set of “Bird” view in each case using the three error metrics

outlined previously.

The variance of the three quality metrics studied can be seen to be low across the

range of k-neighbourhood sizes explored (Figure 25). Stable error metrics values provide

some evidence that final object registration quality is not overly sensitive to the value

of k selected. This robustness in turn provides some evidence supporting the choice of

this simple k selection strategy. Values of k explored in this experiment were defined

by using between 0.01% and 2% of the total points in the data set. This corresponded

to k values in the range 5 – 900 for the “Bird” data set. As noted earlier, a promising

line of further work would involve investigating more principled methods for selecting

k (such as those explored by [193] for univariate densities).

3.5.2.2 OSU database registration experiments

Analogous to synthetic dataset simulated coarse alignments, prior to registration, the

OSU datasets were coarsely hand aligned but some misregistration is still evident (see

Figures 29 to 32). We analyse the results by examining the three statistical error mea-

sures introduced previously (section 3.5.1.1).

Information detailing the sequential order of view capture is not required by our

approach or that of the Procrustes method of Toldo et al. [262] however the pairwise

ICP technique does require this information because pairwise ICP alignment depends

on input viewpoints exhibiting non-zero overlap (a minimum of ∼ 30% view overlap

was found to be a necessity for registration success experimentally).

We apply the introduced statistical error measures to the resulting alignments gen-

erated by the three registration methods evaluated. Figure 26 shows the experimental

results. The approach introduced in this work performs best in terms of our RMS

residual and inter-point distance evaluation metrics in the data sets experimented with.

In two cases the pairwise chain ICP technique converges to a solution that increases

its residual error metric above the baseline hand alignment. These cases exhibit some

reasonable pairwise scan alignment but global object shape is poor. In contrast, the

group RMS value corresponding to applying the ICP method to the “Bottle” data set

is found to be the lowest of the three techniques. This is due in part to what we call

“over merging” of scans. Views are drawn together as a group but the original object
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shape is detrimentally affected as scans are only being registered in a pairwise fashion.

Visually inspecting the alignment in this case provides evidence that the ICP result is

not optimal. With this data set our method provides an improvement in the remaining

two statistical measures and a visually improved registration (see Figure 27).



110 multi-view registration using density estimation

(a) RMS residuals on converged OSU and synthetic data sets

(b) Group RMS residuals on converged OSU and synthetic data sets

(c) Mean inter-point distances on converged OSU and synthetic data sets

Figure 26: Registration metrics



3.5 experiments 111

Initial scan configurations and final alignments pertaining to the investigated methods

are shown in Figures 29 to 33. Our technique is able to converge to an acceptable minima

for each data set investigated, however the pairwise ICP method in particular exhibits

relatively large failure modes in some cases. In particular, the ICP technique does not

find acceptable alignments for the “Bird”, “Bottle” and synthetic data experiments. The

Generalized Procrustes Analysis technique in general fares well yet also exhibits some

failure with the “Bottle” data set explored here. We confirm the findings of [262] that,

applied to multi-view registration problems, sequential ICP based algorithms require

the additional information that view order is known a-priori yet exhibit results that

are generally worse than more recent simultaneous optimisation techniques.

Figure 27: The OSU “Bottle” data set converges to similar acceptable poses using all three

registration techniques however the chain alignment technique has partially collapsed

the desired object shape as a result of attempting to minimise pair-wise distances.

The proposed technique makes use of KDE in an attempt to infer global object shape

information. In the example shown an improvement to the global alignment of the

object is evident.

In two of the OSU data sets (“Angel” and “Bird”) the final RMS residuals and mean

inter-point distance values our method produces are very similar to the values resulting

from the Procrustes alignment method [262]. In these cases the geometrical registration

results are also visually similar and both methods exhibit good fine registration for these

data sets although some differences are evident on applying a post-registration surface

reconstruction (see following section 3.5.3).
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3.5.3 Surface Reconstruction

The goal of surface reconstruction, as defined by [145], is to determine a surface S′

that approximates an unknown surface S, using a sample P and possibly information

about the sampling process. Achieving this goal in an important, well studied funda-

mental problem in geometry processing and often uses point cloud data as the input

sample. Most reconstruction methods can be classified as either an explicit/parametric

(e.g. triangulation based) or implicit (e.g. level surface f(x, y, z) = c) based surface

representation. Implicit methods are an important class of reconstruction technique as

they tend to offer topological flexibility and robustness to sensor noise. However, these

methods often require points supplemented with normal information to be able to recon-

struct surfaces. When reconstructing implicit surfaces from data acquired from multiple

views, e.g. from laser scans, accurate fine registration is especially important if point

normals are not provided by the scanning technology. Alternative normal acquisition

typically involves estimation using adjacent nearby points. It is therefore not practical

to apply such surfacing methods to multi-view data sets that contain significant view

registration errors. The registration process applied prior to constructing implicit sur-

faces from sets of multi-view data is an area of current research and provides a further

assessment for our registration framework.

We apply our registration technique to sets of multi-view point clouds and then

reconstruct a surface from the aligned data. For comparison we also reconstruct surfaces

from the coarsely aligned input point clouds and the final viewpoint positions provided

by the alternative methods that were introduced at the start of section 3.5. For surface

reconstruction we use a well known implicit reconstruction technique, Poisson surfacing

[145]. Poisson surfacing computes a 3D indicator function χ (defined as 1 at points inside

the model and 0 at points outside, as dictated by the point surface normals), and then

obtains the reconstructed surface by extracting an appropriate isosurface. Since Poisson

surfacing requires oriented normal information at each point, this provides a suitable

method to test the alignment quality of our method. We estimate point surface normals

by fitting a plane to the k-nearest-neighbour points (for k = 10) in the aligned view

sets and propagate coherent normal directions from an arbitrary starting point using

a user defined camera viewpoint to influence the indicator function χ. Surfacing result

comparisons are shown in Figures 34-38.
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Applying a surfacing method directly to the coarsely hand aligned data often pro-

duces gross reconstruction failures as might be expected. The surfacing technique alone

is often not able to recover appropriately from the relatively poor registration provided

by our hand aligned data sets. This is especially evident in our “Angel”, “Bird” and

synthetic data experiments where poor alignment causes gross errors and unsmooth

surfaces. Visual flaws are also evident in the surfaces that result from point clouds

aligned using the simple chain ICP method in the cases of the OSU data sets. In par-

ticular results from the “Angel” data set exhibit the failure of the simple ICP method

to faithfully reconstruct the wing portion of the model. We argue that this can be

attributed to the minor yet evident misregistration during the alignment process. The

Procrustes algorithm [262] generally provides good input for surface reconstruction and

the “Angel” and “Bird” data sets provide surface results that are visually very similar

to ours. Our method produces slightly better quality limb reconstruction of the “Angel”

data set however some small geometrical errors are still present in both results. The re-

sulting model from the “Bird” data set using the Procrustes algorithm and our method

are also very similar yet our method provides small visual improvements to areas of

intended high smoothness such as the feet. Enlarged version of the surfaced point sets

for these results can be found in Figure 39. The “Bottle” and “Teletubby” data sets

exhibit significant surface reconstruction failure from the input provided by the Pro-

crustes method yet fair better when using our technique. In conclusion, the results of

applying a surfacing method to the registration results provided by our method tend

to show visually improved reconstructions in the data sets experimented with.

3.6 experimental summary and discussion

Registration experiments are performed across multiple data sets evaluating results

visually and with statistical error measures. A varying range of points per data set has

little effect on the capability of the proposed method, working well across the range of

point cloud sizes. An experimental set up, making use of both synthetic and real data

sets, demonstrates the robustness and accuracy of the proposed method in relation to

common and contemporary work for the task of simultaneous multi-view registration.

The proposed registration framework is able to demonstrate quantitative results that

are, in many cases, better than start-of-the-art approaches for this task.
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Multi-view scan registration is typically cast as an optimisation problem. The error

landscape depends on the type of data being registered, outliers, noise and missing data.

As noted by [252] and observed in our experiments, if the surfaces are relatively clean

and there is a good initial estimate of alignment then local optimisation such as using

an ICP based method is an efficient choice. However, if there is significant noise, the

initialisation is poor or the view order unknown then these methods may not converge.

When the view ordering V1, ...,VM is known, registration can be performed pairwise

between consecutive views and global registration can be obtained by concatenating the

obtained pairwise transformations. As we observe experimentally, even when all pairs

are apparently well registered, lack of global optimisation can result in misalignments

at the stage of full model reconstruction due to registration error accumulation and

propagation.

In this work we propose a novel technique to tackle the task of simultaneous alignment

of multiple views. By attempting to solve simultaneously for the global registration by

exploiting the interdependence between all views we implicitly introduce additional

constraints that reduce the global error. We base our approach on well established

kernel density estimation theory.

We have shown that our technique is capable of aligning depth scan sets with real-

world noise amplitudes from seed alignments that are only coarsely defined. We demon-

strate the capability of our algorithm on synthetic and real-world data sets captured

using laser scanners. Further to this we show that our approach can be used in conjunc-

tion with a surface reconstruction method [145] and produce surfaces for visualisation

purposes. Figure 28 provides an example of how our algorithm fits into an object re-

construction pipeline when starting from unaligned depth measurement data.
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Figure 28: (a) RGB data from Ohio State University (“Bird” set) (b) Partial depth scans from

OSU (c) Pre-energy minimisation (coarse alignment by hand) (d) Multi-view regis-

tration performed with our method (e) Meshed with normal orientations (f) Phong

shaded Poisson surface

Methods such as the one proposed here, making use of non-parametric density es-

timation of spatial measurements, are able to handle the reconstruction of objects

exhibiting arbitrary geometrical complexity but contain no special handling of sharp

features such as might be commonly exhibited during measurement of e.g. mechanical

or machined parts. Related work addressing sharp features has been introduced by [114].

Incorporating such considerations into our registration framework provides an avenue

of interesting future work. A related potentially promising areas of further exploration

include diversification and variation of point cloud dataset size and structural complex-

ity. Additionally our method allows every scan view to converge independently to a

maxima of the proposed energy function, so parallelism at the depth scan level pro-

vides a potential near linear speed-up of the registration process enabling application

of our registration framework to extremely large data sets. In the following chapters

these ideas are explored further and evaluation is carried out on sets of many range

scans e.g. 100’s (see Chapters 4 and 5).
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Figure 29: Angel data set final position comparison.

Figure 30: Bird data set final position comparison.

Figure 31: Bottle data set final position comparison.

Figure 32: Teletubby data set final position comparison.

Figure 33: Synthetic data set ground truth and final position comparison.
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Figure 34: Angel data set. Poisson surfacing applied to final configurations.

Figure 35: Bird data set. Poisson surfacing applied to final configurations.

Figure 36: Spray Bottle data set. Poisson surfacing applied to final configurations.

Figure 37: Teletubby toy data set. Poisson surfacing applied to final configurations.

Figure 38: Synthetic data set. Poisson surfacing applied to final configurations.
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(a) “Angel” registered point clouds with Poisson surfacing

applied to final configurations.

(b) “Bird” registered point clouds with Poisson surfacing ap-

plied to final configurations.

Figure 39: Enlarged versions of “Angel” and “Bird” data sets with Poisson surfacing applied to

final configurations.
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4
SEMI - SYNCHRONISED TASK FARMING

4.1 introduction

In the previous Chapter a novel approach to multi-view point cloud registration was

introduced and properties of the method were experimentally evaluated using small,

multi-view, point cloud datasets. One of the key features pertaining to the proposed

technique was that viewpoints are aligned simultaneously. This feature allows depth

sensor scans, in the form of 3D point cloud data, to be considered and registered in par-

allel. Simultaneous registration techniques can often be considered demanding in terms

of computational expense when compared with traditional serial alignment approaches.

By considering all views simultaneously typically an increased computational cost is

incurred as these approaches must, at each iteration, compute some registration error

between each range view and some form of reference. A solution to the multi-view reg-

istration problem, capable of handling large data sets, consisting of many viewpoints,

therefore provides a good candidate for parallelised implementation.

The registration techniques introduced in this work update view poses using non-

linear optimisation in the pose transform space. Like many simultaneous registration

strategies, this approach is expensive if attempting to align many viewpoints. For large

instances of the problem that this approach aims to solve, additional computational

expense may be tolerated when high quality results are considered a priority (a property

considered common to many tasks in the field of computer vision and beyond). If

however maximising performance in terms of e.g. minimising run time or response time

is a prime concern, such as with systems expected to operate in real-time, then one

obvious route of further enquiry involves investigating the ability to harness distributed

121



122 semi-synchronised task farming

or parallel computation able to take advantage of the simultaneous aspects and nature

of the introduced registration framework.

Towards these time performance based goals, this Chapter firstly introduces a generic

task farming framework that we call Semi-Synchronised Task Farming (SSTF) and goes

on to provide detail of how our multi-view registration procedure can be implemented

under this strategy. Our multi-view registration task serves as an example to illustrate

how applications that exhibit potentially distributable components can be implemented

under this task farming strategy. Semi-synchronised task farming splits a given problem

into a number of stages. Each stage involves firstly distributing independent tasks to be

completed in parallel. This task set, comprised of many individual tasks, may require

some form of inter-task communication upon all tasks completing. This is realised in

practice by a set of synchronised global decisions, based on information retrieved from

the distributed results, being made upon task set completion. The results influence the

following task distribution stage. This task distribution followed by a result collation

process is iterated until overall problem solutions are obtained.

Performance models inspired by the BSP (Bulk Synchronous Parallel) model [267]

are also introduced that allow for accurate run time prediction of distributed algorithm

implementations and this in turn enables predictions of expected gains over serial im-

plementations. The quality of these predictions is assessed by extensive experimental

analysis of the distributed algorithms implemented under the task farming framework.

We construct a model to formalise our task distribution framework and with this for-

malisation, our model provides overall task completion time predictions. Experimental

benchmark results comparing the performance observed by applying our framework to

solve real-world problems on compute clusters to that of solving the tasks in a serial

fashion are presented. By assessing the predicted time savings that our framework pro-

vides in simulation and validating these predictions on complex problems drawn from

real computer vision tasks, we are able to reliably predict the performance gain ob-

tained when using a compute cluster to tackle resource intensive computer vision tasks

such as 3D point cloud registration.

In summary, this Chapter presents a framework that enables task distribution for

computationally demanding problems coupled with a modelling process capable of pre-

dicting the available speed benefit of instantiating the distributed implementation. In

section 4.2 we first briefly review the task farming problem class. The HPC system
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that we make use of experimentally is described in section 4.3.1. We outline our task

farming framework and relate it to the BSP model in section 4.3.2. We then introduce

performance modelling techniques to facilitate predictions about computational time

required for problems formulated under our framework in the remaining parts of section

4.3. Results from simulation experiments that verify our predictive model are given in

section 4.4. Section 4.5 details the results of implementing our point set registration

algorithm under this task farming framework and results are compared to a sequential

implementation of the equivalent problem. Section 4.6 concludes the Chapter with dis-

cussion on the advantages that this style of distributed framework brings to the task

at hand and some further avenues of exploration are proposed.

4.1.1 Chapter contributions

Our contributions in this Chapter can be summarised as follows:

• We introduce a framework for non-independent task farming. The framework

allows us to formulate problems by dividing them into many independent parallel

tasks that also require some level of communication and synchronisation between

tasks before an overall solution to the problem can be obtained.

• As part of this framework we develop a computation-time model capable of pre-

dicting overall application completion time for problems that are formulated using

the task farming framework that we introduce. This model takes analytical ele-

ments from the Bulk Synchronous Parallel (BSP) model [267] and combines these

with aspects of simulation based modelling. Providing this simple tool affords a

method to reliably predict the time requirements of applications distributed un-

der our framework and therefore evaluate computation-time and solution-quality

trade-offs prior to runtime.

• We apply our semi-synchronised task farming framework to a contemporary com-

puter vision problem and report on our experiences of implementing distributed

solutions to this problems and explore predicted and experimental speed up avail-

able when deploying such implementations on a High Performance Computing

(HPC) cluster.
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4.2 task farming

With the advent of multi-core processor architectures and cloud-based platforms, high

performance computing is becoming a ubiquitous tool. Distributed compute clusters al-

low the computing power of heterogeneous (and homogeneous) resources to be utilised

to solve large-scale science and engineering problems with increasing uptake in the areas

of e.g. Medical Imaging, Surgical Robotics, and Pervasive Sensing. One class of prob-

lem that has attractive scalability properties, and is therefore often implemented using

compute clusters, is task farming (or parameter sweep) applications. A typical charac-

teristic of such applications is that no communication is needed between distributed

tasks during overall computation. However interesting large-scale task farming problem

instances that do require global communication between tasks sets also exist.

Computational tasks that employ serial code are limited by the total CPU time that

they require to execute. When the individual tasks that make up an overall computation

are independent of each other it is possible that they run simultaneously (in parallel)

on different processors. Using this approach has the potential to greatly reduce the

wall-clock time (real-world time elapsed from process start to completion) needed to

obtain scientific results. The simple process of distributing separate runs of the same

code while varying model parameters or input data is known as task farming and makes

up an important class of grid computing applications that have been the focus of much

initial work [40, 44, 45, 282]. Trivial task farming is a common form of parallelism

and relies on the ability to decompose a problem into a number of nearly identical

yet independent tasks. Many algorithms are able to fit into such a framework. Each

processor (independent node) runs a local copy of the serial code, often with its own

input and output files, and no communication is required between these processes.

This form of task farming is well suited to exploring large parameter spaces or large

independent data sets. On the assumption that all tasks take a similar amount of time

to complete, there are no load imbalance issues and linear scaling can often be achieved

in relation to the number of processors employed.

We propose a framework called Semi-Synchronised Task Farming (SSTF) in order

to address problems requiring distributed formulations containing tasks that alternate

between independence and synchronisation. In this Chapter we apply this framework
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to the previously introduced point cloud registration technique and present a detailed

performance analysis to demonstrate framework scalability and benefits obtained.

4.3 semi-synchronised task farming

In contrast to the previously outlined task farming, interesting problems that do require

some level of communication between tasks during distributed execution also exist. This

Chapter details a framework proposed to enable semi-synchronised task farming in

which an overall computation involves distributing many sets of parallel tasks such that

all tasks within a set are independent yet these tasks must finish before a following task

set is able to begin execution. Taking into account communication between tasks has

been approached previously with a focus on e.g. the scheduling aspects of aperiodically

arriving non-independent tasks [2], data staging effects on wide area task farming [85]

and cost-time optimisations of task scheduling [41]. Given that we propose to handle

global communication between task sets with a post task set completion synchronisation

step after a round of concurrent computation, components of the Bulk Synchronous

Parallel (BSP) model are a suitable basis for our framework. The BSP model is a

bridging model originally proposed by [267] and further detail of how to realise our

framework and hybrid time prediction model is provided in section 4.3.

Numerical algorithms can often be implemented using either task or data parallelism

[97, 127]. Task farming algorithms can be considered a simple subset of task parallel

methods that break a problem down into individual segments, such that each problem

segment can be solved independently and synchronously on separate compute nodes.

The task parallel model typically requires little inter-node communication. Data par-

allel models conversely share large data sets among multiple compute nodes and then

perform similar operations independently on the participating nodes for each element

of the data array. Data parallelism therefore typically requires that each processor per-

forms the same task on different pieces of the distributed data. In this way, HPC data

parallelism often results in additional communication overhead between nodes and re-

quires high bandwidth and low latency node connectivity. In practice most real parallel

computations fall somewhere on a spectrum between task and data parallelism. This is

also true of the task farming framework that we introduce (see section 4.3).
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Computer vision, like many fields, contains algorithms that are challenged by the size

of the data sets worked with, the number of parameters that must be estimated or the

requirement of highly accurate results. These requirements often result in computation-

ally expensive algorithms that demand time consuming batch processing. One efficient

solution for accelerating these processes involves executing algorithms on a cluster of

machines rather than on a single compute node or workstation. Our semi-synchronised

task farming framework provides a simple form of parallel computation that is able to

reduce the wall-clock time required by such computationally expensive tasks that might

otherwise take several hours, days or even weeks on a single workstation.

The previously introduced point cloud registration application (Chapter 3) is chosen

as a challenging test bed for our distributed framework. Once an algorithm has been

formulated under our distributed framework, simple performance modelling is used to

accurately predict overall computation time and therefore the likely speed up made

possible by employing a distributed implementation over a serial approach.

4.3.1 HPC experimental implementation

In this work we make use of the Edinburgh Compute and Data Facility (ECDF) [82] to

test the parallel implementations of the computer vision problems that we investigate.

The ECDF is a Linux compute cluster that comprises of 130 IBM iDataPlex servers,

each server node has two Intel Westmere quad-core processors sharing 24 GB of memory.

The system uses Sun Grid Engine [105] (SGE) as a batch queueing system. By tack-

ling computer vision problems through parallel computation with SGE we show that

increasing the number of participating processors reduces the wall-clock time required

for algorithms implemented under our semi-synchronised task farming framework (see

section 4.5 for experimental details). Algorithms are implemented in Matlab and com-

putation times are recorded using the built-in Matlab command cputime. We report

on the savings due to application speed up in terms of reduced execution time when

running our parallel implementations using many processors compared to employing

sequential implementations to perform the same tasks. Our parallel implementations

make use of the Distributed Computing Engine (DCE) and Distributed Computing

Toolbox (DCT) from MathWorks [174]. These products offer a user-friendly method of

parallel programming such that master-slave communication between cluster machines



4.3 semi-synchronised task farming 127

is hidden from the developer, allowing them to focus on domain specific aspects of each

problem. Our task farming framework is language independent and we concede that

problem instance wall-clock times can likely be reduced further by making use of e.g. an

alternative compiled language. However the primary focus of the current work is to pro-

vide evidence that the proposed framework is able to formulate problems consistently

and reduce wall-clock times predictably, compared to the related serial implementa-

tions, regardless of the language used. We leave a study of time critical applications

benefiting from e.g. compiled languages like C/C++ to future work.

4.3.2 The Bulk Synchronous Parallel model

The BSP model is a bridging model originally proposed by [267]. It is a style of paral-

lel programming developed for general purpose parallelism, that is parallelism across

all application areas and a wide range of architectures [175]. Intended to be employed

for distributed-memory computing, the original model assumes a BSP machine con-

sists of p identical processors. The related semi-synchronised farming framework we

propose (section 4.3.3) does not strictly enforce a homogeneous resource requirement

in comparison. This enables our experimental setup, using IBM iDataPlex servers, to

contain similar but not necessarily identical nodes. In accordance with the original

BSP model we do assume homogeneous resources during our theoretical performance

modelling for simplicity and we therefore leave a heterogeneous performance modelling

treatment to future work. In the original BSP model, each processor has access to its

own local memory and processors can typically communicate with each other through

an all-to-all network. In our work we make the simplifying assumption that processes

only contribute information to a global decision making process at the end of each

set of tasks and therefore do not need to communicate with each other directly. A

BSP algorithm consists of an arbitrary number of supersteps. During supersteps, no

communication between processors may occur and all processes, upon completing their

current task must then wait at a barrier. Once all processes complete their current task

a barrier synchronisation step occurs and then the next round of tasks (superstep) can

begin. In this fashion a BSP computation proceeds in a series of global supersteps and

we utilise these supersteps to model sets of parallel distributed tasks in our framework.

To summarise, a superstep typically consists of three components:
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1. Concurrent computation: computation takes place on each of the participating

processors p. Processors only make use of data stored in the local processor

memory. Here we call each independent process a task. These tasks occur asyn-

chronously of each other.

2. Communication: Processors exchange data between each other. Our framework

makes the simplifying assumption that tasks do not need to exchange data with

each other individually yet the result of each local computation contributes to the

following Barrier synchronisation step (global decision making). This assumption

holds for the application that we investigate (see section 4.5).

3. Barrier synchronisation: When each task reaches this point (the barrier), it must

wait until all other tasks have finished their required processing. Once all tasks

have completed, we make a set of global decisions before the next superstep may

begin (the next round of concurrent computation and so on).

4.3.3 Theoretical framework

As noted, our strategy involves global communication between task sets during a post

task-set-completion synchronisation step following a round of concurrent computation.

The components and fundamental properties of the Bulk Synchronous Parallel (BSP)

model provide a suitable basis for this framework. Namely moving from a sequential

implementation to describe the use of parallelism with a BSP model requires only

a bare minimum of extra information be supplied. BSP models are independent of

target architecture, making a task farming framework based on BSP portable between

distributed architectures. Finally the performance of a program distributed using a

BSP inspired framework is predictable if a few simple parameters from the target

program can be provided (e.g. task-length distribution parameters). Towards this goal,

we combine the standard analytical elements from the BSP model with components of

simulation based modelling leading to a novel hybrid performance modelling technique

capable of predicting the runtime of algorithms implemented with our framework.

We solve large scale problems by sharing large data sets among multiple processors.

The Semi-Synchronised Task Farming framework, in consonance with a task parallelism

model, involves only little inter-node communication between tasks running in parallel.
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However, similar to data parallelism models, the framework allows us to split these

large data sets between compute nodes and perform independent calculations on par-

ticipating processors in parallel. As the calculations within each task are independent,

no information needs to be exchanged between nodes during task runtime and sharing

of results is postponed until all tasks in a set have completed. As discussed, once a

set of tasks has been completed we are able to collate results and use this information

to make decisions relating to how the following round of tasks should be formulated.

The outputs from the final round of tasks are combined to provide the global program

output. This framework is formally defined in the following pseudocode and Figure 40

depicts the process in diagrammatic form.

Let:

{I [t]i }
Nt
i=1be the set of Nt input tasks at superstep t

{O[t]
i }

Nt
i=1be the set of Nt outputs gained from the tasks completed at superstep t

Input: N0 tasks at superstep t = 0

begin

terminate := 0

while (NOT terminate)

parallel for i ∈ Nt

O
[t]
i = process(I [t]i )

end

{I [t+1]
i=1 }

Nt+1
i=1 = recompute_inputs({I [t]i=1}

Nt
i=1 , {O[t]

i=1}
Nt
i=1)

terminate ?
= test_termination_criteria({O[t]

i }
Nt
i=1)

t = t+ 1

end

last = t

R = combine_outputs({O[last]
i }Nlast

i=1 )

end

Output: R

Each task in a task set is distributed to an individual processor and tasks following

each superstep are not regarded as having a particular linear order (from left to right

or otherwise) and may be mapped to processors in any way. The provided pseudocode

dictates re-computation of inputs prior to testing termination criterion. It is noted that
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this may result in slight inefficiency in practice however as is commonly the case (e.g.

the distributed application considered in this work), the re-computation of inputs is of

negligible cost. Cases involving input re-computation with non-negligible cost can be

efficiently addressed using straightforward modifications.

The advantage of adding the BSP synchronisation step between task sets allows

all tasks in a set the opportunity to collate and communicate information resulting

from the completion of their collective execution. The collective results of a task set

can influence decisions involving the form, model parameters and possibly the number

of tasks making up the following task set input. Once formulated, the following set of

tasks can be distributed to the participating processors. It is this process of dispatching

multiple rounds of parallel independent tasks, where task formulation may be influenced

by information from previous task set results, that we call Semi-Synchronised Task

Farming. This approach allows us to find distributed solutions to non-trivial problems

that require a level of communication between nodes during overall computation while

retaining much of the simplicity of the standard task farming model. If all tasks within

a task set take a similar amount of time to complete then it allows for simple modelling

and task distribution. If however tasks exhibit completion times with high variance,

then a smart scheduler (such as SGE [105]) can still be used efficiently to ensure that

load balancing is not problematic for our framework. The wall-clock time, now related to

both the number of task sets and the number of available processors, is much improved

over serial implementations.

The synchronisation aspect allows us to solve problem decompositions that require

a level of inter-node communication while retaining the main advantages of a standard

task farming approach such as ease of implementation, level of achievable efficiency (on

the assumption that individual tasks in a set require similar time to complete) and,

given that existing serial code can often be used with minimal modification, users can

produce solutions without requiring detailed knowledge of e.g. MPI techniques. We do

however note that if tasks take widely different amounts of execution time then the

total wall-clock time of a task set is no better than the slowest process. Being more

precise than this is hard because the wall-clock time of a task set also depends on the

number of CPUs (and tasks) taking part in the computation (see section 4.3.6.2 for

further discussion of this point).
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Figure 40: The Semi-Synchronised Task Farming framework. Light grey superstep nodes indi-

cate task synchronisation and collective global decisions based on information ob-

tained from the previous set of distributed tasks. These decision points influence the

input data, form (and possibly the number) of the following set of distributed tasks.

See text for further detail.



132 semi-synchronised task farming

4.3.4 Simulation and analytical hybrid performance modelling

We undertake simple performance modelling to evaluate the distributed job submis-

sion behaviour on a CPU cluster allowing prediction of the run time performance of

algorithms realised with our framework. Performance modelling of distributed systems

enables an understanding of code and machine behaviour and can be broadly split into

two categories; analytical modelling and simulation based techniques. Analytical models

are typically developed through the manual inspection of source code and subsequent

formulation of critical path execution time. This approach usually involves the imple-

mentation of a modelling framework (e.g. LoPC [100]) to reduce the work required by

the performance modeller. Analytical approaches are effective yet often require manual

analysis of source code necessitating knowledge of the task domain, implementation

languages and communication paradigms.

Here we follow a coarse grained alternative approach of simulation based performance

modelling. Many simulation tools exist to support this form of performance modelling

(e.g. the DIMEMAS project [155]). Such tools often involve replaying the code to be

modelled instruction-by-instruction and the related use of machine resources can then

be gathered by the simulator. More recent work such as the WARPP tool kit [115, 116]

make use of larger computational events (as opposed to instruction based simulation)

improving simulator scalability. Here we take a similar approach; instead of using single

application instructions we model coarse grained computational blocks. We choose a

coarse level of granularity by defining a computational block as one distributed task

in our framework. We then obtain run times for these computational blocks through

traditional code profiling. An additional advantage of this coarse-grained simulation

is that hybrid models (combining analytical and simulation-based approaches) can be

built. By combining these coarse-grained computational events with an analytical model

typical of the Bulk Synchronous Parallel (BSP) [267] model we obtain a straightforward

hybrid model capable of predicting application run-time for the algorithms that we

implement using our task farming framework.
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4.3.5 BSP cost in relation to task farming

The cost of an algorithm represented by the BSP model is defined as follows. The cost

of each superstep is determined by the sum of three terms; the cost of the longest

running local task wi, the global communication cost g per message between processors

where the number of messages sent or received by task i is hi and the cost of the barrier

synchronisation at the end of each superstep is l (which may be negligible and therefore

the term is dropped).

The cost of one superstep for p processors is therefore:

maxpi=1(wi) +maxpi=1(hig) + l (20)

We make standard simplifying assumptions that we have ≥ p homogeneous proces-

sors and that tasks do not need to exchange data with each other individually or with

the master node during each superstep thus ensuring that hi = 0 for all i. We assume

homogeneous processors for simplicity during our cost treatment but note that in the

current landscape of computation, heterogeneous resources are also common. Although

our framework is applicable to heterogeneous resources in practice, we leave a theoreti-

cal treatment of heterogeneous processor cost to future work (see section 4.4 for related

discussion of this point). It is common for Equation 20 to be written as w + hg + l

where w and h are maxima and with our simplification this reduces further to w + l.

The cost of the algorithm then, is the sum of the costs of each superstep where S is the

number of supersteps required.

W +Hg+ Sl =
S∑
s=1

ws + 0 + Sl (21)

4.3.6 Empirical simulation and modelling

We simulate total parallel algorithm execution times by firstly generating random trials

to simulate individual distributed task timings. To simulate a real-world task set, we

generate trials from a Gaussian distribution parametrised by the mean time required

in practice for a single distributed task to complete and add these to the time cost of
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barrier synchronisation. Task timing distribution parameters are found through code

profiling and making use of the Matlab function cputime. We assert that this is a

reasonable method to simulate task timings as the task farming applications that we

investigate all distribute sets of similar length tasks during each superstep. By specifying

or observing the number of supersteps required for a given real world computation and

the number of distributed tasks required in each superstep, we are able to approximate

the total time required by the parallel algorithm as:

S∑
s=1

ws + Sl (22)

where ws is the longest running local task in superstep s, barrier synchronisation time

cost is l and the total number of supersteps is S. In practice we run this simulation over

many trials and look at the mean result for an algorithm that requires Ns distributed

tasks during each superstep.

4.3.6.1 Limitless CPU node model

As a simple example we take a mean task length of wµ = 10 time units and a task length

standard deviation of σ = 1, and simulate an application making use of only a single

superstep. We find that, using the additional assumption of limitless computational

nodes, as we increase the number of distributed tasks required in the superstep the

difference between the longest task length ws and the mean task length wµ grows sub-

linearly with the number of submitted distributed tasks N (using 1000 trials per data

point in Figure 41). From this simple example we are able to conclude that, not taking

into account limited computational resources, if we have an application that benefits

from increasing the number of distributed tasks during a superstep (e.g. by an order

of magnitude - see for example section 4.5), we can expect improved results for only a

small increase in predicted wall-clock time cost.
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Figure 41: Predicted difference between maximum distributed task time and mean task time

ws − wµ, where wµ = 10, σ = 1 for an algorithm distributing N tasks in one

superstep. Simulation values obtained using 1000 trials per data point.
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We can fit this simulated computation time accurately using the standard inverse

complementary error function. The complementary error function erfc (also known as

the Gaussian error function) provides us with an accurate predictor for the maximum

job length ws increment over the mean job length wµ, in relation to the number of sub-

mitted jobs, that we are likely to observe assuming that the true job length distribution

resembles a Gaussian distribution. The erfc function is often used in statistical analysis

to predict behaviour of any sample with respect to the population mean. Here we fit

our simulation data by applying the inverse erfc to
(

1
Ns

)
, where Ns is the number of

submitted tasks in superstep s (see Figure 41). The error function erf is defined as:

erf(x) = 2√
π

∫ x

0
e−t

2
dt

Then the complementary error function, denoted erfc and its inverse erfc−1 are defined

as:

erfc(x) = 1− erf(x) = 2√
π

∫ ∞
x

e−t
2
dt

erfc−1(1− x) = erf−1(x)

The model that empirically fits the simulation for mean task length wµ, with standard

deviation σ distributing Ns tasks in parallel, lets us predict the maximum task time ws
for superstep s as:

ws = wµ +

(
1.4σ · erfc−1(

1
Ns

)

)
(23)

The scalar 1.4 is needed to fit our empirical data. We hypothesise that the true scalar

value providing the best fit to our empirical curve here is
√

2 but we leave investigation

of this to future work. In Figure 41 we use wµ = 10 and σ = 1 and simulate for various

task set sizes Ns. If computational resources are not a limiting factor, then once we

know the number of distributed tasks Ns required per superstep, and have estimates

for wµ and σ we are able to approximate the expected time ws required for a single

superstep of a given algorithm and, given the number of supersteps, the expected time

required for the entire algorithm. This model is valid in cases where the number of

available parallel worker processors is equal to or exceeds the number of tasks required

per superstep. We have access to 130 iDataPlex servers with multiple CPUs, however
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in many practical applications this requirement will not hold (the number of tasks per

superstep will exceed available participating worker nodes) therefore we also consider

a finite CPU model in the following section.

4.3.6.2 Finite CPU node model

The previous simulation model does not take into account CPU worker node limits. In

this section additional simulations are performed to explore the effect of capping the

number of available CPU nodes K in relation to the number of submitted distributed

tasks per superstep Ns. This allows us to fit a model that reflects our real distributed

system pragmatically. In this case, we assume that Ns > K and therefore each CPU

node is responsible for the computation of a number of tasks in sequence in order to

complete a superstep. In our task farming framework under SGE, when a CPU worker

node completes the computation of the current task then the next task from the set

still waiting to be processed will be assigned to the finished core such that each core is

continually utilised until all tasks have been processed. For each simulation trial, the

maximum cumulative CPU computation time used by a worker node during a superstep;

CPUs must now be found. This value is the maximal sum of task computation times

assigned to an individual CPU. From this max cumulative computation time found

during a superstep, we subtract wµ ·
(
Ns
K

)
where wµ is the mean task length, Ns is the

number of parallel tasks making up the superstep and K is the number of participating

processors. This effectively subtracts the mean amount of work we expect a CPU to

perform per superstep. This mean amount of work per CPU is denoted CPUµ = wµ ·(
Ns
K

)
. The resulting difference tells us how much more work, than the mean cumulative

work, we expect the node assigned the most work to carry out. As a result, CPUs
provides the time we expect the full superstep s to take to complete.

The final point above holds because all CPU worker nodes must be allowed to finish

their assigned cumulative task computation before it is possible to synchronise and

conclude a superstep s. When accounting for a finite set of CPU worker nodes we

therefore model the time it takes to complete a superstep s as the longest cumulative
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CPU computation time CPUs. When accounting for a fixed number of worker nodes

K, the model that we find (approximately) empirically fits the simulation data is:

CPUs =


wµ ·

(
Ns−mod(Ns,K)

K

)
+wµ if mod(Ns,K) 6= 0

wµ ·
(
Ns
K

)
+ 1.4σ · erfc−1( 1

Ns
) if mod(Ns,K) = 0

(24)

where

CPUµ = wµ ·
(
Ns

K

)
We model CPUs as the mean computational work done at each worker, CPUµ plus

some additional work that must be carried out by the CPU that has performed the

most work in the current superstep. We model this additional work in the following way:

when we consider a finite setK of CPU worker nodes, the difference between the longest

cumulative CPU computation time CPUs and the mean cumulative CPU computation

time CPUµ is primarily influenced by: 1) how evenly the number of distributed tasks

Ns are distributed to the number of participating CPU nodes K and 2) the mean task

length wµ. Advanced task farm models (e.g. [203]) employ various strategies dictating

how tasks should be distributed to workers. Here we take the simple approach that, on

the assumption that tasks belonging to a task set have similar length, each task still

waiting to be processed will be assigned in turn to the CPU worker node that finishes

its current computational work load first. A consequence of this is that if the total

number of distributed tasks Ns required by the superstep is exactly divisible by the

number of participating CPU nodes K (i.e. mod(Ns,K) = 0) then, excluding cases

involving extremely high task length variance σ2 in relation to wµ, each CPU will

receive an identical number of tasks and therefore the difference between the longest

cumulative CPU computation time CPUs and the mean time CPUµ will be small and

only influenced by the number of tasks Ns and the task length variance σ2 in a similar

fashion to the limitless worker node model. In such cases this small difference is once

again accounted for using the erfc−1 function as before (see Figure 41 and Equation 23).

If, contrarily, the number of tasks Ns divided by the number of participating CPU nodes

K leaves a remaining number of tasks that is small in relation to K (i.e. mod(Ns,K)

� K) then, again assuming moderate task length variance σ2 in relation to wµ, the

CPU node completing the most computational work will contain one more task than
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b
(
Ns
K

)
c. We account for this additional task in our model by adding the mean task

length wµ (our additional task) to the mean cumulative work done, adjusted by the

number of CPU worker nodes that are assigned an additional task such that they must

complete b
(
Ns
K

)
c+ 1 tasks in total.

This models the fact that the difference between CPUs and CPUµ will be greater

when fewer worker nodes are assigned b
(
Ns
K

)
c+ 1 tasks to complete since the true mean

work done per CPU will be close to wµ · b
(
Ns
K

)
c when many nodes are completing only

b
(
Ns
K

)
c tasks. The difference between CPUs and CPUµ is therefore essentially linear

in mean task length wµ once Ns, K and σ are known. Intuitively, if mod(Ns,K) is

low but non-zero e.g. equal to one, then the single CPU that is assigned this extra

task will be required to complete almost exactly one extra task length of work in

comparison to the mean amount of work CPUµ ≈ wµ · b
(
Ns
K

)
c. As mod(Ns,K) grows,

the value representing the mean amount of work done per CPU is adjusted accordingly.

The special case where mod(Ns,K) = 0 we expect, as discussed previously, only adds

a constant amount of excess work above the mean for large Ns similar to the case

explored previously using an unbounded K (see section 4.3.6.1).

We validate this model using empirical simulation data for various K and task set

sizes Ns. A sample of these simulation and model prediction results, exploring simulated

and predicted times for K ∈ {1 . . . 250} are found in Figures 42a - 42d for the case

where we fix wµ = 1000. Empirical simulation data point values are averaged over

1000 trials. In the Figures 42a - 42d we show simulations distributing Ns tasks over a

single superstep with a mean task length of wµ = 1000. As might be expected, as Ns

is increased to the point that K � Ns (subfigure 42b) the difference between mean

and maximum work carried out by CPUs converges to zero. More interestingly, as task

length standard deviation σ is increased, in relation to mean task length wµ, (subfigures

42c and 42d) minor discrepancy emerges between empirical simulation and our CPUs
model. These differences remain negligible for standard deviation magnitudes similar to

those found experimentally when measuring real-world task time lengths (c.f. section

4.4 and Figure 44). Our CPUs model exhibits an acceptable level of robustness to levels

of task length variation found in practice. Empirical simulation (red line) data points

are averaged over 1000 trials.

Additionally, Figure 43 illustrates the difference between our model predictions CPUs
and empirical simulation for various K. For the number of CPUs K that we are likely
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(a) Ns=250 , σ=1 , wµ=1000 , K∈{1,...,250} (b) Ns=2500 , σ=1 , wµ=1000 , K∈{1,...,250}

(c) Ns=250 , σ=100 , wµ=1000 , K∈{1,...,250} (d) Ns=250 , σ=200 , wµ=1000 , K∈{1,...,250}

Figure 42: CPUµ (blue ‘o’ shown for every 10thK) provides a simple model of the mean work we

expect processors to carry out in terms of total (log-scale) computation time units

when distributing tasks over K processors. We show, using empirical simulation

(red line), how the longest CPU queue (maximum work done) CPUs deviates from

this value in practice in relation to number of tasks Ns and processors K. Model

prediction of this maximum work carried out by a CPU: ‘CPUs Model’ (black ‘o’

plotted for every 10th K value) exhibits how accounting for this extra work improves

the accuracy of the predicted overall completion time (see text for detail).
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Figure 43: Model prediction error and empirical simulation for each value of K ∈ {1..250}. We

exhibit model prediction error of < 10 time units (Y-axis) when using σ = 1 and a

mean job length wµ = 1000 time units for each value of K explored. Our prediction

makes small periodic errors but this error reduces further as K increases. For the

number of CPUs that we make use of in practice (e.g. > 20) we see an overall

computation time prediction error of < 4 time units when using wµ = 1000 time

units.

to make use of in practice (e.g. > 20) computation time model prediction error is ≤ 1%

when compared to empirical simulation (we concede that this error size increases when

predicting real-world application runtime. See section 4.4 for additional detail).

4.4 sstf modelling for sge distributed applications

In this section, we use our SSTF model (introduced in sections 4.3.6.1 and 4.3.6.2)

to predict the expected run time of real-world applications that we distribute on our

SGE cluster under the task farming framework. We present results from job submission

under real network and Grid Engine loading conditions and compare measured runtime

results with predictions to test the validity of the models developed in section 4.3.
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Various application configurations are submitted to the SGE cluster that involve

distributing Ns = 20, 40 and 100 tasks during each superstep in applications making

use of S = 5, 10 and 30 supersteps. The application that we utilise for testing our model

contains parallel tasks with cost durations of comparable length by design. Further

details regarding the distributed version of the point registration algorithm (utilised

here experimentally) are given in section 4.5.

To calculate true overall application time cost we record individual parallel task run

times and are, therefore, able to find the longest running (highest cost) task within

each superstep. We then sum the times required for the longest running task ws in each

superstep s such that:

S∑
s=1

ws + Sl

provides the total time needed to execute the parallel application in practice (c.f. equa-

tion 22), assuming that all tasks within a superstep are able to run in parallel. With

regard to the sample application that we investigate, it is found that the time cost for

barrier synchronisation steps l are negligible in practice and therefore we neglect these

in the runtime calculation. Although barrier synchronisation is negligible in the sample

application investigated here, we note that this is certainly not always the case and we,

therefore, choose not to oversimplify the model.

Repeated trials (n = 10) are performed for each application (Ns,S) configuration

tested. Detail of a configuration distributing Ns = 20 tasks during each of S = 10

supersteps is now provided as an example. In this example real-world runtime mea-

surement results in a total cost of
∑10
s=1ws = 123.06 minutes of parallel computation

time with a mean measured task length of wµ = 462.9 seconds (∼ 8 minutes), and a

task length standard deviation of σ = 107.13 seconds. These values are obtained by

averaging across the n = 10 experimental trials. The recorded individual task times,

across all supersteps from one (Ns = 20,S = 10) trial, are shown in Figure 44. Indi-

vidual runtime costs are obtained by profiling the application through the use of the

Matlab function cputime.
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Figure 44: Individual parallel task timings recorded experimentally across 10 supersteps from

one trial with Gaussian, GEV best fit models used to explore the parallel task set

timing distribution assumptions.
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Using the distributed task model that we introduce in Equation 24, and assuming

that we have sufficient participating processors K to accommodate Ns = 20 tasks in

parallel, we predict the maximum work performed by a single processor in a superstep

to be CPUs = 669.86 seconds for this example (an underestimation, the mean of the

maximum values found in practice, across n = 10 trials, for this configuration is 738.37

seconds of CPU time). Using S = 10 supersteps the total runtime predicted by our

model for this experiment is therefore 111.6 minutes. This results in an underestima-

tion of the true mean total measured time by 11.4 minutes (∼ 10%) for this (Ns,S)

configuration. This underestimation may be explained by the slightly non-Gaussian dis-

tribution of task length observed (e.g. Figure 44). Examining the real-world run times

of the distributed tasks highlights a slightly heavy-tailed distribution for the particular

application employed in this experiment. This typically results in several long runtime

outliers that contribute to the total runtime cost using our overall runtime calculation

method. For expository purposes we also fit a GEV (Generalised Extreme Value) model

to the data here, providing a reasonable fit (i.e. resulting in a slightly lower Bayesian

Information Criterion (BIC) value of 2343.39 compared to the Gaussian BIC of 2446.78

for this data set). Future work could re-examine our hybrid model using e.g. a GEV

distribution in place of our current Gaussian timing model to predict run times in cases

where this provides a better fit to the independent task length distribution. We also

note that one potential route towards accounting for heterogeneous participating pro-

cessors p during runtime prediction would involve making use of mixture distributions

(e.g. a mixed GEV distribution). We leave more sophisticated task time distribution

fitting to future work.

The (Ns,S) configurations investigated and all predicted and measured job comple-

tion times are summarised in Tables 3 and 4. In Table 4 we present measured and

predicted overall computation time and note that the difference between measured

time and our model prediction is always within 11% of the measured value. Addition-

ally, in Figure 45 we show experimentally obtained individual task run times recorded

when distributing 100 tasks in parallel across S = 5 supersteps.

Our approximate model provides a simple yet moderately accurate method for pre-

dicting the amount of computational work required by applications formulated under

our task farming framework and distributed to the Sun Grid Engine or some other queue

based cluster system. For completeness, we contrast the computational time required
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to mean wall-clock time used by the cluster in practice. We note in general wall-clock

time is significantly larger than required computational time however we find that in

practice wall-clock time is subject to high variance between trials as we have little

control over wall-clock time in a multi-user cluster environment. This is mainly due

to resources available and the queueing aspect of sharing the SGE cluster with other

users. By additionally including Sun Grid Engine queueing (non-working) time, mean

wall-clock time for the application run in the provided example was 173.46 minutes

(non-working time is attributed to sharing the SGE cluster with other users).
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Table 3: Parameter sets used for four different sets of distributed application experiments vary-

ing the number of distributed tasks (Ns) and supersteps (S).

# CPU

nodes (K)

Tasks per

superstep (Ns)
Supersteps (S)

Model prediction (eq. 24) 20 20 10

Measured timing set 1 20 20 10

Model prediction (eq. 24) 20 20 30

Measured timing set 2 20 20 30

Model prediction (eq. 24) 20 40 05

Measured timing set 3 20 40 05

Model prediction (eq. 24) 20 100 05

Measured timing set 4 20 100 05

Table 4: Distributed application measured timing results and BSP model predictions for four

sets of distributed tasks with rows corresponding to Table 3. We obtain the predicted

overall computation time by taking the product of the predicted ws and the number of

supersteps (S). The difference between our overall computation time model predictions

and measured results are always within 11% of the true value.

True wµ (sec) Task time σ
Predicted ws (eq. 24)

and Measured ws (sec)

Overall

computation time (min)

Wall-clock time

(min)

Model prediction (eq. 24) N/A N/A (462.0 + 207.86)=669.86 (669.86 sec ·10)=111.6 N/A

Measured timing set 1 462.0 107.13 738.37 123.06 173.46

Model prediction (eq. 24) N/A N/A (348.17 + 168.02)=516.19 (516.19 sec ·30)=258.1 N/A

Measured timing set 2 348.17 86.60 740.0 287.4 434.08

Model prediction (eq. 24) N/A N/A (57.1 + 19.8)=76.9 (76.8 sec ·5)=6.40 N/A

Measured timing set 3 57.1 8.95 91.3 6.89 41.3

Model prediction (eq. 24) N/A N/A (214.4 + 96.46)=310.86 (310.86 sec ·5)=25.9 N/A

Measured timing set 4 214.4 37.83 353.6 27.3 133.0
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4.5 distributing multi-view point cloud registration

As discussed our approach to multi-view registration can be considered a computa-

tionally demanding computer vision problem in cases where many viewpoints are con-

sidered. Here computational issues are addressed by proposing an implementation of

our registration methodology using the introduced Semi-Synchronised Task Farming

framework. We focus on the previously introduced registration task as it provides an

example application that is able to benefit from performing many tasks in parallel yet

also requires a form of communication between rounds of parallel tasks (supersteps).

As described previously, these parallel task sets and synchronisation steps make up a

larger computational process. The example application that we study has the following

properties that are common to many computationally demanding applications:

• Large input data set. Our input data (e.g. point sets containing hundreds of

thousands of points) are large relative to the number of model parameters (e.g.

adaptive kernel density bandwidth parameters h and kernel class) and control

options (e.g. number of required supersteps and optimiser iteration limits) that

dictate the data processing procedures.

• Large number of tasks. The number of tasks N that make up the overall compu-

tational process is large (e.g. 100 viewpoints (represented by point clouds) taking

part in 10 iterations of simultaneous view alignment will result in 1000 tasks). The

total number of tasks may also not be known in advance for some applications.

Each application launches sets of tasks that are processed in parallel. All tasks in

a synchronised superstep must complete before the following round of tasks (su-

perstep) can begin. Task parameters are defined by fixed model parameters and

potentially by information resulting from the completion of previous task sets.

• Task independence. Each task is defined by model parameters, the global input

data and potentially the task set results from the previous superstep. For tasks

that are contained in the same superstep, no dependencies exist between superstep

task members.

As noted previously, registration can be considered one of the crucial stages of re-

constructing 3D object models using information obtained from range images captured
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Figure 45: An example distributed task set containing 100 viewpoints over 5 transform cycles.

Under the assumption that we have enough cores to run the tasks for each cycle in

parallel, the entire procedure is completable in ∼ 25 minutes while a serial imple-

mentation performing a similar optimisation would take > 40 hours. See Table 4 for

further details.

Figure 46: Our multi-view registration method. Stages of the algorithm within the dashed line

(red) area are distributed to our cluster in parallel.

from differing object viewpoints. The generalised problem of globally aligning multiple

partial object surfaces is a difficult task that remains a fundamental part of extracting

complete models from multiple 3D surface measurements. The framework outlined in

this Chapter allows us to process large numbers of range images per object reconstruc-

tion in feasible time frames whilst retaining the accurate, high quality view alignment

results typical of simultaneous registration approaches.

Chapter 3 provided detail on our registration strategy (see e.g. the pseudocode pro-

vided in section 3.4 and Figure 16). Since range viewpoints are aligned in parallel,

using our semi-synchronised framework, we are able to accommodate many view sets
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for smaller incremental wall-clock time increase than typical serial solutions. Utilis-

ing many object viewpoints, for the task of object reconstruction, affords benefits over

sparse sets of views such as better object surface coverage, hole filling and reconstructed

object detail improvement.

For N viewpoint data sets we define N independent parallel tasks in each super-

step and in each of these tasks, as detailed in Chapter 3, we use the current pose of

the remaining N − 1 scans for the purpose of computing a surface estimate and a re-

lated energy function. We allow the final, active scan to move in the transform space

by searching for optimal pose parameters. Each parallel task assigns a different view-

point as the active scan. Independently evaluating the position of each moving scan

in relation to the inferred surface and therefore minimising our energy function brings

the active view into better alignment. Since viewpoint position evaluation is the most

computationally expensive part of the procedure, if many viewpoints are made use of

then parallelisation of this step typically affords a large time saving. After this min-

imisation has taken place for each viewpoint in parallel, we have N sets of optimal

rigid transform parameters; typically three translation (θx, θy, θz) and three rotation

(θα, θβ, θγ) parameters that bring each view into alignment with the estimated sur-

face (and therefore the other views). Once each independent task has found a set of

rigid transform parameters (reached the superstep synchronisation barrier), we apply

the transform parameters found for each view, thus bringing the entire set into better

alignment with one another, completing our barrier synchronisation step. We then re-

distribute the tasks to perform a re-estimation of the sampled surface, using the new

view-point positions, for each view in parallel. This typically results in a tighter, more

accurate, estimation of the surface (see Chapter 3 for accuracy experiments). We iterate

this process for S supersteps until viewpoint registration convergence has been reached.

Convergence can be identified by looking at residual point alignment error metrics or

the magnitude of the transforms being found by each task optimisation. In practice

convergence is usually reached within S = 10 supersteps however for the purposes of

the timing experiments in section 4.4 we use up to S = 30 supersteps.
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4.5.1 Experimental setup

We evaluate this parallel alignment strategy quantitatively on synthetic and real range

sensor data where we find that we have competitive registration accuracy with existing

frameworks for this task. See Chapter 3 for registration accuracy results. Here we

evaluate application speed up due to parallelisation. As discussed we are able to register

all views simultaneously by taking advantage of many cluster nodes, and thus distribute

the work. Here we explore various distributed task and superstep configurations and

look at the performance gained by making use of a distributed system compared to

performing the work on a single node. In the case of the single CPU experiments we

register each scan serially using an individual cluster node and then find the related

surface estimates once rigid transforms have been found for all scans.

We record runtime results as follows: for Single CPU results no job queueing is in-

volved as the algorithm performs the registration of each scan in series until completion.

The time reported is the total time required to register N viewpoints in series over S

supersteps. For the parallel distributed experiments we measure the time taken in two

ways. As discussed in section 4.3.1, the distributed system we make use of employs a

multi-user job queueing system. Firstly, we measure the wall-clock time by recording the

total real-world time required from the point of submitting our work to the job queue

until the job is complete (when the registration of all viewpoints Vi has converged in

this case). Here, job queueing (non-working) time cost may be incurred by each individ-

ual distributed task, (the alignment of a single view Vi to the related surface estimate

to find the optimal pose transform Tθi
). In Table 5 this timing result is referred to as

“ECDF wall-clock time”. The second distributed timing measure excludes this queue-

ing (non-working) time and for each superstep finding the maximum task length of an

individual distributed task (scan alignment) in a similar measurement process to that

outlined in section 4.4. The time reported for this second metric is then the sum of

the maximum task lengths over the total number of supersteps, we call this the “Dis-

tributed ideal time”. We consider this to be an accurate assessment of the computation

time required, as each superstep must wait for all member distributed tasks to finish

before it may apply the global synchronisation step and then launch the following set of

distributed tasks. This second metric excludes real-world queueing time. Furthermore,

for this experiment, we have sufficient worker nodes to process all distributed tasks
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in a superstep concurrently (true in the case of our current HPC cluster). These mea-

surements allow us to compare the optimal theoretical performance gain to real-world

speed up, achieved in practice on our multi-user system.

4.5.1.1 Performance evaluation

The success of employing an HPC system to solve computationally demanding prob-

lems resulting from large real-world data sets depends on the system architecture (e.g.

number of available processors) and algorithmic design. The performance of an algo-

rithm on an HPC system can be evaluated by calculating the speed-up provided over

a single node or single CPU system. Here we use speed-up Sp and efficiency Ep (Equa-

tions 25 and 26) to show the improvement we achieve by formulating computer vision

problems under our task farming framework. Assuming that the speed of processors

and the network is constant; then speed-up [12, 81] is often defined as:

Sp =
T1
Tp

(25)

where p is the number of participating processors, T1 is the computational time needed

for sequential algorithm execution and Tp is the execution time required by the parallel

algorithm when making use of p processors. Ideal (linear) speed-up is obtained in the

case Sp = p. Although super linear speed-up is possible in some cases (e.g. due to cache

effects in multi-core systems), when using task farming and an HPC cluster we consider

linear speed-up as ideal scalability. In the linear speed-up case, doubling the number of

processors p will double the speed-up Sp (halving the required execution time Tp). The

second, related performance metric we make use of is efficiency (Equation 26). The Ep
metric, typically in range [0..1] attempts to estimate how well utilised p processors are

when solving the problem at hand compared to how much time is spent on activities

such as processor communication and synchronisation.

Ep =
Sp
p

=
T1
pTp

(26)

For our viewpoint registration algorithm Table 5 shows that, in experiments per-

forming only a single superstep (surface estimation), when we compare the serial and

distributed computation times (excluding job queueing time) we are able to achieve sig-

nificant speed up in each case (where here p = 5, 20 and T1,T5 and T20 timings are in
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minutes) with S5 = 37.26
8.74 = 4.26 and S20 = 95.38

7.74 = 12.32. We note that the experiment

aligning fewer viewpoints, using fewer nodes (|{Vi}| = 5, p = 5, S = 1) achieves a re-

sult closer to optimal speed-up (and efficiency). We reason that a longer maximum task

time (the superstep time) is likely to be observed for the larger experiment (|{Vi}| = 20,

p = 20, S = 1) as it contains more distributed tasks per superstep. This point holds

in practice here and was explored during our predictive model formulation and related

scalability experiments in section 4.3.3. Table 5 also shows the same task set sizes

(|{Vi}| = 5, 20) but with multiple supersteps (S = 5), which achieve slightly improved

speed-up and efficiency performance: S5 = 176.06
39.12 = 4.50 and S20 = 835.02

52.40 = 15.94.

Again our hybrid model predictions come within 10% of the measured values in each

case and we include ECDF wall-clock time results in the distributed experiments for

completeness. The time required to align 20 range image viewpoints over 5 supersteps

using our simultaneous method can be effectively reduced from ∼ 14 hours to fifty

minutes.

Table 5: Multi-view registration algorithm timing results: single CPU versus distributed cluster.

Single CPU

(min)

Distributed ECDF

wall-clock time (min)

Distributed ECDF

ideal time (min)

Model prediction

(min) (eq. 24)
Sp (eq. 25)

5 views 1 superstep 37.26 10.77 8.74 8.37 4.26
20 views 1 superstep 95.38 10.89 7.74 8.28 12.32
5 views 5 supersteps 176.06 49.22 39.12 36.06 4.50
20 views 5 supersteps 835.02 185.94 52.40 49.37 15.94

All implementation examples presented in this work make use of Matlab and we find

that the prerequisites for writing parallel code under the Distributed Computing Tool-

box (DCT) from MathWorks [174] are relatively low. There is no need for the developer

to instruct cluster machines on how to communicate, which parts of the code to exe-

cute or how to assemble end results. We find that this provides a straightforward and

intuitive approach to parallelising computationally demanding applications in a rea-

sonable time frame. Parallelisation under this simple task farming framework results

in potentially huge time savings without requiring extensive task or data parallelism

knowledge.

In the following Chapter (Chapter 5) we explore registering 3D point cloud data

captured using the Microsoft Kinect camera [183]. The Kinect is a structured light

laser scanner that obtains a coloured 3D point cloud, with more than 300000 points
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at a frame rate of 30Hz providing new standards in the quantities of rapidly available

depth data. Consumer-grade, affordable sensors such as the Kinect are paving the way

for a new era in computer vision that makes use of depth information modalities in

ways previously impossible due to limitations on sensor speeds and costs. The potential

advantages that fast, inexpensive yet accurate depth sensors can enable are considerable

in many applications. However such sensors also bring associated challenges in the area

of being able to successfully and gracefully handle the large volumes and sets of ( e.g.)

point cloud data generated by these sensors. This provides impetus for methods and

techniques capable of processing large sets of point cloud data. In the following Chapter

one promising route to satisfy these requirements is explored. By making use of the

techniques introduced so far in this thesis we experimentally explore registering very

large collections of point cloud data, captured from varying viewpoints using a Kinect

sensor, and analyse potential applications.

4.6 discussion

In this Chapter, we have formulated a Semi-Synchronised Task Farming framework

(SSTF) for solving computationally intensive problems where independent problem com-

ponents can be distributed as parallel tasks to an HPC cluster. Following a round of

task computation, results are collated and communicated. These results can then influ-

ence the initialisation and parameterisation of the following round of task distribution.

This iterative procedure of task distribution and result collation leads to global problem

solutions. The SSTF framework is complemented by a timing model used to predict

overall application completion time for problems that are formulated using our task

distribution strategy. We validate this model using simulation and experimental results

and find it to be sufficiently accurate, providing a simple tool that can be utilised when

estimating the time requirements of computationally expensive applications.

As might be expected, our experimental results illustrate that processing data sets

using an algorithm formulated under our distributed framework, and deployed on an

HPC cluster, obtain significant time saving over single node computation due to vast

gains in speed-up. We note that, in practice, the human effort required to move from

an original serial algorithm implementation to a distributed task farming approach

is very reasonable. By making use of SGE to handle the task queueing system and
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allowing developers to concentrate on domain specific problem aspects we find that we

are able to convert a serial code implementation in a feasible time frame (e.g. one week).

By employing parallel-friendly programming languages, master-slave communication is

also hidden from the developer allowing them to again focus solely on domain specific

problems.

Specifically the performance enhancement obtained when utilising SSTF to guide a

parallel implementation of our (previously introduced, Chapter 3) point set registration

algorithm is explored and documented. Throughput achieved, using our task farming

framework, is compared with that of implementations using only a single compute node.

In the application experimented with we find near linear speed-up improvement in the

number of participating processors p over the related serial implementation. Also, in the

case of the problem investigated, we are able to provide timing model cost predictions

that are always within ∼ 10% of the execution time required in practice. We therefore

consider this timing model a useful predictive tool.

Distributed computing on HPC clusters offers an attractive option when compared

to expensive integrated mainframe solutions. The main advantages of HPC cluster-

ing include distributed robustness and the ease of cluster scalability. When using an

HPC cluster to accelerate the rate that we are able to solve computationally expensive

problems, the factors of data set size and algorithm design play important roles in de-

termining the degree of success in parallelising an application. Our framework allows

the performance of a distributed algorithm implementation, on a given architecture,

to be predictable. Using our SSTF framework and simple timing parameters obtained

from the implementation under evaluation allow for reasoning about program design

at an early stage.

Possible extensions and avenues for future work include implementing solutions using

our SSTF framework in conjunction with faster compiled languages (e.g. C/C++) and

applying such solutions to time critical applications. Additionally, extending our per-

formance modelling treatment, to account for heterogeneous processors, would likely

improve the model predictive accuracy and power. Related extensions might take the

form of re-examining individual task time fitting using more sophisticated distributions

to improve modelling in the heterogeneous processor case (e.g. employing distribution

mixtures). Finally during the experimental work performed here it was noted that in
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practice there is often contention between speed-up and efficiency. Future work could

aim to find optimal trade-off generalisations from the specific cases presented here.

In summary the work in this Chapter introduces a straightforward parallelisation

strategy that produces effective methods for solving computationally expensive prob-

lems offering vast wall-clock time savings over serial approaches. Our main contributions

in this Chapter include the proposed strategy for formulating demanding problems that

require a level of communication between subtasks and this strategy is explored exper-

imentally using example problems from the computer vision domain that exhibit large

time savings in practice when compared to serial implementations. Additionally, by

taking inspiration from previous work regarding both analytical modelling (the Bulk

Synchronous Parallel model [267]) and simulation based performance models we propose

a timing performance prediction formula that we evaluate in simulation and practice.

We show that this formula is able to accurately predict computational costs for dis-

tributed algorithm implementations thus providing a useful tool that can be utilised

when planning distributed computational work. In the following Chapter (Chapter 5)

we make use of the framework and tools introduced here by registering large volumes

and sets of point cloud data, generated by consumer-grade depth sensors. By exploring

the registration of very large collections of point cloud data in feasible time frames we

are able to analyse the potential benefit of utilising the distributed strategies introduced

in this Chapter.
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5
LARGE SCALE POINT CLOUD REGISTRATION

5.1 introduction

Chapter 3 presented a method for the simultaneous registration of multi-view range

images using adaptive kernel density estimation. By producing a data-driven density

estimate of object shape we provide a method that can be utilised to register point

clouds simultaneously into a global coordinate frame. The performance of our KDE

based technique on the multi-view registration task generally depends on both the

initial coarse point cloud alignment provided and the extent to which the method is

able to handle possibly noisy depth measurements whilst aligning overlapping views.

In general, when we apply the technique to data sets containing viewpoints that afford

large amounts of spatial overlap (with a reasonable initial coarse alignment) we are able

to maintain and refine global object shape whilst converging on a tight and robust view

alignment. By making use of all views at once to infer a model of global object shape,

and allowing all views to improve their spatial positions simultaneously with respect to

this model, the position of each view at a given time point is constrained and guided to

a pose that is influenced by the current positions of all overlapping views. By making

use of many overlapping views captured from the same physical portion of a surface

or object we claim that through redundant sampling and measurement we are able to

reinforce the correct view pose and improve registration performance in comparison

with other techniques that e.g. directly locally minimise point pair distances.

Chapter 3 demonstrated that our multi-view registration framework produce regis-

tration results comparable to the state-of-the-art using data sets with relatively small

view counts and highlighted several of the framework’s desirable characteristics: in the

case of having many overlapping views we are able to implicitly reinforce convergence

159
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to the correct global object shape, improving registration accuracy. Additionally the

method generalises to objects of any topology and does not require a training stage due

to the non-parametric approach taken to density estimation, that will typically improve

estimates and accuracy as more point samples are afforded.

In Chapter 4 we presented a framework that enables the distribution of computation-

ally expensive problems that can be instantiated using non-independent (yet parallelis-

able) subtasks. We coupled this with a modelling process capable of predicting the avail-

able speed-up benefits available to an algorithm realised under this Semi-Synchronised

Task Farming (SSTF) framework.

An intrinsic property of non-parametric density estimation dictates that estimation

quality improves as the number of available samples increases. This fact provides the

motivation for this chapter in which we explore whether we are able to improve view

registration (and related model reconstruction) quality by applying our registration

framework to large sets of object and scene viewpoints that potentially contain mul-

tiple and redundant depth samples of the corresponding physical points from varying

views. In this regard we investigate model reconstruction quality as the number of avail-

able viewpoints increase. A second non-parametric model estimation property dictates

that the cost of building models will increase as the number of available samples to be

utilised increases. In this chapter we mitigate this foreseen computational cost increase

by instantiating our registration framework under the proposed SSTF distributed com-

putation model.

By combining the frameworks of the previous two chapters, we form a strong registra-

tion method that couples the previously noted advantages of registering viewpoints util-

ising a non-parametric model estimation technique and simultaneous view-pose align-

ment strategy with a framework capable of handling the simultaneous registration of

view-sets containing large numbers of views. View sets experimented with are of an

order of magnitude that is infeasibly large for traditional serial and sequential point

cloud registration methods. In this chapter we explore potential available benefits when

building models of objects and scenes from data sources containing viewpoint counts

that are 1− 2 orders of magnitude greater than traditionally available. Large view col-

lections are explored in this study and it is well understood that non-parametric density

estimates tend to improve the accuracy of their estimates as the number of available

samples increases. Considering these points, we hypothesise that:
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1. “Implementing KDE multi-view registration (chapter 3) under the SSTF frame-

work (chapter 4), allows the scaling of view registration to successfully undertake

problem instances consisting of view-sets 1−2 orders of magnitude larger than tra-

ditionally considered. By enabling scalable multi-view registration strategies, that

generalises well to differing sensor modalities, it becomes possible to successfully

register high view-count datasets afforded by contemporary depth sensors target-

ting diverse physical objects.”

2. “A registration method, utilising non-parametric surface inference and soft corre-

spondence based strategies, is able to take advantage of information provided by

redundant point sampling of object surfaces for the purpose of improving registra-

tion tolerance to sampling noise and coarse seed configuration.”

3. “Increasing view-set order of magnitude, when undertaking point cloud registra-

tion, affords model reconstruction accuracy benefits over utilising sparse view-

sets.”

Evidence in support of these hypotheses is collected and presented in this chapter. We

illustrate how model reconstructions can be obtained by performing distributed view

pose optimisation. The benefits of facilitating point set registration of large view-sets in

a feasible distributed manner are explored. We apply our distributed registration model

to several challenging large view-set data sets and provide evidence to support the claim

that model reconstruction quality obtainable from large depth image view-sets improves

over that of sparse view-sets. By applying our multi-view registration strategy to large

view-sets obtained using sensors such as the Kinect, high speed stereo camera rigs and

synthetic data sets we provide evidence of the potential quantitative benefits achievable

when utilising large view-sets during the process of acquiring 3D object models within

a modelling from range data pipeline. Using the framework introduced in chapter 4

(and therefore providing a multi-core implementation) we are able to keep wall-clock

run times reasonable when working with high order of magnitude frame counts while

maintaining high registration accuracy. Specifically we provide evidence in support of

hypothesis 1 in sections 5.4.1, 5.4.3 and 5.4.4; hypothesis 2 in section 5.4.2.1 and 5.5

and hypothesis 3 in section 5.4.2.2. In summary this chapter presents a solution for the

global registration of large collections (hundreds of viewpoints) of dense range images



162 large scale point cloud registration

(thousands to hundreds of thousands of depth sample points) as part of a modern,

high-quality, 3D object modelling pipeline.

The remainder of this chapter is structured as follows: In section 5.2 we detail an

approach for the preliminary task of automated coarse alignment when using large view-

sets and section 5.3 introduces some additional point cloud registration considerations

when the task involves high order of magnitude view sets. We describe our experimental

results in section 5.4. Sections 5.4.1 and 5.4.2 provide evidence concerning the benefits of

utilising large view-set data, such as that typically afforded by modern consumer grade

depth sensors and the remaining subsection concerns comparing and contrasting the

robustness and accuracy of our large viewpoint registration methodology with existing

work in the literature. Finally section 5.5 concludes the chapter with some discussion.

5.2 automated coarse alignment for large view-sets

There are many capable sensing techniques for acquiring 3D data (e.g. laser scanners,

tactile probes, structured light, stereo cameras, time-of-flight etc) and many contempo-

rary sensors offer large depth data sets in terms of both dense sampling and high frame-

rate view / image capture. Depth sensing mechanics are varied. However a common

pipeline of operation for taking acquired depth data and producing a usable geometri-

cal model is well established. The crucial step of depth image viewpoint registration is

(as chapter 3 explains) usually split into the stages of finding an initial coarse global

alignment followed by refining and optimising this alignment among viewpoints.

The task of computing initial alignments between samples, bringing all views into a

single frame of reference, has historically been an active area of research. The general

formulation of the coarse alignment problem, making no assumptions about scene object

features or initial approximate registration is notoriously difficult to solve robustly. A

broad history of automatic coarse alignment techniques include early work utilising

the frequency domain [63], interest points [219, 247, 89], Harmonic maps [284], Spin

Images [139, 131, 130], template set matching [113], computing principal axes [75]

and exhaustive correspondence point search [51, 52]. More recent work [148, 50] also

considers line-based and PCA based approaches (see [226] for a comprehensive review).

In sophisticated systems, coarse alignment can be aided by an ability to track sensor

position and orientation and by affording approximate tracking (now with contempo-
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rary, cheap hardware) in an attempt to alleviate an infeasibly large and unbounded

pose space search. This has been performed using both physical coordinate measure-

ment devices, tracking position and orientation and with optical tracking, deriving

natural scene image features from (e.g. intensity data co-aligned to the depth data) or

by manually augmenting the scene using physical fiducial markers.

Simpler depth capture systems often perform initial coarse frame of reference align-

ment by scanning objects on a turntable, providing a simple and cheap solution. This

approach limits the size and complexity of scanable objects and, since the system pro-

duces cylindrical view sets, capture failure may occur where self-occluding objects are

studied. Additionally this capture process may result in data sets with no data pertain-

ing to the top or bottom of a target object (not viewed by the stationary sensor).

Finally a large number of pipelines rely on interactive manual alignment: a human

is given control over identifying and selecting three (or more) matching feature points

between views (thus allowing a closed-form rigid spatial transform to be derived) or

allowing full control over view pose space parameters from which manual coarse align-

ment can be performed.

Whether using controlled motion, feature matching techniques or manual alignment,

attaining the same degree of accuracy as sensor depth measurement is typically not

achievable [20]. Initial alignment is therefore often refined by a following fine-registration

stage. In order to explore the ability of the proposed fine-registration method (chapter

3) to register large view-sets, we augment our depth data to geometrical model pipeline

with simple, automated coarse-alignment techniques capable of providing view-pose

seed configurations as input for our simultaneous view registration framework.

In order to perform fine-registration with large sets of object views here we instanti-

ate a simple full depth image to model pipeline by utilising common autonomous coarse

alignment methods. Previously (c.f. Chapter 3) a manual coarse alignment was used

for seeding viewpoint poses however, this task quickly becomes infeasible when explor-

ing large problem instances where (1) a temporal view order is unknown or cannot

be used to successfully infer a global frame of reference or (2) the number of view-

points is of an order of magnitude that renders manual coarse alignment infeasible. By

utilising well understood automated coarse alignment techniques in combination with

depth data from an array of devices, this chapter instantiates a simple fully automated
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pipeline capable of model reconstruction utilising depth data obtained from large sets

of viewpoints.

Simple controlled motion is employed by pairing contemporary depth sensors ([73],

[183]) with a turntable to provide cheap, fast large view-set depth data generation. The

noted limitations of turntable capture are addressed by supplementing this process with

a commonly used coarse alignment method involving point-to-point correspondence and

Spin Images (originally proposed by Johnson [139]). In the following section we briefly

provide detail of the implemented coarse alignment steps that offer coarse pose-seeding

of large view-set depth data from a variety of range-finders.

Several noteworthy high quality full depth-data-to-model pipelines have been pro-

posed previously. The real-time model acquisition system of Rusinkiewicz et al. [222,

223] affords interactive (real-time) model reconstruction with a structured-light range

finder and more recently KinectFusion [135, 190] introduces similar rapid surface recon-

struction functionality using the Kinect sensor. The main advantage that interactive

frame-rates bring is the ability to offer a live visualised model preview during scanning

that in turn facilitates valuable feedback relating to areas of a scene or object still to

be scanned (useful for addressing remaining model holes etc). Several design decisions

and concessions are made to afford these interactive frame-rates.

The earlier pipeline of Rusinkiewicz et al. make use of the natural 2D array or-

ganisation (pixel connectivity) of depth images and implement a projection-based ICP

[221, 25] strategy. By projecting line-of-sight rays into range maps, matching point-pairs

between frames are found simply by indexing into the 2D pixel array and avoiding the

comparatively slow 3D closest point search. Additionally real-time model rendering is

achieved by computationally frugal splatting [291] to give the appearance of merged

surfaces without the need to triangulate points or reconstruct a consistent polygon

mesh. User input in the form of manual alignment using anchor scans is relied on to

correct misalignment errors and real-time speed is achieved. Reconstructions are good

enough to guide users for object scanning feedback (e.g. hole filling) but intermediary

models are admittedly not able to match the quality of offline state-of-the-art registra-

tion and reconstruction algorithms. To address reconstruction quality, a final offline

globally-optimal registration component is offered at the conclusion of the scanning

process using the technique of [210] to afford high quality final results1.

1 This global registration technique is directly compared with the current work (see section 5.4.2.1)
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By choosing not to perform fast e.g. line-of-sight projection point matching (using

2D depth images) we sacrifice real-time performance but in return become agnostic to

range-finder source. By not requiring any point sample connectivity information our

method generalises to register multi-view point cloud data obtained from any sensor

modality (i.e. where 2D range images and neighbourhood connectivity information are

not available). Run-time performance priorities also influence the KinectFusion work

where highly parallel general purpose GPU (GPGPU) techniques are used to maintain

a running scene model with a voxel-based signed distance function representation and

a parallelised implementation of ICP [21] again neutralises costly nearest neighbour

point search during pairwise view registration. Maintaining acceptable real-time frame

rates for this task involves accumulating large amounts of depth data such that rapid

merging or discarding of redundant data is required. Conversely in this work, at the

cost of real-time operability, we retain large amounts of data for offline processing and

explore the benefits that not explicitly discarding redundant sampling information is

able to afford (c.f. experimental section 5.4.2.3).

In conclusion fast, real-time full modelling pipelines exist however this work concerns

high quality simultaneous multi-view registration, the expensive process that can be

considered useful for refining or finalising results offered by instances of the outlined

multi-step process. A basic implementation of the discussed pipeline is instantiated

in this work to facilitate experiments. This involves simple common coarse alignment

methodology, allowing a focus on improving the global simultaneous fine-registration

step in terms of quality and feasibility. Additionally, surface reconstruction techniques

are used in section 5.4.4 to help visually assess the obtained multi-view registration

results. There are many algorithms available that produce high quality surfaces. Due

in part to the previously discussed ability of the proposed registration strategy to

implicitly handle outliers (c.f. sections 3.3.4, 5.4.2.3) we choose not to implement any

specific point outlier removal or integration process pre-surface reconstruction. This

influences the selection of Poisson surface reconstruction [145] to complete our basic

pipeline, a popular implicit surfacing method, capable of creating smooth surfaces and

robustly approximating noisy data.
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5.2.1 Coarse alignment using local descriptors

Spin Images [139] are a popular local 3D shape descriptor that employ 2D histograms

to evaluate the spatial neighbourhood of selected interest points in a point cloud (or

on a surface). A Spin Image provides a direction and orientation invariant signature

associated with each selected location. The statistics of each descriptor are influenced

by both the size of the spatial neighbourhood considered and the granularity of the

2D histogram made use of. These variables can be adjusted to obtain the desirable

local descriptor properties of being unique and distinguishable, yet repeatable, point

signatures. Interested readers should review [139] for further detail regarding Spin Im-

age construction. The spatial relationships between these local descriptors are stored

in the geometry of a given point cloud. By finding potential matching descriptors be-

tween point clouds (using e.g. cross-correlation) and producing a set of sparse point

correspondences, an initial coarse alignment can be found by locating a common subset

of matching points. Point matches can be used to estimate rigid spatial transforms, in

closed form2. We emphasise that at this stage we do not seek perfect correspondences

(or therefore a transform that results in a perfect alignment), just a sparse set of reason-

able matches to determine a transform that provides a coarse seed alignment between

point clouds.

Figure 47 shows Spin Image [139] point descriptors calculated at selected points (using

a single point cloud from the Pipe data set [214]). This feature involves creating 2D

histograms. Calculating distinct local features at varying spatial locations provides

evidence of the descriptor ability to provide unique (yet repeatable) local features.

Adjusting 2D histogram bin counts (effectively the descriptor resolution, 15× 15 bins

in this instance) and the local spatial region considered influence desirable properties

of feature uniqueness and repeatability rate.

2 Several popular closed form solutions provide a rigid transform determined using a set of correspond-

ing points. Solutions differ in their transformation representation and method of criterion function

minimisation. See [162] for a detailed review.
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Figure 47: Spin Image [139] local descriptors calculated from a (single view) point cloud using

the Pipe data set [214]. The diversity of descriptors gathered from geometrically

distinct locations confirm the ability to provide potentially unique (yet repeatable)

local features.

In Figure 48a we exhibit a Spin Image defined at a sample point, chosen manually

for illustrative purpose, and an approximately equal point on a (distinct) view of the

same object (48b). The point correspondence does not likely provide a perfect match

regarding location on the physical object (due to sensor quantization, measurement

noise, manual error etc.) however the 2D histograms provide visually similar results and

the similarity of the descriptors can be computed by a standard image cross correlation

metric (Eq 27) between images A, B.

Corr(A,B) =
ΣiΣj(Ai,j − µA)(Bi,j − µB)√

(ΣiΣj(Ai,j − µA)2)(ΣiΣj(Bi,j − µB)2)
(27)

Using this simple comparison metric (Eq 27), perfectly correlated (identical) feature

“images” produce Corr(A,B) = 1.0 and highly correlated point matches indicate a

good chance of a valid location match between views (Corr(A,B) ≈ 0.91 in the Fig-

ure 48 example). Using this simple correlation based similarity metric and a standard

RANSAC [91] step to find the best consistent correspondence model provides a sparse

strategy for finding initial correspondence (and alignment) between point clouds. This

strategy can be performed in a standard chain-pairwise fashion between views when

satisfactory feature point correspondences exist to produce a simple autonomous coarse

alignment strategy. It was found that this simple strategy works well when considering

view points of objects exhibiting unique, distinctive and varied geometrical features.

Objects that contain e.g. many symmetrical parts are more likely to produce poor
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coarse alignment results. Where necessary, this feature based coarse alignment strategy

is augmented with the additional approach described in the following section (5.2.2).

Finally, manual hand alignment can be used to correct any remaining coarse alignment

errors. Example coarse alignment seed results for point clouds, collected from various

sensors, are found in section 5.4.

(a) (b)

Figure 48: Matching descriptors representing an identical physical object location between (dis-

tinct) point clouds. The point correspondence may not provide a perfect match

regarding location on the physical object (due to sensor quantization, measurement

noise, manual error) however the 2D histograms provide visually similar results and

the similarity of the location is affirmed by a standard image cross correlation value

of ∼ 0.91 (Eq 27) between A, B. Feature point locations are chosen manually for

illustrative purposes.

5.2.2 Heuristic sequential coarse alignment

The second simple coarse alignment seeding method we implement to precede fine-

registration is applicable to large view-sets where a temporal view ordering is known

and the trajectory of the sensor (or scene target) is also approximately known in advance

or can be estimated. This technique is successfully applied when a view-set consists of

many frames, with small temporal gaps, and the sensor (or target) follows a relatively

simple or easily predictable path through the scene. An example scenario, utilised in this

work, involves rigid object capture from many points of view using a fixed position depth

sensor and the aid of a physical turntable device. By considering sensor frame capture

rate and total capture duration (and introducing reasonable simplifying assumptions

e.g. a constant turntable velocity) we can estimate the inter-frame rotational transforms

exhibited over the duration of a complete object revolution. We use the estimated
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rotational transforms between view frames to again perform a simple chain transform

application between subsequent frames thus bringing all frames into a reasonable coarse

alignment. This second coarse alignment seeding technique is applied to the data set

made use of in section 5.4.1.1 and aids coarse alignment performance when tackling the

noted difficulty of seeding viewpoint positions that contain many similar or symmetrical

parts (see Figure 51 for coarse alignment examples). In the following section we briefly

outline some considerations that occur when attempting to perform fine registration on

the coarsely aligned large view-sets that result from the work described here (sections

5.2.1 and 5.2.2).

5.3 fine registration for large view-sets

The process of acquiring high quality 3D models from large view-sets of range data

typically require that a final global optimisation is performed in order to reduce and

evenly distribute residual alignment error due to e.g. sensor noise or poor coarse ini-

tialisation and error propagation between consecutive views. A global registration step

is often motivated by the resulting improved registration quality and successful solv-

ing of “loop closure” like problems. Desirable properties of a global registration stage

include robustness to varied initial alignment configurations and computational fea-

sibility. Computation time often becomes an issue in both the case of dense spatial

sampling (high order of magnitude of points per point set) and the case of large col-

lections of depth maps or point clouds (many point sets). Large point sets of both

varieties are increasingly generated in specialised and professional application fields

(e.g. biomedicine, orthopaedics, orthodontia, cultural heritage, reverse engineering and

industrial design). In sections 5.3.1 and 5.3.2 we briefly outline the main considerations

taken into account when undertaking high order of magnitude depth data registration.

After consideration of large-view-set specific correspondence and optimisation concerns

we proceed to explore the benefits of performing point set registration in the discussed

large-scale problem instances.
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5.3.1 Point correspondences in large view-sets

When point correspondences are known, estimating a transformation can be accom-

plished quickly (typically O(n) time). However, the step of finding correspondences

often involves costly search with a naive (i.e. brute force) approach requiring O(n2)

time for n closest point correspondences. Chapters 2 and 3 (e.g. section 3.3.4) noted

that k-d trees provide a popular data structure for storing point sets and can reduce

the closest point correspondence search to logarithmic time. Even if geometric data

structures are employed, computational expense often becomes challenging as n grows

large (due to increasing view count or point sample resolution). The problem of point

correspondence search for large view-set registration has been addressed from a num-

ber of directions (some review of common options were reviewed in Chapter 2, section

2.3.2).

In this chapter, we investigate the advantages that a soft correspondence strategy

affords over a classical hard correspondence strategy when applied to large multi-view-

set problem instances. We apply our registration strategy to problem instances where

the aim is to mitigate the dual computational concerns that arise from (1) typically

expensive soft correspondence strategies and (2) greatly increasing the number of (hard

or soft) correspondences (n) required as the view-set size increases to an order of

magnitude greater than that typically undertaken. We significantly reduce anticipated

algorithm wall-clock runtime by implementing our simultaneous registration strategy

(chapter 3) under our SSTF framework (chapter 4).

As detailed in chapter 3, our registration strategy optimises scan alignment by eval-

uating point positions in relation to a surface approximation. This approximation is

inferred by applying non-parametric density estimation to the remaining scan views.

By evaluating each point in a moving scan against this inferred continuous surface our

registration quality measure benefits from the advantages that a soft point correspon-

dence strategy offers (e.g. convergence from a wide basin of coarse seed alignment)

and the ability to tackle problems that hard correspondences find challenging; e.g. true

one-to-one point correspondences between scans may not exist due to (e.g) partial over-

lap, occlusion, sensor quantisation or sampling noise. Our density estimate provides a

continuous, smooth and meaningful measure to evaluate points found at any spatial

position in relation to our approximated surface.
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The approach does however incur additional computational expense, often associated

with a soft correspondence strategy. In the current work the evaluation of each point

position requires information from a number of contributing points belonging to the

inferred surface (the number of contributing points is dictated by the kernel bandwidth

parameter discussed in chapter 3, section 3.5.2). Although finding nearest neighbour-

ing points to define hard point pair correspondences is not required, defining a surface

estimate does employ radius based search (or nearest neighbour search) when evalu-

ating kernel contributions for density estimates. Additionally, as is often typical for

non-parametric estimation, the cost of inferring a density increases with the number

of available point samples. As detailed in chapter 3, our approach iteratively evaluates

point positions belonging to a moving scan as revised transforms are applied and sur-

face approximations are updated as each viewpoint independently finds an improved

alignment with the current related surface approximation.

In summary, applying the soft point correspondences utilised in this work to large

view-set problem instances is kept feasible through the use of the previously introduced

SSTF framework (chapter 4). By combining our SSTF framework with the multi-view

simultaneous registration strategy (chapter 3) we are able to (1) iteratively update

our registration metric using soft correspondences, (2) consider the registration of all

viewpoints in a global manner simultaneously, and (3) work with very large view-sets

by distributing the computational cost.

5.3.2 Transform space optimisation for large view-sets

5.3.2.1 High dimensionality global optimisation

Global registration techniques often formulate and consider high dimensional optimisa-

tion problems in order to find optimal parameters in the joint transform space for all

considered viewpoints simultaneously. The difficulty of solving such problems when the

number of views become large is due in part to the increasingly high dimensionality of

the search space. Global optimisations of this form typically scale the dimensionality

of the search space linearly in the number of viewpoints N , regardless of the trans-

form space representation employed. Searching high dimensional transform spaces to

globally find optimal sets of (e.g) rotation matrices R := [R1,R2, . . . ,RN ] ∈ R3×3×N



172 large scale point cloud registration

and translations T := [t1, t2, . . . , tN ] ∈ R3×N may become computationally infeasible.

Recent work attempting to solve optimisation problems formulated in this manner, for

large sets of views N , has utilised e.g. gradient information [27] to direct the search

with respect to a registration quality measure. The expensive operation during such an

optimisation is often the computation of an optimal search space descent direction and

step size. The reason for this can be understood if one considers the dimensionality of

Hessian matrices that must be derived from R and T for large N .

One route to address this problem considers avoiding the expensive high dimensional

partial derivative computation. When many viewpoints are considered, [27] introduce

a novel method to avoid full Hessian matrix calculation during each optimisation step

using a decompositional approach. By defining the full Hessian H as the sum of a

positive-semi definite term and a high dimensional term (that grows with the number

of views considered) as originally described in [154] and then ignoring the calculation

of the expensive latter term, it is reported that the former term alone can be utilised to

estimate a trustworthy descent direction. Without this alteration global optimisation

methods quickly become infeasible for data sets involving many viewpoints. Some exper-

imental evidence supporting this point is given by the authors; even for relatively small

view-sets (N = 23 views), it was observed that Hessian computation takes approxi-

mately half of the time required by a single iteration. The related full optimisation

(performing full Hessian calculation [154]), was unable to complete view registration

when tasked with aligning N ≥ 45 viewpoints (see [27], pp. 448 for details).

5.3.2.2 Simultaneous local optimisation

The optimisation approach explored in this work optimises each viewpoint individually

(yet simultaneously) in relation to independently inferred surface approximations. As

detailed in chapter 3, sets of low dimensional transform space optimisations (per view-

point) are performed. After optimising the position of each viewpoint (in a local 6D

rigid transform space), the related surface approximations are then iteratively updated.

These low dimensional optimisations are computationally feasible and typically solvable

quickly in comparison to high dimensional alternatives. By taking the current pose of

all other viewpoints into account (via surface inference) and alternating between this

inference and transform space optimisations, the nature of the introduced procedure

allows for the main benefits of full simultaneous registration to be retained; all views
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are capable of adjusting their pose simultaneously and the pose of each view is implic-

itly constrained by the current poses of all locally overlapping views through surface

inference. Alternating between updating surface approximations and allowing all view-

points to move simultaneously in the transform space avoids the error propagation and

accumulation problems commonly found in early sequential registration work whilst

maintaining required feasibility when applying the technique to large view-sets.

By implementing the registration framework under our SSTF framework (chapter

4) we again map viewpoint pose optimisations onto compute cores individually and

synchronise each superstep such that surface estimation is only performed after each

simultaneous viewpoint pose local optimisation has completed (see section 4.5 for fur-

ther detail). This strategy allows for viewset size scalability with available processing

cores. While computational expense scales linearly with the number of views consid-

ered, in practice this allows for viewsets of sizes not typically considered to be utilised.

Termination criteria for the registration is typically achieved by specifying a maximum

number of supersteps, or observing an error metric until convergence (experiments in

sections 5.4.1 and 5.4.2 respectively). Additionally it is possible to make termination

decisions based upon the order of magnitude of the spatial transforms found during

local pose search optimisation.

By not optimising all transform variables in a global space we can not guarantee

global optimality (or theoretical convergence) and, therefore, sub-optimal final view

pose configurations (local minima) are possible. Experimentally (see section 5.4) we

find that, on the condition of reasonable coarse alignment seeding, this issue is not

problematic in practice for the data sets explored in this work. By solving multiple

local optimisation problems in low-dimensional spaces, pertaining to the pose of each

viewpoint, visually satisfying and quantitatively competitive solutions are obtained (see

section 5.4).

In summary, we are able to maintain the advantages of global registration by allowing

all viewpoints to alter their pose simultaneously, (and thus react to pose alterations of

other viewpoints). Yet by only performing local view-wise optimisations we reap the

benefits of affordable (and potentially parallelisable) optimisation in low dimensional

spaces. By parallelising these low dimensional transform space optimisations and iter-

atively improving surface estimates we are able to perform quasi-global simultaneous

registration over large sets of viewpoints whilst keeping run times feasible for practical
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applications. In the following section we present implementation details and potential

benefits of large view-set point cloud registration.

5.4 large view-set registration experiments

Our registration method is evaluated using large view-set synthetic and real point cloud

data and view alignment results are compared to the global registration technique

proposed by Pulli [210], the previously utilised Procrustes method [262] and the coarse

strategy outlined in section 5.2. We evaluate the experimental results using distance

based registration quality metrics, model fitting and visual inspection.

We select these methods to compare against for the following reasons:

• The coarse alignment technique outlined in section 5.2 provides a simple baseline

registration offering cheap initial alignment. By comparing fine registration results

to this technique it becomes possible to evaluate how the examined methods are

able to improve upon this initial alignment and explore the simple cost-benefit

relationship of implementing a fine registration stage.

• The global registration technique proposed in [210] has proved popular for large

view-set multi-view registration as evidenced by the fact that it has been adopted

by the computer vision community and implemented in various pieces of end-user

software such as Scanalyze [227]. The method can now be considered a classical

benchmark for the task of global multi-view registration for the task of aligning

large view-sets containing multiple overlapping range images since its introduction

in [210].

• We again compare the Procrustes method [262] used in chapter 3 but due to

the nature of the many view-sets considered in this chapter (and the available

serial Matlab implementation of this algorithm) some data set down-sampling

concessions are made (see 5.4.4.1 for details).

We consider a heterogeneous collection of 6 large view-set data where each set con-

sists either directly of point clouds or a set of depth images (that are subsequently

reprojected to point clouds using a standard pinhole camera model). Each data set (1)

contains object samples from varying sensor viewpoints, (2) consist of a large number
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Table 6: Statistics of large view-set point cloud data utilised for global simultaneous registration

experiments.

Data set Number of

viewpoints

Mean # points

per view

Data source Depth sensor KDE registration kernel

bandwidth k-neighbourhood

Physical Tridecahedron 512 5000 Local capture Kinect [183] k = 2560

Synthetic Tridecahedron 250 5000 Local generation Synthetic k = 1250

42_fighter 258 19846 Stuttgart DB [214] Synthetic k = 5120

17_porsche 258 18547 Stuttgart DB Synthetic k = 4150

04_copter 258 7953 Stuttgart DB Synthetic k = 2050

Head bust 220 2209 Local capture 24Hz stereo video [73] k = 485

of viewpoints and (3) are collectively representative of a wide variety of real-world ob-

jects, sampled from a range of depth sensors. The data sets used in this chapter are

briefly outlined in the following section. Objects captured are representative of real and

challenging acquisition scenarios and present various surface and geometric properties.

View sets are comprised of between 220 and 512 viewpoints and size dimensions of ac-

quired physical objects range from 30cm to ∼ 80cm. Data set statistics are summarised

in Table 6 and in the following section we outline local object capture and depth sensor

utilisation.

5.4.1 Structured light sensors

The Kinect is a consumer-grade structured light scanner capable of acquiring a RGB in-

tensity image and (temporally interleaved) depth map from which a coloured 3D point

cloud can be derived (see Figure 49 for an example RGB-D image frame). Kinect point

clouds contain ∼ 300000 point samples and can be captured at a frame rate of ∼ 25Hz.

The optimal range between sensor and target is typically ∼ 1.2 to 3.5m [149]. The com-

puter vision community has found that the Kinect enables depth sensing applications

that extend far beyond the gaming functionality that the sensor was initially introduced

for [117, 285]. Fast depth sensing can now be performed at low cost and sensors are

priced competitively when compared to many traditional depth capture devices such as

stereo or time-of-flight (TOF) cameras (e.g. [73], [243]). The Kinect camera is therefore

well suited for tasks such as robotic navigation in workplace or domestic environments

[250] and 3D object measurement and capture [190].



176 large scale point cloud registration

5.4.1.1 Structured light sensors: data capture

Initial local object capture is performed using the Kinect sensor [183]. A local physical

tridecahedron object, a 13 sided polyhedron, with edge length = ∼ 30cm (see Figure

49a) was augmented with additional structure by attaching small spheres (table tennis

balls) in various configurations in order to reduce planar object symmetries and increase

shape complexity. The object is placed on a turntable and is captured using a stationary

Kinect (while the object rotates), thus providing an example of a simple, largely convex,

physical shape from which multi-view point clouds were obtained. Open source software

[35] is used to retrieve RGB images and corresponding depth maps of objects placed on

the turntable and rotated such that a target is captured from multiple points of view

covering each object side.

Previous work has shown that additional information channels e.g. intensity informa-

tion in conjunction with geometric information can be used to improve the accuracy of

(pair-wise) view registration e.g. [259]. However the physical objects used in our Kinect

experiments were simple in shape (semi-regular polyhedra) and contained uniform face

colour therefore registration using only geometric characteristics could be employed

successfully. Utilising simple convex objects allows for shape ground truth to be easily

obtained e.g. physical measurement of object side lengths and angles that can be used

to provide quantitative evaluation of the quality of the multi-view registration process.

The open source capture software [35] is used to capture ∼ 20 seconds of footage during

which the sensor position is kept fixed and the turntable (on which the object resides)

is rotated such that multiple object views are captured containing each object face.

This results in ∼ 500 depth images that are converted to point clouds using a stan-

dard pinhole camera model. This affords a simple, cheap and fast method for capturing

local physical objects and potentially creating accurate 3D models. The experimental

object is relatively textureless and uniform in colour, thus providing an example where

a structured light depth sensor combined with registration techniques, making use of

geometrical information alone, prove appropriate.

Example RGB and depth image frames and the resulting reprojected point cloud from

a single view point are found in Figure 49. Pre-processing of the point cloud data (depth

images reprojected to 3D space) involves segmenting out parts of the scene that do not

belong to the target object. Here, manual segmentation is utilised for removing ground

planes (floor) and background, see Figure 49d for a representative result. Performing
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this point cloud segmentation step algorithmically would provide a useful additional

component to further automate the model reconstruction pipeline. After pre-processing

is complete, the mean point set size per viewpoint for this data set is 23170 points (pre

view sub-sampling). Finally, we axis align each Kinect point cloud frame such that the

object is orthogonal to the x− y plane, helping to compensate for the fact that data

capture was performed without front-to-parallel sensor-object capture.

(a) Kinect RGB intensity image data.

Tridecahedron object (frame 84 of

512).

(b) Aligned Kinect depth image data.

Tridecahedron object (frame 84 of

512).

(c) Point cloud obtained by reprojecting

a Kinect depth image to 3D space

and masking out background depth

data. Locally fitted surface normals

are estimated and scene lighting ap-

plied for visualisation purposes.

(d) Post manual segmentation. Depth

image data pertaining to the ground

plane and background has been

manually masked out. Note miss-

ing object surface data due to self-

occlusion and sensor / object cap-

ture angle.

Figure 49: Object augmented with local surface structure (table tennis balls) to reduce planar

symmetries and increase test shape complexity. Object is rotated on turntable allow-

ing a stationary Kinect sensor to capture multiple views associated to each object

face.

Capture duration and turntable rotation speed combine to afford ∼ 5 complete ob-

ject rotations in the particular experimental setup. This allows each physical side of
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the object to be captured multiple times on multiple passes. Due in part to the na-

ture of the capture process (relatively high turntable rotation speed, typical consumer

grade structured-light frame capture rate), there is sensor noise and measurement error

present in the depth data such that reprojected point clouds may contain measure-

ment noise. It is conjectured that a probable contributing cause is turntable rotation

introducing shape distortion as the object moves during the 1/25 second capture time.

5.4.1.2 Structured light sensors: multi-view registration

Using the data capture method outlined above, objects can easily be coarsely aligned

into a common frame of reference. Before coarse alignment is performed on the seg-

mented and axis aligned point clouds, representing different views of the rotated tridec-

ahedron, the views occupy overlapping 3D spatial location in world coordinates due

to the turntable capture strategy. Figure 50 shows (a) normal to ground plane view

where well defined object planar side panels are not easily distinguished due to the

lack of a consistent reference frame and (b) orthogonal to ground plane normal. The

point clouds overlap in world space, pre-coarse alignment. Point clouds are initially axis

aligned using a fitted ground plane to account for the Kinect sensor capture angle. Ini-

tial coarse alignment is performed using the method outlined in section 5.2.2 providing

a reasonable, yet inexact, coarse seed positioning in world frame coordinates (Figure

51). It can be observed that this coarse alignment strategy provides a reasonable, yet

inexact, coarse seed positioning for all viewpoints in a world frame. This configuration

provides our input for the fine registration algorithm experiments.
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(a) (b)

Figure 50: Reprojected point clouds of the tridecahedron (512 viewpoints). One point cloud

colour per viewpoint. Viewpoints are not coarsely aligned (or registered) in a coherent

world frame, each view is in a local coordinate system as seen by the sensor. See text

for detail.

(a) (b)

Figure 51: Coarse alignment applied to all 512 viewpoints of the tridecahedron object. The

hexagonal polyhedron edges of the object shape begin to emerge and the vertical

faces of the object are now visible in the reference frame. This view-set configuration

is used as input for the registration algorithms.

Fine registration is performed on the tridecahedron view-set using the strategy de-

scribed in chapter 3 and the methods ([210], [262]) outlined in section 5.4. Due to the

size of the view-sets considered in this chapter the experimental work, considering the

introduced registration strategy, makes use of locally available distributed compute re-

sources. Each local view optimisation (as discussed in section 5.3.2.2) is distributed

to an ECDF [82] compute core, thus framing the problem under the SSTF strategy

introduced in chapter 4. When undertaking view registration for large view-set prob-
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lem instances, we find that distributing the computational load and parallelising the

work provides an effective solution that substantially reduces wall-clock time. Visual

registration results for the Kinect data set are found in Figures 52, 53 and quantitative

registration results (for all experimental data set) are summarised at the end of the

chapter in section 5.5.

In Figure 52 density is represented by colours increasing from deep blue to red. The

density estimate shows that the coarsely aligned configuration contains view misalign-

ment and sensor noise. This is mitigated by using our adaptive kernel estimation process

capable of smoothly estimating predominantly unimodal underlying surface structure

that in turn helps to avoid mis-registration and view clique formation. The quality of

alignment can be seen to visually improve after 10 simultaneous registration cycles. It

can be seen from the density estimate that the true six sided shape of the polyhedron

clearly takes form as registration improves. In this fashion planar density slices afford a

further simple visual assessment of registration quality, providing an informative tech-

nique in cases where dense sampling may inhibit raw visual view-pose appraisal.

KDE registration is performed using algorithm parameters consistent with chapter

3, section 3.5; error metrics are found to converge within 10 superstep cycles (where

each superstep involves the distributed optimisation of all view poses followed by the

kernel density estimation process). The kernel size parameter (k-neighbourhood influ-

encing kernel bandwidth) is chosen for large view-set scan collections using the method

described in chapter 3, section 3.5.2 (however here, to accommodate view-sets that

are typically an order of magnitude larger than those previously considered, we find

decreasing k to c. 0.1% of total point set magnitude suitable).
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(a) Amalgamated tridecahedron point

cloud view sets in the coarsely aligned

configuration. Planar slice indicates

the location that density estimation is

queried at for visualisation.

(b) Density estimation for

coarsely aligned configura-

tion.

(c) Density estimation after 10

registration supersteps.

Figure 52: A planar slice through the tridecahedron amalgamated view set indicating density

estimation location. See text for details.

Visual registration results for the tridecahedron view set are provided in Figure 53. It

can be observed that for data sets containing hundreds of views, possessing sensor noise

and relatively low sample resolution, a reasonable registration is found. The hexagonal

polyhedron shape of the test object can be seen to emerge from the coarsely aligned view

set (see Figure 53a). Greater perceived colour interpenetration typically denotes a better

alignment result since each range image point set has a different colour. In principle,

the lower the residual alignment error is, the better the colour interpenetration appears.
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Inspecting the coarse registration in Figure 51b it is easy to identify a small number

of distinct colours in the vertical planes of the object surface, even when 512 different

viewpoints are present. Conversely Figure 53 exhibits that a greater interpenetration

is obtained post multi-view registration.

(a) (b)

Figure 53: Final registration results achieved after applying our multi-view registration algo-

rithm to the 512 viewpoints captured using the Kinect. The registration technique

converges to a consistent object view configuration as demonstrated by perceived

increased colour interpenetration over the coarsely aligned configuration. Viewing

angles and camera vector directions as Figure 50. (Best viewed in colour.)

For illustrative purposes, a simple Poisson surface reconstruction [145] is applied to the

full amalgamated, registered point set (Figure 54). It can be observed that, although

additive, individual viewpoint sensor noise (and some minor misregistration) is present

in the amalgamated point set, the resulting surface reconstruction produces a model

that is visually recognisable as the tridecahedron object (c.f. object true RGB intensity

image, Figure 49a). Small tri-sphere features lack some definition due to the simple

view-amalgamation strategy and sensor resolution limitations. However global object

shape is accurate in terms of side lengths, angle ratios and planar structure. Employing

more advanced point set integration strategies (c.f. amalgamating all points) would

likely aid reconstruction quality further.
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(a) (b)

Figure 54: Poisson surface reconstruction [145] applied to the amalgamated, registered point set.

Minor viewpoint sensor noise and misregistration still visible, however the resulting

surface reconstruction produces a model that is visually recognisable as the trideca-

hedron object (c.f. Figure 49a). Small tri-sphere features lack definition due to the

simple view-amalgamation strategy and sensor resolution limitations however global

object shape is accurate in terms of side lengths, angle ratios and planar structure.

Further to visual registration assessment, Figure 55 shows the progress of the mean

inter-point distance error metric defined previously (chapter 3, section 3.5.1.2) over 10

superstep iterations. A ground truth registration is not available, so simplifying assump-

tions again allow a heuristic approximation of the optimal mean inter-point distance

error. By considering the number of point samples in the amalgamated point set (N)

and evaluating the MeanDist (2,N , 1) function (equation 18, section 3.5.1.2) we approx-

imate the mean distance between an arbitrary reference point sample and its nearest

neighbour under an optimal registration (assuming uniform point sampling density).

Approximating the studied tridecahedron object surface by summing a collection of

simple polygon areas (6 rectangular planes of area 600mm2 and 6 isosceles triangles of

area 375mm2) a crude visible surface approximation of 5850mm2 is provided. Scaling

the unit area of the MeanDist (2,N , 1) result by this area approximation results in a

sensible lower bound on registration accuracy (Figure 55, green dashed line). Perform-

ing multi-view registration on the tridecahedron data set achieves a mean inter-point

error of within ∼ 11% of this approximate lower bound. It is surmised that the remain-

ing discrepancy is likely due to a combination of (1) crude surface area approximation

(2) the uniform sampling density assumption (3) minor misalignment is still evident

in the converged registration configuration (which may be partially caused by sample

distortions in the Kinect data).
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Figure 55: Kinect view-set: Mean inter-point distance error (defined in section 3.5.1.1) during

iterative registration from coarse alignment seed. Optimal obtainable mean inter-

point distance is defined using simple object surface area approximation and the

assumption of uniform point sampling density (see text for further details).

5.4.1.3 Structured light sensors: summary

This initial experiment provides evidence in support of the claim regarding the ability of

the introduced registration framework to scale to large viewsets afforded by contempo-

rary depth sensors. Additionally, registration quality and timing comparison among the

explored registration techniques, utilising this data set, are found in summary Tables

10 and 11 (at the end of the chapter). In the following section we explore a synthetic

version of this data set where we have access to ground truth alignment and further

evaluate registration quality with hundreds of views quantitatively.

5.4.2 Synthetic data: data sets

In addition to data sets captured using range sensors, we generated further synthetic

3D data sets with structure similar to the physical object captured in section 5.4.1.

Sensor viewpoints of these models are simulated in order to create point clouds rep-

resentative of the field of view of the simulated sensor. Doing so affords ground truth
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view alignment that is unobtainable when considering real world data of this nature.

Point measurement samples are created such that the synthetic model is contained in a

2 unit cube ([−1 . . . 1]) bounding box and viewpoint densities are constructed to simu-

late (down-sampled) contemporary structured light scanners, containing ∼ 5000 depth

samples per view. Points per view are around 1/4 of the point count from a typical

Kinect point cloud of the physical tridecahedron thus keeping the repeated trial experi-

mental setup, investigated in this section, feasible whilst maintaining a challenging data

set making use of ∼ 1, 250, 000 points in total. Additionally, in order to illustrate the

capability of the proposed system to tackle extremely large realistic datasets, typical

of modern depth sensors, we generate additional up-sampled versions of the previously

explored synthetic datasets (section 3.5.1) containing ∼ 50000 points per viewpoint,

resulting in over 12 million points per dataset when using 250 viewpoints (see Tables

10, 11 in section 5.5 for dataset statistics and timing results).

By generating a unit vector (representing a view) and extracting all point samples

lying within the synthetic viewing frustum, an inexpensive method of building view-

point specific point clouds is provided (refer to Figure 14 for a visualisation of this

frustum technique). More costly viewpoint simulation alternatives involve performing

ray-tracing to determine which object points are visible from a simulated sensor view-

point or collecting points belonging to all front facing triangles. These alternatives

provide a more realistic viewpoint simulation, potentially increasing the realism of the

simulated data sets, especially if e.g. highly concave or self-occluding models are consid-

ered. However, in the experimental work detailed here we deal with convex models and

decide to utilise the simple simulated frustum approach outlined, aiding sampling and

view-set creation speed. Exploring the benefits afforded by a more advanced synthetic

view generation process provides a further avenue for future work.

In summary, synthetic data are generated in a similar fashion to those described

in chapter 3, but here we extend the number of simulated viewpoints to simulate a

contemporary high-frame rate depth sensor resulting in hundreds of simulated point

clouds per object model. Synthetic data sets begin in a perfectly aligned ground truth

configuration. We perturb each view via applying a random rototranslation matrix

(composed of a rotation and translation for each of the three axes, drawn uniformly at

random) to get an initial alignment configuration. See Figure 56. It can be observed
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how point (x, y, z) measurements have been unit scaled in [−1, 1], allowing for ease of

familiarisation with the levels of random coarse seed transform strength applied.

(a) A synthetic tridecahedron

model, built to approxi-

mate the physical object

utilised in section 5.4.1.

(b) Point samples from the syn-

thetic model. See text for ad-

ditional detail.

(c) Depth measurements are collected in point clouds by sampling the model surface area that lies within

each synthetic camera’s frustum. Here one colour per point cloud is shown with views in a ground

truth (perfect) alignment and zero simulated sensor measurement noise (µ = 0, σ = 0). Front-to-

parallel, top-down and real-world-sensor-approximation viewpoints of 250 point clouds. Best viewed

in colour.

Figure 56

Starting with ground truth alignments and perturbing all viewpoints with random spa-

tial nudges in this fashion is a suitable component of the experimental setup as this

provides a neutral and flexible performance assessment method. With this data, we have

the added advantage of possessing ground truth alignment since we have the original

model. A similar strategy is recently used in [27] during their multi-view registration

performance analysis. This synthetic perturbation tactic allows for the realistic sim-

ulation of a generic coarse alignment, contributing to an experimental setup that is

not constrained to use a specific coarse alignment method with the possible bias that
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this might introduce. The related problem of potentially influencing the reliability and

repeatability of the results is avoided. The chosen method allows modulation of the

starting distance from the desired optimal ground truth alignment. This in turn proves

a useful and enabling feature for the stress testing we go on to explore in section 5.4.2.1.

Varying misalignment scenarios can be built by randomly applying a bounded amount

of angular and translation offset to each axis (per point cloud).

5.4.2.1 Synthetic data: multi-view registration

In this section we assess and compare the convergence properties of the proposed regis-

tration algorithm and those of [210], [262] using large synthetic view sets with known

ground truth alignment. By increasing the magnitude of both the initial view misalign-

ment and level of simulated sensor noise in the described synthetic data sets we provide

a test bed to explore algorithm robustness when tasked with registering hundreds of

views. It is noted that these synthetically generated coarse alignment scenarios may not

fully satisfy our good initial alignment assumptions, since the aim here is to test the

limits of our registration framework in order to widely assess the basin of convergence.

We consider the data set synthetic tridecahedron and randomly misalign each of the

constituent point clouds and add Gaussian noise to point samples in order to simulate

depth sensor sampling error.

View misalignment seeding is achieved by applying an independent, random, bounded

amount of angular and translational offset to each of the three axes, for each view-

point. This constitutes a strategy commonly undertaken (e.g. [27]) when performing

fine registration stress testing. By increasing the range of random offset applied, 4

different levels of misalignment strength are considered in the coarse seeding scenar-

ios. Translational offsets are drawn uniformly randomly, for each viewpoint, from the

ranges {0, [−0.175 . . . 0.175], [−0.350 . . . 0.350], [−0.5 . . . 0.5]} for weakest to strongest

misalignment scenarios respectively. These levels of translational offset t are paired

with random rotations drawn uniformly from similar ranges r to define random an-

gular rotational misalignment (radians). We once again select parameter value ranges

to represent coarse alignment configurations that might be achieved manually across

a spectrum of novice to expert users, with the strongest misalignment providing more

challenging seeding positions than those ever expected by any manual coarse alignment.

These (r, t) pairings provide 4 coarse misalignment levels:
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(r, t) ∈ {(0, 0) , ([−0.175 . . . 0.175], [−0.175 . . . 0.175]) , . . . , ([−0.5 . . . 0.5], [−0.5 . . . 0.5])}

Additionally a varying level of 3D Gaussian noise with mean 0 and σ ∈ {0, 0.01, 0.02, 0.04}

is added to each dimension of each point sample in each point cloud to simulate depth

sensor sampling error (see Figure 57). We note that simulating noise in this fashion

employs equal variance in each spatial dimension (x, y, z) and this is considered likely

to be an oversimplification of true measurement noise distributions exhibited by the

real sensors (e.g. Kinect) utilised in this work. We leave exploring more advanced noise

models to future work. The 4× 4 levels of misalignment and added sensor noise con-

sidered result in the creation of 16 view set combinations with varying levels of coarse

misalignment and simulated sensor noise.

(a) σ = 0 (b) σ = 0.01 (c) σ = 0.02 (d) σ = 0.04

Figure 57: Synthetic tridecahedron data set in ground truth alignment. Each subfigure displays

250 point clouds with increasing levels of Gaussian noise to simulate depth sensor

sampling error. Sensor noise is simulated with equal variance in each spatial dimen-

sion (x, y, z). One colour per point cloud (best viewed in colour).

The KDE registration, Scanalyze [210] and Procrustes [262] techniques were applied to

each of the constructed misaligned and noisy view-pose sets. Both the KDE registration

and Procrustes techniques were iterated to error metric convergence and the Scanalyze

method [227] was initiated using pairwise point-to-point matches between overlapping

connected view subgroups before the global optimisation (proposed by Pulli [210]) was

applied.

Figure 58 summarises resulting inter-point distance error metric µipd values (defined

in section 3.5.1.1) across all three explored methods using a single trial for each of the

considered transform and noise parameter settings. Varying the magnitude of random

coarse seed alignment constitutes a robustness test and results obtained suggest that the

KDE registration technique is more robust than the competing techniques in avoiding
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local minima, evidenced by the resilience of the former (and sensitivity of the others)

to various levels of simulated misalignment.

The superior convergence properties of the KDE approach can be motivated by the

fact that it optimally aligns all the views simultaneously at each iteration; on the con-

trary Scanalyze tries to optimally align each view with respect to the rest, in a sequential

way. Although Scanalyze is computationally frugal (c.f. Table 11), the approach is liable

to error propagation and the loop closure phenomena. In particular for the experiment

in question we highlight gross failure results obtained by the Scanalyze method for the

cases of R, T = 0.0 coarse misalignment (all noise levels) and R, T = 0.175, 0.5 coarse

misalignments for sensor noise level σ = 0.0. These trials exhibit output with µipd

substantially larger than the input seed configuration. On investigation, what happens

in practice here is that the algorithm runs into loop closure problems that propagate

through a sequence of viewpoints leading to gross visual alignment failures and large

corresponding quantitative error. Additionally we highlight poor registration outcomes

for the proposed KDE method that deviate from the typically very promising results;

notably the cases of coarse misalignments R, T = 0.35 and 0.5 combined with noise

level σ = 0.0 along with R, T = 0.5 where σ = 0.01. These trial instances can be seen

to have error metric values that are clearly worse than ground truth registration values

and on inspection of the related qualitative results (see Figures 61e, 61f, 62f) it can be

seen that view-clique registration error has adversely affected the result. The correlation

between dissatisfying quantitative and qualitative results provides reassurance that the

error metric made use of is sensible and in particular these clique based errors may be

resolvable using our method by re-registering with larger bandwidth kernels.

Additionally the Procrustes based method of [262] can be seen to optimise local

scan misalignment with respect to point pair distance at the expense of global object

shape. Figure 59 additionally provides direct visualised comparison of the converged

error landscape between the introduced method and [262] for the explored seed scenario

combinations. As might be expected mean inter-point distance increases with both mis-

alignment strength and simulated sensor noise in each case. The error surface generated

by our registration approach, using the examined misalignment scenarios, exists below

the Procrustes (Toldo et al. [262]) error surface in each examined instance (lower error)

and, as error increases with simulated sensor noise, a modestly more elegant degrada-

tion can be observed in the case of KDE registration. Additionally, by accounting for
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global object shape, the introduced method is seen to consistently reproduce object

shape and structure in accordance with the ground truth.

Figure 58: Robustness test: measured mean inter-point distance in post-registration view-set

configurations. Three multi-view registration methods are evaluated across four levels

of random coarse misalignment ±{0.0, 0.175, 0.350, 0.5} in combination with four

levels of simulated sensor noise σ ∈ {0.0, 0.01, 0.02, 0.04} (a single trial for each

parameter combination).
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Figure 59: Robustness comparison: mean inter-point distance in post-registration view-sets. Er-

ror surfaces are visualised for the evaluated multi-view registration methods tested

across four levels of random coarse misalignment ±{0.0, 0.175, 0.350, 0.5} in combi-

nation with four levels of simulated sensor noise σ ∈ {0.0, 0.01, 0.02, 0.04}. See text

for discussion.

Additionally Figures 61 - 64, common subfigure sets (a)-(c), visualise the seed con-

figurations for the misaligned data sets in the investigated combinations of simulated

sensor noise and increasingly perturbed coarse misalignment. The corresponding sub-

figure sets (d)-(f) represent the registration obtained after our KDE registration is

applied. The initial view scrambling becomes visually evident across the range of ex-

plored coarse alignment stress levels3. Final KDE registration results are in general

visually close to their respective ground truth. An exception is noted in the case of

Figure 61e where a failure mode for the scenario involving random transforms drawn

from ±0.350 and noise level σ = 0 can be observed. In the noted case a small collection

of overlapping views find a local minima involving an incorrectly aligned view-clique in

the lower-right quadrant of the view-set. It is thought that this is likely caused by the

3 Point cloud visualisation results not shown for the trivial cases involving misalignment seeds drawn from

random transforms of size (0, 0). Starting in the ground truth positions, these experiments effectively

converge immediately (as confirmed in Figure 60).
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particular random seed transforms, drawn in this problem instance, proving too great

for the surface density estimation smoothing to overcome. However, all remaining trials

at this level of random scrambling (yet displaying higher sampling noise, Figures 62e,

63e, 64e) are able to converge to visually satisfying results when compared with their

respective ground truth (Figure 57). As the level of misalignment is increased to ±0.500

further minor local minima occur (see Figures 61f, 62f) however even under these large

transform offsets (and high noise levels) successful registration, producing alignments

visually similar to the ground truth (Figures 63f, 64f) is still achievable from input that

can be considered far beyond that defined as a reasonable coarse alignment. Figure 60

presents the mean inter-point distance (µipd) error metric convergence for the explored

coarse alignment and noise level combinations using our KDE registration strategy. The

µipd is also measured in the ground truth pose alignment, for each explored noise level,

providing a straight forward quantitative assessment of the registration quality in each

case. Algorithm termination is in this case defined by error metric convergence and

quantitative comparison between registration techniques is again collated in Tables 10

and 11.
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(a) Sensor noise σ = 0. (b) Sensor noise σ = 0.01.

(c) Sensor noise σ = 0.02. (d) Sensor noise σ = 0.04.

Figure 60: Mean inter-point distance error metric evolution per superstep iteration. Mean

inter-point distance, measured in the ground truth configuration, for the inves-

tigated noise levels also shown. Random seed transforms drawn uniformly ∈

±{0, 0.175, 0.350, 0.5}.

The demonstrated robustness against misalignment and sensor noise, observed with the

data sets utilised throughout the chapter, reveal that the range of seed configuration,

handled by our registration approach can be considered wide with respect to what are

commonly intended and required as “good” initial alignment conditions. The experi-

mental work illustrates that what might be typically regarded as a “good” initial coarse

alignment can be regarded as conservative in our framework. This is evidenced by the

demonstrated ability to produce reasonable results even when undertaking the heaviest

levels of misalignment and noise tested.
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(a) Random seed

transforms

drawn uniformly

∈ ±0.175, sen-

sor noise σ = 0.

(b) Random

seed trans-

forms drawn

uniformly

∈ ±0.350,

sensor noise

σ = 0.

(c) Random seed

transforms

drawn uniformly

∈ ±0.500, sensor

noise σ = 0.

(d) Post KDE reg-

istration from

∈ ±0.175 coarse

seed, sensor

noise σ = 0.

(e) Post KDE reg-

istration from

∈ ±0.350 coarse

seed, sensor

noise σ = 0.

(f) Post KDE reg-

istration from

∈ ±0.500 coarse

seed, sensor

noise σ = 0.

Figure 61: Top row: tridecahedron with σ = 0 sampling noise and seed positions for differing

levels of coarse misalignment. Bottom row: corresponding KDE registration results.
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(a) Random seed

transforms

drawn uniformly

∈ ±0.175, sen-

sor noise

σ = 0.01.

(b) Random

seed trans-

forms drawn

uniformly

∈ ±0.350,

sensor noise

σ = 0.01.

(c) Random seed

transforms

drawn uniformly

∈ ±0.500, sensor

noise σ = 0.01.

(d) Post KDE reg-

istration from

∈ ±0.175 coarse

seed, sensor

noise σ = 0.01.

(e) Post KDE reg-

istration from

∈ ±0.350 coarse

seed, sensor

noise σ = 0.01.

(f) Post KDE reg-

istration from

∈ ±0.500 coarse

seed, sensor

noise σ = 0.01.

Figure 62: Top row: tridecahedron with σ = 0.01 sampling noise and seed positions for differing

levels of coarse misalignment. Bottom row: corresponding KDE registration results.
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(a) Random seed

transforms

drawn uniformly

∈ ±0.175, sen-

sor noise

σ = 0.02.

(b) Random

seed trans-

forms drawn

uniformly

∈ ±0.350,

sensor noise

σ = 0.02.

(c) Random seed

transforms

drawn uniformly

∈ ±0.500, sensor

noise σ = 0.02.

(d) Post KDE reg-

istration from

∈ ±0.175 coarse

seed, sensor

noise σ = 0.02.

(e) Post KDE reg-

istration from

∈ ±0.350 coarse

seed, sensor

noise σ = 0.02.

(f) Post KDE reg-

istration from

∈ ±0.500 coarse

seed, sensor

noise σ = 0.02.

Figure 63: Top row: tridecahedron with σ = 0.02 sampling noise and seed positions for differing

levels of coarse misalignment. Bottom row: corresponding KDE registration results.
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(a) Random seed

transforms

drawn uniformly

∈ ±0.175, sen-

sor noise

σ = 0.04.

(b) Random

seed trans-

forms drawn

uniformly

∈ ±0.350,

sensor noise

σ = 0.04.

(c) Random seed

transforms

drawn uniformly

∈ ±0.500, sensor

noise σ = 0.04.

(d) Post KDE reg-

istration from

∈ ±0.175 coarse

seed, sensor

noise σ = 0.04.

(e) Post KDE reg-

istration from

∈ ±0.350 coarse

seed, sensor

noise σ = 0.04.

(f) Post KDE reg-

istration from

∈ ±0.500 coarse

seed, sensor

noise σ = 0.04.

Figure 64: Top row: tridecahedron with σ = 0.04 sampling noise and seed positions for differing

levels of coarse misalignment. Bottom row: corresponding KDE registration results.

5.4.2.2 Synthetic data: view-set influence on model fitting

In addition to comparing robustness and registration quality on synthetic data sets,

model fitting is performed to provide further quantitative evaluation. The objective

explored involves discerning effects on model building quality in relation to increasing

view-set magnitude (and therefore redundant sampling per physical object location).

We design the following experimental setup to test if reconstruction quality can be

improved by increasing the magnitude of registered data sets. To experimentally test

hypothesis 3 (see section 5.1) we are interested in the model fitting error produced by

a standard RANSAC [91] model-fitting algorithm when applied to spheres extracted

from view-set KDE registration output (produced from ±0.175 coarse alignment seed

transform, σ = 0.01 sensor noise input). Utilising synthetic data sets again gives the
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ground truth for various geometrical properties, obtainable from the original point

sampled model (refer to Figure 56a).

Sphere fitting to range data is a common task (e.g. [99]) and, in an attempt to mimic

the physical object explored previously in section 5.4.1, here we utilise synthetic models

that contain sets of three spheres (tri-sphere features) placed on each vertical planar

face of the generated tridecahedron. Ground truth statistics are collected from the

synthetic model including true synthetic sphere centroid locations and true (uniform)

sphere radii length. Depth points from converged registered view-sets that sample the

tri-sphere features are manually segmented from the sets and provided as input to a

RANSAC [91] fitting algorithm to compare the quality of the resulting fitted sphere

statistics. The stated hypothesis is tested by varying the number of views, from the set

of registered views, that contribute samples to the amalgamated regions containing the

tri-sphere features.

The RANSAC sphere fitting algorithm is tasked with finding the three best fitting

spheres in the provided tri-sphere region point set (best sphere-fits defined by a standard

SSD fitting error). A greedy RANSAC strategy is employed such that once a sphere is

found in the provided tri-sphere region, inliers are removed from the point set and the

RANSAC sphere-fit repeated using the remaining points. This process continues until

three spheres have been fitted (or the maximum number of RANSAC trials reached).

Post-registration view-sets are integrated such that all samples (from each view) form

a single large, converged, point set. This combined set is easily manually segmented

to retrieve points extracted from tri-sphere feature regions. An example set of post-

registration, manually segmented viewpoints containing samples contributing to tri-

sphere regions (and the RANSAC fits found) are provided in Figure 65.

Manual segmentation of the tri-sphere feature regions from the amalgamated set of

points reveal, as expected, that due to the angular positioning of the synthetic depth

sensor locations (uniformly distributed in the viewing sphere) each region is visible

from a subset of the original point clouds (on average a feature is “visible” from ∼ 25

point clouds). By artificially restricting the number of viewpoints that contribute to

each segmented feature region (via random selection) and performing RANSAC fitting

on a range of these restricted sets, we explore the effect that increasing the number

of registered views (redundant sampling per physical location) has on model fitting

accuracy.
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(a) 4 registered, amalgamated and segmented viewpoints

(±0.175 coarse rototranslation seed, noise σ = 0.01) forming

a point set containing a tri-sphere region. Example success-

ful fit with mean radiusµ = 0.10087.

(b) 8 registered, amalgamated and segmented viewpoints

(±0.175 coarse rototranslation seed, noise σ = 0.01)

forming a point set containing a tri-sphere region. Ex-

ample successful fit with mean radiusµ = 0.10066.

(c) 4 registered, amalgamated and segmented viewpoints

(±0.175 coarse rototranslation seed, noise σ = 0.01) form-

ing a point set containing a tri-sphere region. Example

RANSAC fit failure mode with mean radiusµ = 0.13914.

Figure 65: Post-registration point clouds amalgamated to form integrated point sets. Left col-

umn exhibits manually segmented view sets which allow tri-sphere feature regions

to be extracted. A RANSAC fit (right column) is applied to these point sets and

sphere fits plotted. When view count is doubled an improved fit is found yet gross

failure modes are also possible at the (relatively low) σ = 0.01 noise level.
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5.4.2.3 Synthetic data: Model fitting with view-set restriction

Tridecahedron view-sets seeded with ±0.175 magnitude coarse misalignments are again

considered. Registration results were previously shown to be visually consistent and

satisfying, with respect to ground truth, across considered simulated sensor noise levels

σ ∈ {0, 0.01, 0.02, 0.04} for this magnitude of coarse misalignment (section 5.4.2.1).

Taking these registered view-sets and defining amalgamated point cloud regions by

manually segmenting all 6 tri-sphere features (from each vertical planar side of the

registered view-set) results in input suitable for the described RANSAC sphere fitting

process (input examples found in Figure 66). The RANSAC process computes centroid

locations and radii lengths for each fitted sphere model found. By comparing (1) fitted

sphere radii values to the ground truth model sphere radius and (2) the RMS distance

between fitted sphere centroids and true model sphere centroids we provide simple

quantitative metrics to assert how well the RANSAC tri-sphere model fitting process

can be accomplished when a varying number of viewpoints are allowed to contribute

point sample information to the amalgamated point set regions.
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(a) Synthetic sampling noise σ = 0,

example point sample region con-

structed from 4 viewpoints (point

clouds).

(b) Synthetic sampling noise σ = 0.01,

example point sample region con-

structed from 4 viewpoints (point

clouds).

(c) Synthetic sampling noise σ = 0.02,

example point sample region con-

structed from 5 viewpoints (point

clouds).

(d) Synthetic sampling noise σ = 0.04,

example point sample region con-

structed from 6 viewpoints (point

clouds).

Figure 66: Amalgamated tri-sphere segmented regions for various simulated sensor noise levels.

Each amalgamated region contains (in this instance) 4 − 6 registered viewpoints

contributing points to the integrated point set. Individual spheres can be seen to

become visually harder to discern as simulated noise increases.

Each individual RANSAC sphere fit attempt is limited to 10000 trials (per sphere

search) and the overarching sphere-fitting process attempts to find 18 spheres per seg-

mented view-set: one tri-sphere (3 spheres) per side for each of the 6 tridecahedron

vertical planes. This experimental process (attempting to fit 18 spheres) is repeated

100 times for each of the four investigated view-set noise levels in order to examine

RANSAC fitting variance. For each of three simulated noise levels σ ∈ {0, 0.01, 0.02}

registered views are amalgamated and viewpoints, where tri-sphere regions are “visi-

ble”, are selected by segmentation. These tri-sphere regions can then be reconstructed
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by varying the contributing viewpoint count. Randomly including or excluding views

in which each tri-sphere region is “visible” allows the number of viewpoints providing

sphere feature information to be artificially determined.

Example: If a tri-sphere region is found to be “visible” in 20 registered point clouds

in total, evaluating RANSAC fitting using an amalgamated point set, contributed to

by e.g. 10 views, can be performed by randomly selecting 10 views from the original 20

in which the tri-sphere feature is visible.

RANSAC sphere fitting is performed on each tri-sphere region utilising amalgamated

point sample information whilst varying the number of contributing viewpoints (2− 25).

The tri-sphere radii and sphere centroids found by the RANSAC fit are compared to

the known ground truth. Across 100 repeated RANSAC trials we potentially generate

100× 18 fitted sphere radii and centroid values using amalgamated point samples built

from viewpoint subsets of varying size (viewpoint subset sizes: 2− 25, for each of 4 sen-

sor noise levels). We discard individual sphere-fit instances where RANSAC is unable to

find a valid sphere in ≤ 10000 trials and plot results for 2− 25 amalgamated viewpoint

sizes. Model reconstructions (containing 6 tri-sphere regions) attempt to fit spheres

using a minimum viewpoint count of 2 and a maximum viewpoint count defined by

depth sample viewpoint-memberships contributing to model feature regions (this ex-

hibits small variance with simulated sensor noise level σ). The ground truth model

sphere radius is 0.1 unit and resulting radii fits are found in Figure 67 for point sets

exhibiting Gaussian sensor noise σ ∈ {0, 0.01, 0.02} (with enlargement of the σ = 0.01

case found in Figure 68).
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(a) σ = 0

(b) σ = 0.01

(c) σ = 0.02

Figure 67: RANSAC fitted sphere radii for synthetic registered point clouds with varying simu-

lated noise level. Tri-sphere feature regions are defined from growing sets of registered

point clouds per region (x-axis). Each column contains ∼ 1800 radii from repeated

sphere fit trials considering point sample information contributed to from increas-

ingly large point cloud view collections. See text for further detail.
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(a) Enlarged view of radii fitting results for views per region 002− 005

from Figure 67b. Horizontally jittered raw radii fits are displayed

with mean values (red), 95% confidence intervals (pink), Standard

Deviation (purple - see 67b for extreme outliers) and ground truth

model sphere radius, 0.1 unit (green). See text for discussion.

(b) Enlarged view of radii fitting results for 009, 013, 017 and 019 views

per region (built by considering contributions from 9− 19 registered

viewpoints) from previous Figure 67b. Graph colouring as above

(68a). With viewsets of this size, fitting error is consistently an order

of magnitude below the simulated noise level.

Figure 68

Tri-sphere feature regions are RANSAC fitted with spheres from growing sets of reg-

istered point clouds per region (Figure 68a, 68b x-axis). Each column in these figures

contains ∼ 1800 found radii (horizontally-jittered to aid visual clarity) from repeated
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sphere fit trials that consider point sample information contributed from increasingly

large point cloud view collections. Raw radii fits are displayed with mean values (red),

95% confidence intervals (pink), Standard Deviation (purple) and the ground truth

model sphere radius is 0.1 unit (green). It can be observed that as the contributing

viewpoint count increases, fitting variance drops sharply and the mean fitted sphere

radii length converges on the ground truth value. The effect size is small in the simple

example implemented, however this provides initial evidence that larger view-sets can

mitigate sensor noise and contribute to improving model fit quality. For the cases of

σ ∈ {0, 0.01} synthetic sensor noise we find experimentally that mean radii fit values

asymptote when ≥ 5 views contribute to tri-sphere region information. Sphere fitting

results for the zero synthetic noise case proves largely comparable to the σ = 0.01 case

when enlarged (exhibiting convergence towards radii ground truth within ∼ 5 contribut-

ing views) while, as might be expected, increasing the noise level (σ = 0.02) inhibits this

convergence. Results are summarised in Tables 7-9. In addition to sphere radii fits we

consider fitted sphere centroid locations and compare these to the model ground truth

centroid locations. By greedily performing one-to-one closest point matching between

each set of 18 fitted and true centroids (one tri-sphere on each of 6 model vertical planes)

a simple RMS Euclidean distance metric and standard deviation is calculated for each

(of 100) RANSAC trials, for each amalgamated view-set size, for each simulated noise

level σ ∈ {0, 0.01, 0.02}.

It is recognised that the maximum number of viewpoints contributing to each fea-

ture region increases marginally as synthetic noise grows stronger (c.f. Figures 69a, 69c).

This is explained as depth samples (afforded by viewpoints that record surface area from

planar object regions, as defined by the ground truth) can become spatially distorted

by sensor noise to lie within tri-sphere regions. The probability of this occurring in-

creases with sensor noise strength. The resulting (small) number of points (incorrectly)

lying in segmented tri-sphere regions, allow these views to be considered to contain

“visible” tri-sphere feature regions. Additionally, we omit registered view-sets exhibit-

ing the largest considered noise level σ = 0.04 as the simple RANSAC algorithm was

unable to consistently find spheres (of any size or location) in data exhibiting this level

of simulated noise. It is concluded that (for the simple synthetic experimental setup

constructed) we approach an upper bound on the level of noise that can be success-

fully mitigated by increasing view count. The σ = 0.02 strength, mean radii precision
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and coinciding-centroid RMS both suffer significantly (c.f. ground truth). Furthermore

spheres sampled at the σ = 0.04 noise level become increasingly difficult to perceive

with the human eye (c.f. Figure 66d).

Intuitively the coinciding-centroid error metric is large when fitted and true centroid

position pairs differ and approaches zero when centroid pairs coincide. The progression

of the metric, as amalgamated point sets grow in size, are provided in Figure 69 for

simulated sensor noise levels σ ∈ {0, 0.01, 0.02}.
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(a) Simulated sensor noise level σ = 0.

(b) Simulated sensor noise level σ = 0.01.

(c) Simulated sensor noise level σ = 0.02.

Figure 69: Coinciding-centroid model-fit quality metric. As amalgamated view-set size increases

(x-axis), mean values and standard deviation converge indicating agreement between

model fit and ground truth. See text for further details. Input point clouds with

simulated depth sensor noise σ = {0, 0.01, 0.02} are considered in (a)-(c) respectively.



208 large scale point cloud registration

Table 7: RANSAC model fitting results for sensor noise σ = 0.

View points

utilised for

RANSAC fit

# Valid sphere

fits found over

100 trials

(max 1800)

Mean point samples

per tri-sphere

feature region

Mean

fitted

radius

Median

fitted

radius

Standard

deviation of

fitted radius

Mean centroid

coincidence RMS

over 100 trials

RMS centroid

distance SD

over 100 trials

2 1044 # points = 4467 0.115937 0.100166 0.13371 0.1220 0.0261

3 1656 # points = 8090 0.107416 0.100166 0.10804 0.0503 0.0120

4 1764 # points = 12098 0.104380 0.100148 0.06294 0.0215 0.0047

5 1800 # points = 16062 0.101351 0.100148 0.00424 0.0016 0.0008

6 . . . 13 1800 20126 ≤ # points ≤ 52361 ≤ 0.10053 ≤ 0.100152 ≤ 0.00218 ≤ 0.0019 ≤ 0.0006

14 1782 # points = 56451 0.099169 0.100144 0.00397 0.0006 0.0011

15 . . . 18 1800 60513 ≤ # points ≤ 72482 ≤ 0.1002 ≤ 0.100144 ≤ 0.00116 ≤ 0.0011 ≤ 0.0012

Ground truth 1800 ∞ 0.10 0.10 0 0 0

Table 8: RANSAC model fitting results for sensor noise σ = 0.01.

View points

utilised for

RANSAC fit

# Valid sphere

fits found over

100 trials

(max 1800)

Mean point samples

per tri-sphere

feature region

Mean

fitted

radius

Median

fitted

radius

Standard

deviation of

fitted radius

Mean centroid

coincidence RMS

over 100 trials

RMS centroid

distance SD

over 100 trials

2 1332 # points = 4304 0.124753 0.101917 0.16199 0.0939 0.0374

3 1746 # points = 8146 0.110436 0.101587 0.10930 0.0431 0.0055

4 1800 # points = 12059 0.104774 0.101624 0.06444 0.0231 0.0036

5 1800 # points = 16163 0.100721 0.101529 0.00761 0.0088 0.0011

6 . . . 18 1800 20096 ≤ # points ≤ 72776 ≤ 0.101549 0.101603 ≤ 0.0021 ≤ 0.0071 ≤ 0.0033

Ground truth 1800 ∞ 0.10 0.10 0 0 0

Table 9: RANSAC model fitting results for sensor noise σ = 0.02.

View points

utilised for

RANSAC fit

# Valid sphere

fits found over

100 trials

(max 1800)

Mean point samples

per tri-sphere

feature region

Mean

fitted

radius

Median

fitted

radius

Standard

deviation of

fitted radius

Mean centroid

coincidence RMS

over 100 trials

RMS centroid

distance SD

over 100 trials

2 1332 # points = 4346 0.216798 0.204350 0.14388 0.1999 0.0155

3 1710 # points = 8131 0.201330 0.201202 0.08374 0.1474 0.0033

4 1782 # points = 12001 0.191798 0.197552 0.07638 0.1322 0.0022

5 1800 # points = 15878 0.188483 0.197881 0.06884 0.1250 0.0024

6 1800 # points = 19939 0.179203 0.197189 0.05723 0.1191 0.0008

7 1800 # points = 23878 0.176871 0.198001 0.05538 0.1158 0.0005

8 1800 # points = 27812 0.177199 0.196152 0.05824 0.1171 0.0016

9 1800 # points = 31800 0.164475 ≤ 0.197637 0.06131 0.1190 0.0033

10 . . . 24 1800 36243 ≤ # points ≤ 95917 ≤ 0.1650 0.198118 ≤ 0.05146 ≤ 0.1172 ≤ 0.0031

Ground truth 1800 ∞ 0.10 0.10 0 0 0
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The first column of Tables 7 - 9 provide the number of views (point clouds) utilised to

form an amalgamated point set that is provided as input to the RANSAC sphere fitting

process. Over 100 RANSAC trials, a maximum of 18× 100 = 1800 spheres can poten-

tially be found in the input point clouds and the success count for integrated point sets,

built from the merged views, is provided in the second column. The remaining columns

provide quantitative information on geometrical properties (radii, centroid separation)

of the fitted spheres averaged across all RANSAC trials. In particular, the third and

fourth columns report mean and standard deviation for the sphere radii obtained from

the fitted spheres and columns five and six provide the mean and standard deviation

of the coinciding-centroid model-fit. As the synthetic noise level increases, the accu-

racy of sphere model fitting predictably decreases however this effect can be observed

to be mitigated by increasing view counts and redundant point sampling per location.

Specifically in the cases of σ = 0 and σ = 0.01 noise levels asymptotic behaviour and

convergence to ground truth model values are achieved by obtaining c. 5 views of the

simple object feature regions. Stronger noise (σ ≥ 0.02) prevents the simple model

fitting approach from converging to ground truth values (using the explored viewpoint

ranges). Reduction in error can however still be observed as view counts increase. This

simple model fitting provides initial evidence in support for the hypothesis made in

section 5.4.2.2; redundant point sampling has the ability to contribute meaningfully to

mitigating sensor noise and improve model fitting quality.

5.4.2.4 Synthetic data: summary

The obtained synthetic registration results provide confirmation of the suitability of the

coarse alignment pose initialisation method. Additionally the observed stability of the

registration results (shown in Figures 59, 58), irrespective of the random seed configu-

ration, provides indirect confirmation that the coarsely aligned seed positions are found

within the basin of convergence of the method. A rigorous mathematical definition and

assurance about the basin of convergence of the proposed approach is not offered here

(many possible factors influence the convergence basin shape and dimension). The ex-

perimental work does however provide evidence that the KDE registration approach is

capable of handling up to moderate misalignments (i.e. unfavourable starting conditions

that exceed those which might be normally expected as input for a global registration

phase) when applied to large numbers of view-sets. Importantly error functions, of qual-
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ity metrics utilised, are shown to consistently and regularly progress towards a global

ground truth minimum.

Additionally, experimental evidence provides support for the claim that high view-

set magnitude (and associated redundant point sampling) can contribute to mitigating

sensor sampling noise effects and therefore improve model fitting (e.g. surface recon-

struction) accuracy and quality. An obvious direction for future work involves repeating

these initial synthetic experiments with state-of-the-art depth sensor data to explore if

similar advantages can be gained when attempting to mitigate real-world sensor noise

distributions. In the following experimental sections we evaluate further data sets from

additional sources and real-world depth sensors, exploring the ability of the proposed

method to handle large view-sets of distinct, complex and varied object shape.

5.4.3 Stuttgart range images: data sets

The Stuttgart range image database ([214], [123]) is a range image resource containing

various object models from which large numbers of depth images have been produced

per model. The database provides further suitable data sets for the experimental work

carried out in this chapter. The resource consists of collections of range images obtained

from 42 high-resolution polygonal models that are obtained both from existing synthetic

object models found on the world wide web and additionally, models created by laser

scanning physical objects (carried out in the Stuttgart lab). Synthetic range images of

object models are generated by varying synthetic-camera viewing angles and positions

in relation to the object and creating range images by sampling the visible surface in

accordance with the synthetic-camera line of sight. The resolution of each resulting

range image is 400× 400 pixels with a single measurement value at each pixel (distance

from the synthetic sensor). This potentially gives 160000 depth samples per image and

typically results in ∼ 5000 − 50000 valid 3D points per viewpoint (once non-object

depth image pixels, containing NaN values, have been removed). By varying the spatial

step size and viewing angle between synthetic-camera sensor positions, data sets of

many viewpoints are created for each object model. The database offers sets of 258

range images per object model which we use to reproject point clouds of each view

to 3D space using a standard pinhole camera model. Example synthetic depth images
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from this resource (42_fighter object) are provided in Figure 70 and examples of point

clouds, produced by reprojecting the depth images, are presented in Figure 71.

Figure 70: Example range images from the Stuttgart [214] range image database. Each object

model is used to generate 66 or 258 range images. Object viewing angles differ by

23− 26◦ degrees (example images from the 42_fighter object).

Figure 71: Example reprojected point clouds produced using a range image data set from the

Stuttgart DB [214]. A pinhole camera model is used to generate a point cloud from

each depth image that are then provided as input to the compared multi-view reg-

istration algorithms. Here example point clouds are reprojected from range images

using the 42_fighter data set (see Figure 70).

5.4.3.1 Stuttgart range images: multi-view registration

Once the Stuttgart range image sets have been reprojected to point clouds, views are

firstly brought into a common frame of reference (coarse alignment) using the simple

feature based coarse alignment strategy outlined in section 5.2.1. For the Stuttgart data

sets, ground truth registration is not made use of (unavailable). Any large failure modes

in the resulting automated coarse alignment are mitigated using additional manual

hand-alignment at this stage (manual alignment intervention was typically required for

0−40% of considered viewpoints per Stuttgart data set). This coarse alignment strategy

generates view configurations that can be considered visually similar to the validated

coarse alignment configurations constructed synthetically in section 5.4.2.1. See Figures

72b and 73a for examples of Stuttgart data sets in coarse alignment configurations.
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(a) Example range images from the Stuttgart 17_porsche image set.

(b) Stuttgart 17_porsche data set after spin image coarse registration.

(c) Stuttgart 17_porsche data set post KDE registration.

Figure 72: Stuttgart 17_porsche result set.



5.4 large view-set registration experiments 213

(a) Stuttgart 04_copter data set after spin image coarse registration.

(b) Stuttgart 04_copter data set post KDE registration. Some minor registration error is still evident on the

object main rotor however registration quality visually generally improves (e.g. features such as the tail

rotor and landing gear.

Figure 73: Stuttgart 04_copter result set.
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Once a coarse alignment has been generated, each data set is provided as input to our

KDE multi-view registration algorithm, Scanalyze [210] and the Procrustes method

[262]. For the experimental assessment of alignment accuracy we are interested in the

registration error produced by each algorithm, for each utilised Stuttgart data set.

Global registration results are reported in terms of mean inter-point distance (defined

previously in chapter 3) and a summary of results are found at the end of the chapter

in Table 10. Sample registration results are visualised in Figures 72, 73, 74 and 75.

(a) Stuttgart 42_fighter post depth image reprojection to point clouds.

Dataset in pre-coarse alignment configuration hence point sets lack

coherent frame of reference. A coarse alignment strategy must be

utilised before (any) dense, iterative error minimisation registration

approaches can be successfully applied.

(b) Stuttgart 42_fighter data set post coarse alignment using the

simplistic sparse feature based approach outlined in section

5.2.1.

Figure 74: The initial stages of the registration pipeline applied to the Stuttgart 42_fighter

point cloud data set.
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(a) Stuttgart 42_fighter fine registration due to [262].

(b) Stuttgart 42_fighter fine registration due to the proposed KDE registration technique.

(c) Stuttgart 42_fighter fine registration due to Scanalyze [210].

Figure 75: Fine registration results. The proposed method shows visually improved registration,

sharpening up object areas that are expected to display flush surfaces (e.g. tail, wing).

The Scanalyze technique [210], although able to scale favourably to large data sets

such as this, attempts to optimally align each view with respect to others in a

sequential way leading to visualised error propagation. The Procrustes method [262]

exhibits good global registration yet some clique formation (e.g. propeller area) is

still visible.
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5.4.3.2 Stuttgart range images: summary

The Stuttgart data set experiments allow a number of considerations to be drawn.

Superior registration is evident in terms of achievable alignment accuracy across a

varied set of object shapes and test cases (see Table 10 for accuracy results). For large

data sets, such as those experimented with in this chapter, the Scanalyze technique

[210] on occasion fails to reach a visually acceptable global registration and this failure

is reinforced by corresponding large quantitative error. When attempting to register

large sets of point clouds it can be presupposed that large view-sets are more liable to

incur problematic phenomena such as error propagation and loop closure than small

view data sets (corroborating other recent related findings e.g. [26]). On the other

hand, it has also previously been noted [27] that the method underlying Scanalyze

tends to scale favourably in terms of computation time when the number of views

increase (orders of hundred range images used in this work) and our experimental

findings confirm this. In contrast the method of [262] performs a genuine simultaneous

multi-view registration and typically generates visually pleasing results yet the cost

of true simultaneous registration often results in wall clock runtime similar to the

introduced method (c.f. Table 10), yet the introduced strategy is in some cases able to

produce better global object shape (e.g. Figure 75). The main and achieved objective

of the current work was to present the ability to perform high quality registration to

extremely large view-sets and, although computationally demanding in comparison to

the considered alternatives, parallelisation through our introduced SSTF framework

(chapter 4) yields a feasible route to applying demanding registration strategies to

view-sets containing 100− 500 viewpoints whilst maintaining, and often exceeding, the

accuracy performance of contemporary alternatives. In conclusion it can be claimed that

the proposed registration framework has been demonstrated to be a viable solution for

the global registration of large collections (hundreds of views) of dense range images as

part of a modern, high-quality 3D object modelling pipeline.

5.4.4 Stereo video: data sets

Further real-world experimental work is carried out by capturing depth image data

using a stereo video system. Stereo video affords high frame-rate data capture that suits
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a wide range of applications from facial animation to high-speed surface deformation

analysis. In the work presented here, a commercial DI4D stereo capture system [73] is

used to passively obtain rigid object depth information from multiple viewpoints for

the task of complete model reconstruction. While model reconstruction from stereo is

a well studied topic (see [231] for a comprehensive review), in this work we explore

the advantages of reconstructing objects from large sets of depth images captured by

this sort of modern stereo video capture equipment. By combining and applying the

multi-view point cloud registration techniques introduced previously (chapter 3) and

the SSTF framework proposed in chapter 4 we utilise our distributed multi-view point

cloud registration pipeline to accommodate data sets containing frame counts on the

order of magnitude typically associated with modern stereo video capture equipment

(several hundreds or thousands of frames).

The acquired stereo video data provides an opportunity to test the suitability of the

introduced registration framework with data sets obtained from an additional and real

depth acquisition process. Using the proposed technique with data acquired via depth-

from-stereo facilitates the testing of robustness to noise and sensor error distributions

typical of stereo data (e.g. the effects of systematic geometric and radiometric sensor

errors to point set reconstruction [143]).

The DI4D cameras operate at ∼ 25 fps and offer high resolution (1 megapixel) depth

image sequences. Two monochrome cameras are used to retrieve scene depth informa-

tion. Image correspondences are calculated, per image pair, by proprietary software

[73] in order to provide depth-from-stereo information. A third (colour) camera cap-

tures RGB intensity information, aligned to the inferred depth map. We use a standard

pinhole camera model to convert each depth image to a 3D point cloud.

By acquiring large numbers of point sets from high frame-rate stereo cameras and

combining these with our techniques for high quality, large view-set, point cloud regis-

tration we offer evidence that high speed depth-from-stereo systems are a valid route

to full and complete 3D model acquisition using only a single sensor. Other recent

consumer depth sensor and 3D object acquisition advances [183, 190, 135] make use of

alternative high frame-rate sensing techniques (e.g. structured light) for depth acquisi-

tion. High speed depth-from-stereo combined with multi-view registration techniques,

capable of registering many frames, provide a fast and viable high-resolution alternative

3D object acquisition pipeline. This is useful where passive, non-invasive depth capture
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(e.g. from stereo) is a preferred or required system feature. Capture situations, pertinent

to many contemporary applications, involve object acquisition where structured light

may not be viable. Object acquisition systems making use of an infra-red structured

light sensor (e.g. a Kinect [183]) are not usable in certain instances (e.g. outdoors) due

to infra-red information being disrupted (e.g. by sunlight). Coupling the passive nature

and instantaneous capture of depth-from-stereo (and related techniques making use of

large collections of photographs) with appropriate large-scale multi-view registration

techniques has previously been shown to extend the settings in which depth inference

and multi-view registration can be practically applied (e.g. [98],[5],[42]). In this section

we further explore the ability of our framework to handle the multi-view registration

of large point sets using data provided by real-world, depth-from-stereo sensors.

(a) Bust figurehead ob-

ject on turntable. A

colour camera provides

1040 × 1392 RGB

intensity data aligned

to monochrome image

pairs.

(b) Bust figurehead depth

image recovered from

a monochrome stereo

image pair using the

depth-from-stereo algo-

rithm of [73].

Figure 76: Sample colour and depth image frames of the bust figurehead object captured using

a 25 fps stereo camera rig [73].

5.4.4.1 Stereo video: multi-view registration

A bust figurehead is used as a test object with which to obtain high frame-rate depth

images from stereo video (see Figure 76 for an example frame). The bust is placed on

a turntable and ∼ 10 seconds of stereo video footage is recorded whilst rotating the

turntable through one complete revolution. A uniform background colour is provided
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to aid object segmentation but no object or scene markers are required. One complete

turntable revolution (360◦ degrees) is recorded resulting in each side of the object

being captured in multiple video frames. The camera frame-rate is high enough such

that many views (of all sides) of small and medium sized objects can be captured in a

relatively short time frame while avoiding movement and capture-speed based problems

(e.g. motion blur).

In this instance the short capture time provides 220 depth images (individually repro-

jected to 3D point clouds) covering each side of the bust figurehead. The sensor position

is fixed and the bust remains in a fixed position on the turntable. Object views from

above and below (that would capture the crown and base of the bust) are therefore

omitted. Image correspondences and resulting depth maps are provided for each stereo

image pair by proprietary DI4D software [73] and after extracting point clouds from

the depth images, point sets are again coarsely aligned using the method described in

section 5.2.2. The full data set offers dense depth maps containing ∼ 1.5 million points

per depth image and therefore the entire data set consists of ∼ 300 million points

(pre object segmentation). To aid processing, down-sampling is again (c.f. chapter 3,

section 3.5.2) performed on each viewpoint. Viewpoint point clouds are down-sampled

uniformly to ∼ 0.2% to enable feasible experimentation with all considered registration

methods and implementations. Our implementation of [262] is via serial work station,

typically unable to accommodate view-set problem instances with point sets contain-

ing millions of points4. In summary a multi-view registration comparison is performed

utilising recent methods and point set magnitudes that can be considered challenging

in terms of both point density and view-set size provided by a modern depth sensor.

By using the method described in section 5.2.2 coarse alignment is achieved by again

assuming a constant turntable rotation rate in the z-axis during capture. Additive initial

rotations of 360◦
220 ≈ 1.636◦ are consecutively applied to each viewpoint. These rotations,

in addition to some manual translation, again provide the coarse view alignment in a

global frame of reference (views of the resulting coarse alignment are found in Figures

79a and 79d). This alignment is then provided as input to both the proposed multi-view

registration algorithm and that of Toldo et al. [262].

4 This is due to the local serial implementation of the Procrustes method and available hardware rather

than a claim about theoretical properties of the method.
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5.4.4.2 Stereo video: convergence and stopping behaviour

We show mean inter-point distance (µipd, see section 3.5.1.1 for explanation of why

this is an appropriate measure) evolution during registration for the bust figurehead

data set in Figure 77. In both subfigures (pertaining to each method) transform update

iterations are reported on the horizontal axis (this is not informative of computation

time but does provide insight into convergence behaviour). After ten iterations the

introduced multi-view registration method is shown to be near convergence in terms

of µipd whilst the method of Toldo et al. [262] can be seen to be still slowly reducing

the µipd error after 50 iterations (as noted this is not informative of computational

cost). The error metric in the case of the Toldo et al. result can be seen to begin to

slowly (yet not completely) converge, however allowing the algorithm to proceed further

(> 50 iterations) results in two “clique” like point cloud subsets enjoying increasingly

tight inter-clique registration and drifting closer together while failing to capture and

reproduce true global object shape, yielding visually unsatisfying results (c.f. Figure

79e).

For the introduced registration method, Figure 77b shows µipd evaluated for each

scan optimisation in parallel (where µipd is defined over the points belonging to the

scan being optimised) at every transform space optimisation iteration. As discussed

in chapter 3 our transform optimisation is performed using Quasi-Newton line search,

refer to chapter 3, sections 3.5.1.1 and 3.4 for the µipd quality metric and optimisation

technique details.
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(a) Evolution of the µipd registration metric using the Toldo et al. [262] multi-

view registration method. See text for discussion.

(b) Iterative error metric µipd evolution using the proposed multi-view registration approach. Large im-

provements are achieved in the early supersteps (individual, yet parallelised, transform space opti-

misation) and the alignment quality is refined as surface re-estimation proceeds with each superstep.

Enlarged insets show latter supersteps, in addition to collectively displaying low absolute µipd values,

also exhibit less fluctuation and lower inter-scan µipd variance.

Figure 77: Value of the µipd (mean inter-point distance) registration quality metric during iter-

ative multi-view registration of the bust figurehead data set performed via the Toldo

et al. algorithm (77a) and the proposed method (77b).
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For the examined stereo depth data set, the largest error reduction in both techniques

can be attributed to early iterations (similar behaviour was observed for both (1) the

small synthetic data sets experimented with in chapter 3 and (2) the large view-set

synthetic data in this chapter, section 5.4.2.1. The introduced registration process is

limited here to ten supersteps as the method was previously shown to produce accept-

able registration results with this size of iteration cap for synthetic data (see section

5.4.2.1). We concede that each iteration of the proposed method is computationally

more expensive than an iteration of the Toldo et al. [262] algorithm. A superstep it-

eration of the introduced method constitutes parallelised local transform space search,

effectively performing true simultaneous view registration.

For the figurehead data set (220 views) the introduced method performs, as noted,

a pose optimisation for each point cloud in parallel during each optimisation round

(superstep). The enlarged insets in Figure 77b show a parallelised superstep round with

one viewpoint transform space optimisation represented per colour. Each superstep

round contains a maximum of 50 optimisation steps per viewpoint and horizontal axis

separation between rounds is introduced for expository purpose to highlight superstep

completions. Separations therefore indicate where each round of viewpoint transform

space optimisation ends and where new surface approximations are estimated using the

updated point cloud positions.

It can be observed that the latter supersteps, in addition to collectively displaying

low absolute µipd values, also exhibit decelerating improvement and lower inter-scan

µipd variance (see Figure 77b zoom insets), providing further evidence of procedure

convergence in only 10 iterations.

Interestingly, as each scan moves in parallel, optimising its position in relation to the

inferred object surface, it can be seen that the obtained µipd values (and similarly RMS

metrics, not shown) do not provide strictly decreasing functions of µipd error in every

view due to simple point pair distances not being directly minimised in the objective

function. It is thought that by not directly minimising a simple point-pair distance

metric the method may be able to make use of information, potentially collected from

many view-points, to make globally better transform space updates. The µipd metric

does however decrease as surface estimates update after each superstep completion and

therefore it can be concluded that even if individual scan positions are updated to locally
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sub-optimal positions (in terms of point pair distance) this can be globally beneficial

in terms of overall object surface shape and multi-view registration error distribution.

Final error metric values for coarse alignment and converged registration are dis-

played in Figure 78 and the respective point set configurations that generate these are

displayed in Figure 79.

Figure 78: Error measures used to evaluate both the initial coarsely aligned bust view configura-

tion and the converged registered view-sets, generated by the evaluated registration

methods. The bust illustrates a data set where the quantitative error metric dif-

ference between registered view-sets is small yet difference in visual appearance is

pronounced (c.f. Figure 79).

For the bust data set, the difference in visual appearance between resulting registered

point sets is pronounced yet the related differences in quantitative error metrics are

found to be not statistically significant. As in chapter 3, repeated trials, seeded by

random coarse alignment, might be utilised to reveal a valid (small) effect size but

the point we highlight here is that visually disparate outcomes can yield quantitatively

similar results when employing standard error metrics commonly used to promote the

capabilities of point set registration algorithms. Visual inspection in most cases offers a

valuable, valid additional tool when assessing registration performance. This suggests

an additional direction for future work involving investigating or employing (e.g. [245])
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intelligent multi-view registration error metrics shown to make the measures less sus-

ceptible to this phenomenon.

(a) Coarsely aligned bust

figurehead point clouds:

front-to-parallel view.

(b) Registration result of

Toldo et al. [262] using

50 iterations.

(c) Registration result

using the intro-

duced method,

using 10 iterations

(supersteps).

(d) Coarsely aligned bust

figurehead point clouds:

view orthogonal to

turntable planar

surface.

(e) Resulting registration

of Toldo et al. [262] us-

ing 50 iterations.

(f) Registration result

using the introduced

method, using 10

iterations (supersteps).

Figure 79: Views of the coarse alignment configuration are shown in 79a, 79d (see text for

coarse alignment details). Coarse alignments are provided as input to two registration

algorithms, views of registration results are provided in 79b, 79c, 79e and 79f. The top

row displays a profile view whilst the lower row displays a position underneath the

bust with view directed up through the central object z-axis, exposing registration

results (note lack of depth data pertaining to object base and crown-of-head).

For illustrative purposes, and to complete the reconstruction pipeline, we provide a wa-

tertight object model derived from our set of 220 depth images, captured with our stereo

video camera rig [73]. The derived point cloud view-set, post simultaneous multi-view

registration using the introduced method, is provided as input for surface reconstruction.
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For the task of surface reconstruction we again make use of the implicit reconstruction

technique, Poisson surfacing [145]. It can observed that the Poisson surfacing result

(Figure 80) that is obtained by applying surface reconstruction to the registered point

set provides a geometrically recognisable model of the original object (c.f. 2D RGB

intensity data input, Figure 76a). The reconstructed surface here uses an amalgamated

point set, consisting of all point samples from 220 depth images, as input. The recon-

struction is visually similar to the original object on account of the robust registration

strategy employed however point set integration is a related area of work that aims to

integrate multiple 3D scans intelligently, post-registration, in order to improve recon-

struction quality and surface integration (e.g. the multi-scale saliency based approach

of [244]). Further exploration of intelligent point set integration for large view-sets, in

combination with feasible registration techniques, provides a further promising area of

further work.

(a) (b)

Figure 80: Bust data set containing 220 registered views using the introduced multi-view reg-

istration technique. Aligned point sets are amalgamated and a Poisson surfacing

technique applied to produce a watertight object model (c.f. 2D RGB intensity data

input, Figure 76a).
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5.4.4.3 Stereo video: summary

In conclusion, our depth-from-stereo sensor and bust figurehead data set exploration

allow further conclusions to be drawn. In a similar fashion to the spray bottle object ex-

perimented with previously (chapter 3), we conjecture that our approach is able here to

produce the most reasonable visual result by optimising scan positions in relation to our

global surface estimate and soft correspondence strategy. The introduced registration

strategy enforces correct global shape consistently when many scans (containing rela-

tively simple geometric structure in this case) overlap and contribute to object shape.

This scenario is likely when many object views are available, potentially providing re-

dundant depth information. By utilising (and iteratively refining) inferences regarding

global object shape we provide information to influence optimal local registration of

each point cloud while implicitly taking into account global structure and cohesion. By

avoiding the explicit minimisation of hard local point pair correspondence distances we

attempt to ensure that individual alignment does not drive view positions to locally

optimal yet globally poor poses that are detrimental to global shape coherence. Using

the introduced strategy of inferring global object shape via density estimation proves

expensive for large data sets yet methods that lack a concept of a global object shape

may exhibit gross failure modes. We note that these experimental results are due in part

to favourable coarse alignment seed positions allowing the introduced registration tech-

nique to produce reasonable initial inferences regarding object surface (see e.g. Figure

79d).

5.5 data sets summary and discussion

Here we quantitatively summarise the tests and comparisons performed in this chapter

involving the proposed solution, the global registration technique originally introduced

by Pulli [210] and the Procrustes approach suggested in [262]. Algorithm implementa-

tions make use of varying systems with the proposed technique (implemented in Matlab)

utilising our local ECDF distributed resource [82], the method of Pulli (implemented

in C++ ) run on a PC AMD Athlon 64bit Dual Core (2× 3.00 Ghz) with 3.00 GB of

RAM and the method of Toldo et al. [262] (implemented in Matlab) utilising the same

local system.
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Registration results are collated and summary tables (Tables 10, 11) list accuracy

and computation time for all data sets made use of in this chapter. Mean inter-point

distance (µipd) values are collected for coarse pre-registration configurations and cor-

responding values for converged registration configurations, for each algorithm exper-

imented with. For experimental assessment of the registration accuracy we evaluate

the registration error produced by each implemented algorithm for all utilised datasets.

The first column of Table 10 lists the data source while columns two and three provide

information about the number of views of each considered dataset and the average scan

densities respectively. Column four reports the mean inter-point distance among the

views associated to their initial coarse alignment condition. Global registration results

are then reported in terms of mean inter-point distance for each of the considered fine

registration methods. Note that the method of [210] failed to return a registration for

the data set 04_copter due to memory exhaustion caused by the attempted compu-

tation of global registration, reaching the upper limit of available GPU memory (as

confirmed by a system process monitor), and therefore generated a runtime exception.

Nevertheless, the Pulli [210] registration on smaller data sets provides indication of

typical performance and we would not expect it to function substantially differently, in

terms of registration quality, if more memory were afforded to handle a dataset of size

similar to that of 04_copter.
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Table 10: Global registration error metrics for large view-sets.
Data set Number of

viewpoints

Mean # points

per view

Coarse alignment µipd KDE registration µipd Scanalyze [210] µipd Toldo et al [262] µipd

Real Tridecahedron 522 2720 2.372567 2.006429 2.05299397 2.212345

Synthetic Tridecahedron (±0.0 , σ = 0.00) 250 5000 0.003444 0.003526 0.01199586 0.004753

Synthetic Tridecahedron (±0.175 , σ = 0.00) 250 5000 0.012466 0.003659 0.01278884 0.006491

Synthetic Tridecahedron (±0.350 , σ = 0.00) 250 5000 0.015029 0.004723 0.01492897 0.008447

Synthetic Tridecahedron (±0.500 , σ = 0.00) 250 5000 0.016256 0.004524 0.01667278 0.008874

Synthetic Tridecahedron (±0.0 , σ = 0.01) 250 5000 0.006702 0.006741 0.01232697 0.007023

Synthetic Tridecahedron (±0.175 , σ = 0.01) 250 5000 0.013272 0.004620 0.01276762 0.008106

Synthetic Tridecahedron (±0.350 , σ = 0.01) 250 5000 0.016227 0.006702 0.01577113 0.009482

Synthetic Tridecahedron (±0.500 , σ = 0.01) 250 5000 0.017941 0.008436 0.01773417 0.010261

Synthetic Tridecahedron (±0.0 , σ = 0.02) 250 5000 0.008296 0.008341 0.01295305 0.008499

Synthetic Tridecahedron (±0.175 , σ = 0.02) 250 5000 0.013354 0.008288 0.01310442 0.009298

Synthetic Tridecahedron (±0.350 , σ = 0.02) 250 5000 0.016936 0.008318 0.01689198 0.010561

Synthetic Tridecahedron (±0.500 , σ = 0.02) 250 5000 0.018571 0.008840 0.01773311 0.011160

Synthetic Tridecahedron (±0.0 , σ = 0.04) 250 5000 0.010239 0.010276 0.01438224 0.010303

Synthetic Tridecahedron (±0.175 , σ = 0.04) 250 5000 0.014071 0.010210 0.01344889 0.012845

Synthetic Tridecahedron (±0.350 , σ = 0.04) 250 5000 0.017319 0.010218 0.01524040 0.011789

Synthetic Tridecahedron (±0.500 , σ = 0.04) 250 5000 0.019795 0.010283 0.01881461 0.010897

Synthetic spheres (large point cloud viewpoints) 250 50000 0.012606 0.004881 — —

42_fighter 258 7953 0.007701 0.002922 0.00646944 0.003205

17_porsche 258 16094 0.008564 0.005943 0.00781996 0.009030

04_copter 258 19846 0.007624 0.004669 — 0.004193

Bust figurehead 220 2209 0.024602 0.012239 0.01824514 0.016057
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Table 10 suggests that our registration framework is able to provide reduced fitting

error compared to both Scanalyze [210] and Procrustes [262] algorithms for large view-

set data. The KDE registration method affords the lowest mean inter-point distance

error for all datasets experimented with (apart from 04_copter) and importantly is able

to follow linear convergence rates (see e.g. Figures 60, 55) towards such final viewpoint

configurations. While for some datasets experimented with (e.g. Synthetic Tridecahe-

dron ±0.175,σ = 0.01 and 17_porsche) all three techniques converge to a visually

acceptable minimum, in other cases (e.g. Bust figurehead, 42_fighter) the methods of

Pulli [210] and Toldo et al. [262] fail to reach a visually agreeable configuration and in

many (but not every) cases exhibit a corresponding high quantitative registration error.

As noted as view count increases, large view-set data seems generally more liable to

incur problematic phenomena such as error propagation and loop closure.

In Table 11 we list computation times of the various registration strategies measured

in minutes. The KDE registration wall-clock and idealised run times are as described

previously (section 4.5.1.1). The method of [210] is clearly faster than the proposed

method in reaching its error minimum, especially for larger datasets. While the Pulli

optimisation [210] uses a sequence of ICP applications, which are very fast to compute,

our KDE registration considers the alignment globally, causing the computational bur-

den of the approach to increase linearly with the number of scans to be processed

(partially mitigated here by our distributed framework and implementation). A possi-

ble future direction, in this area of computational expense mitigation, would involve

exploiting an initial (fast) registration produced by e.g. [210] to bring an alignment

closer to the optimal registration and seed the introduced method with this such that

the proposed approach can converge faster. A similar strategy was explored recently

(in [27]) however no bold conclusions could be drawn from the early stage of their

experimentation.

Computational behaviour is seen to fluctuate in relation to dataset size for both global

registration methods investigated. In some cases (Synthetic Tridecahedron ±0.175,σ =

0.01 and 42_fighter) our approach takes moderately longer than that of Toldo et al.

[262], in terms of wall-clock time however the idealised time (see section 4.5.1.1) is

lower indicating that queueing effects should be taken into consideration when assessing

the feasibility of utilising shared distributed resources. In other cases (such as Bust

figurehead) our method is able to afford an improvement in terms of the computation
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time required. In short, it can be concluded that the computational performance of

our approach is dataset-dependent, however, the ECDF cluster based implementation

affords an effective route to mitigate the computational burden of larger datasets.

Further to this, it is noted that runtime comparison between methods is not directly

meaningful in terms of computational analyses due to the studied algorithms differing

in (1) implementation language and (2) computational platform utilised. We include

run times for informational purpose and note that although the introduced method is

an order of magnitude slower than the (C++ implementation) of Pulli’s optimisation

technique [210] we are often able to produce higher quality registration results (with

our, comparatively expensive, global method). Our distributed approach allows for

run times that remain feasible (e.g. broadly similar to those of the Toldo et al. [262]

algorithm) even when applying computationally demanding registration techniques to

very large data sets, yielding high quality results.
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Table 11: Multi-view registration computation timings (minutes)

KDE Registration Timing (minutes) Scanalyze [210] Timing (minutes) Toldo et al. [262] Timing (minutes)

Data set Ideal time Wall-clock time Wall-clock time Wall-clock time

Real Tridecahedron 97.14 473.32 8.05 299.42

Synthetic Tridecahedron (±0.0 , σ = 0.00) 35.43 49.92 6.92 475.60

Synthetic Tridecahedron (±0.175 , σ = 0.00) 117.25 421.30 6.11 478.99

Synthetic Tridecahedron (±0.350 , σ = 0.00) 146.12 427.87 6.36 481.41

Synthetic Tridecahedron (±0.500 , σ = 0.00) 119.46 412.22 6.00 470.14

Synthetic Tridecahedron (±0.0 , σ = 0.01) 97.92 395.59 6.20 481.49

Synthetic Tridecahedron (±0.175 , σ = 0.01) 92.88 418.12 6.67 466.18

Synthetic Tridecahedron (±0.350 , σ = 0.01) 95.97 406.87 6.86 446.63

Synthetic Tridecahedron (±0.500 , σ = 0.01) 111.79 423.58 6.74 446.64

Synthetic Tridecahedron (±0.0 , σ = 0.02) 38.29 60.38 6.05 479.44

Synthetic Tridecahedron (±0.175 , σ = 0.02) 84.84 618.60 6.36 442.43

Synthetic Tridecahedron (±0.350 , σ = 0.02) 89.99 593.54 6.56 450.50

Synthetic Tridecahedron (±0.500 , σ = 0.02) 91.27 598.78 6.74 450.10

Synthetic Tridecahedron (±0.0 , σ = 0.04) 41.12 68.92 6.92 487.83

Synthetic Tridecahedron (±0.175 , σ = 0.04) 89.01 205.80 7.49 450.14

Synthetic Tridecahedron (±0.350 , σ = 0.04) 91.13 201.69 7.30 446.41

Synthetic Tridecahedron (±0.500 , σ = 0.04) 89.18 193.70 6.35 437.02

Synthetic spheres (large point cloud viewpoints) 1281.31 1729.52 — —

42_fighter 74.56 143.59 4.68 183.45

17_porsche 104.85 180.06 11.89 222.96

04_copter 137.54 271.85 — 1051.91

Bust figurehead 66.22 344.39 2.89 148.35

Implementation language Distributed Matlab C++ and CUDA Matlab

Max # of cores utilised 70 2 2
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In conclusion, as confirmed by the results collected (Tables 10, 11), heuristic regis-

tration methods can be faster yet their convergence is not guaranteed. On the other

hand our KDE registration method remains slower than reference heuristic-based meth-

ods, with a runtime performance gap that tends to increase for larger datasets where

many point samples must be evaluated. Despite our effort and achievements in finding

expedients to reduce the computational burden of our method, further computational

optimisations are still possible (e.g. parallel computed correspondence finding for ker-

nel estimation) which are left to further works. What we propose and test here is the

performance evaluation of a distributed scheme capable of undertaking large view-set

registrations and producing high quality results in feasible time frames. This results in

mitigating the high computational cost associated with large view count global registra-

tion and allows for observations that prove useful for the design of feasible large-scale

registration strategies. In this way we aim to bring the scan configurations to an optimal

solution while mitigating the related optimisation engine workload.

Finally, we expect that computational performance of the introduced method can

be sensibly improved by surpassing some limitations of our current implementation.

Possible routes to this end include following previously successful strategies involving

parallelising work at a finer granularity (e.g. parallelising expensive point set nearest

neighbour search via GPGPU [253], [211] rather than at the coarser distribution level of

transform space search). By performing this correspondence selection at each iteration

via computation on GPU hardware we could expect significant runtime improvement.

Additionally, reimplementation in a compiled language (e.g. C++ ), whilst retaining

our SSTF framework would also result in absolute runtime speed up.

The main and achieved objective of the chapter was to present the ability to perform

high quality registration to (what are currently) large view-sets and, although computa-

tionally demanding in comparison to the compared alternatives, parallelisation through

our introduced SSTF framework (chapter 4) yields a feasible route to applying demand-

ing registration strategies to high order of magnitude view-sets whilst fully maintaining

documented registration accuracy benefits. It is claimed that the presented combina-

tion of registration strategy and distributed task farming framework is an attractive

option for performing global registration of large collections of dense point clouds as

part of a modern, high-quality 3D object modelling pipeline.
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6
DISCUSS ION

6.1 summary of the thesis

This thesis has explored the challenge of performing point set registration where many

sets of 3D points must be considered. In this work point sets typically represent spatial

measurement of physical environments or objects from varying viewpoints and thus

require global alignment into a common frame of reference to provide useful input

for e.g. the subsequent stages in a model acquisition and reconstruction pipeline. Multi-

view point set registration is challenging primarily due to the large amount of variability

found in complex objects, environments and additionally the large amount of data that

must be treated. The sources of variability include, but are not limited to, sensor capture

rates, object shape and surface properties, sensor (and object) trajectories and scene

illumination. In this thesis we focussed on developing principled models that allow us

to incorporate knowledge about local object surface shape into solving the point set

registration task and investigated feasible routes to applying these methods to large

point set data.

As highlighted in the introduction, modelling pipelines that produce accurate 3D

models of complex physical objects and environments can be utilised in many useful

application areas. This observation has motivated the large body of work that exists

on automated 3D modelling, treated in our literature review. The approach to model

reconstruction typically involves first acquiring partial 3D point sets of an object from

each captured viewpoint, aligning these partial sets together and fusing all partial views

to obtain a full, compact and potentially watertight object representation. Aligning the

acquired depth samples can be regarded as the most limiting step of the 3D modelling

pipeline and this problem is compounded in difficulty as the number of viewpoints

235
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increases due to both the involved optimisation principles and computational consider-

ations.

In real-world examples, this alignment problem proves challenging due to the large

amount of variability one sees in objects found in the natural world. Factors include,

but are not limited to, object pose, appearance and shape, camera pose and scene

illumination. When depth information capture can be constrained to only consider e.g.

highly accurate sensors, reliable depth inference, controlled object presentation, reliable

and uniform viewpoint sampling devoid of occlusion, then simple chained pairwise view

registration might be utilised to quickly and frugally provide full model reconstruction.

If view chains become long, the worries of error accumulation and propagation remain

however this approach may prove satisfactory under the highlighted optimal conditions.

Such conditions and the resulting samples are however not always representative of

practical inputs that a real-world registration algorithm might be expected to deal with.

In realistic conditions, depth samples often exhibit noise, occlusion, clutter and realistic

viewpoint sampling may present larger variance in sample positions and orientations of

objects of interest.

An important premise of this thesis alleged that large view-sets and an abundance

of depth data are beneficial in terms of model completeness and accuracy and can be

used advantageously when tasked with modelling object surfaces and shape. In this

work we hypothesised that view alignment accuracy and robustness can be improved

over sequential registration approaches by employing simultaneous registration to in-

herently take advantage of information contained in many viewpoints and distribute

misalignment errors between overlapping views. This in turn allows object surfaces to

be robustly and reliably estimated from coarsely misaligned views in a data-driven

fashion in order to inform and drive the view registration process. We formalised this

hypothesis with the claim:

By registering partial views simultaneously to a robust surface estimate, it is possible to

improve registration accuracy over sequential approaches by distributing errors evenly

between overlapping viewpoints. Object surfaces can be robustly estimated from coarsely

misaligned partial views using density estimation techniques and such estimates can be

utilised to reliably guide simultaneous point cloud registration. This approach exhibits

an inherent ability to handle data from many viewpoints simultaneously and improves
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registration and reconstruction accuracy over existing techniques by exhibiting robust-

ness to initial coarse misalignment of view-sets.

Our work has defended this thesis by presenting the following original contributions:

(1) We propose new multi-view registration techniques that leverage an abundance

of viewpoint information for the registration task. Chapter 3 focussed on developing

statistical density models that allowed us to robustly reason about local surface and

shape. In particular, by proposing new methods to simultaneously register multi-view

point cloud data this work has sought to further knowledge and understanding of point

set registration challenges and problems that occur as the number of viewpoints in-

crease. In this chapter we provided quantitative evidence, by way of statistical error

measures, to illustrate registration quality and indicate improvement over both histor-

ically popular and recently proposed multi-view registration approaches (see section

6.1.1).

(2) We introduce a novel task-farming framework that facilitate accurate simultaneous

registration of large sets of point clouds in a global coordinate frame. Both the compu-

tational speed of density estimation and quality of resulting models typically depend

on the number of data samples available. Intrinsic properties of non-parametric density

estimation dictate that estimation quality improves as the number of available samples

increases however estimation often also becomes more expensive. This non-parametric

estimation property essentially dictates that the cost of building models will increase

as the number of available samples to be utilised increases. In Chapter 4 we introduced

a task distribution strategy offering effective methodology for solving computationally

expensive problems and contribute quantitative evidence of the obtainable predictable

speed improvement (see section 6.1.2). The framework is generically applicable how-

ever in this thesis it enabled investigation of the claim that for many viewpoints, a

data-driven simultaneous approach is able to improve the registration process.

(3) Finally Chapter 5 contributed an investigation into performing the multi-view regis-

tration task using extremely large view-sets. In this chapter we fulfilled pragmatic goals

of the thesis and provided confirmation that we contribute a registration methodology
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suitable for real-world use. By investigating data consisting of many views from varying

viewpoints, this chapter corroborated the hypothesised level of accuracy and robustness

that the ability to successfully perform large-scale registration in a simultaneous, data-

driven fashion is able to provide. By providing qualitative and quantitative evidence

evaluating both registration accuracy and robustness to noise and initial misalignment

for view-sets typically larger than those considered in many previous works we provide

evidence in support of our initial claim (section 6.1.3). In this chapter we now sum-

marise the outlined thesis contributions, consider conclusions that can be drawn from

our findings and highlight potential related areas for future work.

6.1.1 Kernel Density Estimation for point cloud registration

In Chapter 3 we proposed the use of density estimation theory to construct surface

estimates from point samples and, utilising these estimates, construct novel measures

of point set alignment quality. Optimising these measures of alignment quality led to a

novel registration process that allows multi-view point set registration to be performed

simultaneously for all viewpoints without requiring explicit view-order information or

(the typical) point pair correspondence search during the optimisation of viewpoint

spatial positions. By avoiding explicit point pair matching we remove one of the com-

putationally expensive parts of a traditionally registration process and by allowing all

viewpoints to move in the transform space simultaneously we show typically improved

multi-view registration accuracy over sequential alignment approaches.

Soft point correspondence approaches have previously been shown to perform favourably

when tasked with handling sample noise and outliers and our experimental work in this

chapter additionally supports the stance that soft correspondence strategies possess the

ability to favourably tackle registration problems containing measurement noise and out-

liers. Additionally by attempting to solve simultaneously for the global registration of

all viewpoints we show that an interdependence between overlapping views can be har-

nessed to implicitly introduce additional constraints on viewpoint spatial configurations,

typically driving the global registration error down.

Synthetic point data sets were utilised to perform experimental validation and illus-

trate registration reliability, algorithm correctness and robustness to data containing

noise. Synthetic data experiments illustrate that our registration process is able to con-
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verge to globally optimal viewpoint configurations consistent with known ground truth

configurations, even when making use of only rough estimations of the true underlying

generating object surfaces. Further to this, active depth acquisition sensor data pro-

vided real-world measurements that are inherently corrupted by physical sensor noise.

In addition to providing more challenging registration test environments, this allowed

for an investigation of how best to select kernel bandwidths for multi-dimensional point

cloud density estimation. While many successful data-driven bandwidth selection tech-

niques have been proposed we find that the popular yet expensive task of estimating

density derivatives for optimal bandwidth choice can be avoided by utilising simple

selection strategies i.e. defining bandwidth in relation to sampling density. The rela-

tion between appropriate bandwidth selection and resulting estimate smoothness is well

understood and important. In practice we find that reliable bandwidth selection man-

ifests as an intrinsic robustness to typical registration challenges involving sampling

noise, viewpoint coarse misalignment seeding and “view-clique” convergence problems.

Without a need to construct complex sensor noise models, we are able to demonstrate

successful registration results using depth data from viewpoints that are seeded with

only coarsely defined alignment. By evaluating results across varied data sets under

both visual inspection and common statistical registration error measures, quantitative

and reproducible evidence in support of our claims regarding resulting accuracy and

robustness is provided.

More generally, our registration experiments with real-world data further the argu-

ment that registration objective functions, founded on non-parametric principles, pro-

vide a better alternative to traditional hard point pair correspondence based metrics

for the task of multi-view registration, particularly in cases where robustness to sensor

noise is required. Additionally, our experimentation supports the claim that the intro-

duced methodology may prove applicable and useful in pipelines utilising real-world

depth data where registration forms a vital component. Finally, Chapter 3 illustrated

that our approach can be used in conjunction with common surface reconstruction

methods (e.g. [145]) to produce representative model surfaces giving further weight to

the specific claim that our registration framework may be integrated to form part of

an object acquisition and model reconstruction pipeline.
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In summary, Chapter 3 presented contributions towards solving a common step in

the model acquisition and reconstruction pipeline for complex environments and objects

represented by depth measurements from multiple viewpoints.

6.1.2 Semi-Synchronised Task Farming

Chapter 4 of this thesis proposed a model for executing intensive large-scale computa-

tional problems that contain a mixture of independent and shared (non-independent)

problem components that must be integrated to reach a global solution. We name

this framework Semi-Synchronised Task Farming (SSTF) due to the affinity with a

standard task farming model. The steps of the SSTF framework iterate between dis-

tributed independent task computation and information collation steps. After a round

of distributed, independent task computation, results are collated and communicated

to influence the initialisation and parameterisation of a following round of independent

task distribution. This iterative procedure of task distribution and result collation leads

to a framework capable of reaching global solutions for problems that can be formulated

under the model. In this chapter the attributes and capability of our distributed model

were explored by instantiating the framework using local HPC resources.

An additional contribution of Chapter 4 involved the introduction of a related com-

putation time prediction model used to infer total solve time for problems formulated

under our SSTF framework. We validated this model using simulated and experimental

results and find it to be sufficiently accurate and reliable thus providing a simple tool

that could be used when estimating time requirements of computationally expensive

algorithms containing distributed elements. By providing an informed model of how ex-

ecution time depends on input under our framework we provide a useful predictor for

distributed problem instances. We concede that producing such a model automatically

is not a tractable problem and our timing model is deduced through empirical means,

finding key variables that influence computation time. We fit experimental performance

to custom functions yet experimentally demonstrate a high degree of predictive accu-

racy. This timing model proved a useful predictive tool when considering the benefit

of implementing algorithms under our distributed framework. It may also lead to accu-

rate computation prediction under additional distributed frameworks that share task

parallelisation and result collation components.
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The contribution of the SSTF framework allows developers to concentrate on do-

main specific aspects of computationally expensive problems [178]. Experimental re-

sults additionally confirmed that processing data using algorithms formulated under

our distributed framework were able to obtain significant time saving over single node

computation when deployed on suitable hardware (as might be expected). While the

introduced distributed framework is widely applicable, it has hitherto been utilised to

aid the formulation of several disparate, yet comparably computationally demanding,

contemporary computer vision problems in practice [178].

In summary the work carried out in Chapter 4 introduced a task distribution strat-

egy offering effective methodology for solving computationally expensive problems and

resulted in vast wall-clock time savings over analogous serial problem implementations.

Our contributions in this chapter consisted of a task distribution strategy for formulat-

ing demanding problems that require a level of communication between subtasks and

the related, computation-time prediction model.

6.1.3 Distributed large scale point set registration

In Chapter 5 we implemented our multi-view registration strategy (introduced in Chap-

ter 3), previously shown to produce accurate and robust multi-view registration results,

to view-set collections an order of magnitude larger than those traditionally treated

when undertaking multi-view simultaneous alignment. By implementing our strategy

using the SSTF framework introduced in Chapter 4, we contribute methodology ca-

pable of feasible large view-set registration while still making use of computationally

demanding registration framework elements capable of producing high quality results

i.e. utilising soft point correspondences for alignment evaluation and optimisation in-

volving simultaneous view registration strategies.

By performing experimentation using both simulated synthetic data and data col-

lected from commodity high sampling-rate depth sensors (e.g. Microsoft Kinect, video

based stereo-camera rigs) we tested the suitability of our novel multi-view registration

algorithms for use with high sample-rate data. This offers evidence in support of our

claim that combining demanding simultaneous global optimisation and soft correspon-

dence registration strategies with distributed task farming is an attractive option for

performing view registration on large collections of point clouds. By distributing the
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work load of the algorithm, we are able to handle lack of view ordering information,

robustness to measurement noise and point outliers and solve for the optimal spatial

positioning of viewpoints simultaneously for large-scale point cloud problem instances.

This reinforces the point that a distributed instantiation of our framework is a valid

step in a modern 3D object modelling pipeline utilising e.g. contemporary high speed

depth sensors for data acquisition and measurement. A number of quantitative exper-

iments illustrate performance improvements over both historically popular and recent,

independently proposed works on a number of benchmark datasets.

6.2 discussion

The surface approximation models that this thesis proposed, the associated alignment-

quality metrics, view optimisation strategies and distributed registration methodology

are versatile and can be applied to a wide range of data that exhibit varying sensor

qualities and properties. The development and application of these techniques does

however lead to several further interesting opportunities and related remaining opens

questions:

6.2.1 Depth measurement resolution

Firstly, our surface estimation model is currently built in a non-parametric fashion and

we note that the expense of constructing such data-driven approaches typically grows

with the magnitude of the available sample size. Point registration experiments in this

thesis were carried out using relatively low resolution and low sample density point

clouds compared to those that might be provided by e.g. professional high-end time-

of-flight or triangulation based laser scanners capable of offering individual viewpoint

measurements containing data on the order of millions of depth samples per view. Scal-

ing our non-parametric models in a naive fashion is unlikely to prove a viable route to

address this point. This would greatly increase the number of sample points contribut-

ing to a density estimate and, hence, likely lead to practical problems such as infeasible

model construction and slow alignment quality evaluation during optimisation. In prac-

tice, early work attempting to reason about latent surface existence using extremely
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high density point cloud evidence proved largely infeasible due to the computational

demands of serially evaluating enormous data-driven density estimates.

In Chapter 3 we demonstrated one approach that could be employed to mitigate

this problem; simple down-sampling of the available depth data. This strategy can

potentially be applied at both the model building and alignment-evaluation (query

time) stages. While simple down-sampling approaches were utilised in this work, fur-

ther experimentation with more advanced sampling methods such as employing local

spatial information (e.g. surface curvature) to inform sampling decisions offers an in-

teresting and potentially straightforward extension for our non-parametric registration

strategy. However while such down-sampling approaches work well in practice, they

may ultimately result in an unpredictable loss of surface estimation quality typical of

the reliability found under heuristic approximations.

A related conspicuous question that can be asked of our multi-view registration

approach revolves around the proposed combination of solving large data set problem

instances with kernel density estimation theory. While we have highlighted several of

the benefits of this approach discovered and confirmed experimentally we concede that

non-parametric methods are historically appropriate when sample sizes are small. When

data sets become large, the central limit theorem states that sample means will follow

a normal distribution, even if the respective variables are not normally distributed in

the population. While they have been well-studied, non-parametric density estimation

techniques in general tend to be expensive on massive datasets and it can be argued

that parametric methods, which are typically more sensitive (i.e. have more statistical

power), are in many cases the appropriate choice for large sample size problems.

In opposition to this point of view, increases in modern computational power moti-

vate a growing trend to accept data-driven density estimation as essential statistical

apparatus for large-scale data analysis, physical simulations and important tools for a

broad variety of applications. Direct evidence in support of this trend is found in Chap-

ter 4 where we demonstrate how to implement our density estimation ideas using the

introduced distributed framework allowing for a practical solution that enables the ex-

ploitation of powerful non-parametric approaches for surface estimation in conjunction

with large view set data. While we concede that the robustness of non-parametric meth-

ods come at the cost of requiring larger sample sizes to draw conclusions comparable

to parametric approaches (i.e. with a matching degree of confidence) this cost allows
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model anatomy to remain unspecified a priori and by instead determining structure

from the data we provide an ability to remain highly flexible to arbitrary surface shape.

An alternative interesting and principled extension would be to introduce approxi-

mate density queries offering theoretical guarantees on the approximation-quality and

time trade-off. Recent work (e.g. [286]) proposes an ability to return approximated den-

sity queries that would allow for an exploration of available trade-offs between speed and

acceptable approximation error. Error could be quantitatively assessed by e.g. exam-

ining discrepancy between a full kernel density estimate and resulting approximations.

However, it is not clear how these approximations should be chosen in order to mean-

ingfully maintain a model’s ability to e.g. represent high resolution surface detail (that

in turn has an ability to aid registration) whilst introducing desirable properties such

as frugal density query evaluation. Such exploration would enable further investigation

of the desirable mutualism characteristics we find between viewpoint count and surface

approximation reliability and quality.

6.2.2 Global optimisation and objective function formulation

While our models are able to handle the reconstruction of objects and environments

exhibiting arbitrary geometrical complexity they currently contain no special handling

of sharp features such as might be commonly found during the measurement of e.g.

mechanical or machined parts. Related work addressing sharp features has been intro-

duced by [114] and incorporating such considerations into our registration framework

provide an additional avenue of future work.

The point set registration methods introduced in this thesis make use of local op-

timisation techniques, spatial transform parameters are optimised for each viewpoint

independently (thus keeping the number of variables in each individual optimisation

task low) yet the result of these procedures are iteratively used to update surface es-

timations, taking into consideration the individual movement (local optimisation) of

each viewpoint. By iterating this process, the positions of all viewpoints are treated

simultaneously and an ability to move views in the transform space at the same time

is enabled. Employing this iterative, simultaneous, soft correspondence optimisation

strategy with large view-set problem instances proves to be effective yet we concede

that global maxima cannot be guaranteed, as is possible with true global optimisation



6.2 discussion 245

based approaches. In this sense, the strategies proposed in this work might be viewed

as compromises; capable of producing solutions often in agreement with global optima

in practice yet able to maintain run-time feasibility requirements on the demanding

problems related to the registration of large view sets. Reasonable global optimisation

algorithms may be applicable to the objective functions proposed in this work with

relatively small additional overhead. The high dimensionality of global optimisations

pertaining to a naive representation of large view-set problem instances would be an

artefact of the problem representation yet interestingly an optimal registration might

also be found in an intrinsically lower-dimensional global space. If, for example, many

views are acquired from a sensor with a high temporal capture frame rate then the

optimal alignment of views to a reference frame most likely occurs in a coordinated

way. Exploring the exploitation of lower-dimensional global transform space manifolds

for pose optimisation is an interesting direction for future work.

Additionally, it is conceded that the computational costs of registration-optimisation

have not been formally treated here yet finding only locally optimal solutions is intu-

itively easier than searching for high dimensional global optima. We do not provide a

rigorous mathematical definition or assurances about the basin of convergence of the

proposed registration methods (many possible factors can influence convergence basin

shape and dimension) however the registration experiments performed provide empir-

ical evidence that the introduced approach is capable of handling moderate initial

view misalignments i.e. starting conditions that are unfavourable, exhibiting greater

misalignments than those we might normally classify as acceptable input to a global

registration problem. The common mathematical framework of optimising a cost func-

tion is followed and while less attention has been focused on the optimisation method

itself. There is a body of work in e.g. the 2D intensity image registration domain [136]

that reports local optimisation methods are sometimes not sufficient to reliably find a

global minima. Proposing a global optimisation method that is specifically tailored to

the studied form of registration problem suggest an area for future work which would

allow for progress with respect to both the question of guaranteeing global optima and

that of exploring related lower-dimensional manifolds to search in.
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6.2.3 Real-time registration

As highlighted in recent work [135, 29] the progression of commodity 3D range sensor

capture rates has resulted in the ability to acquire partial 3D measurements of envi-

ronments and objects becoming increasingly accessible and useful to a critical mass of

practitioners. Contemporary, inexpensive end-user hardware capable of providing fast

and abundant, yet typically noisy depth data, is now widely available. This explosion of

data collection drives a need for large-scale real-time 3D point cloud processing and reg-

istration techniques. We claim that, with the development of such sensors, registering

large numbers of range images and point clouds in real-time becomes of great interest

and necessary for contemporary modelling pipelines. While seminal work such as Kinect-

Fusion [190] has made great inroads on this subtopic, many questions remain open such

as how to handle objects that move (change their pose) or deform in real-time. While

employing deformable registration methods (e.g. inspired by recent isometry-invariant

correspondence [200] or 3D animation work) is an obvious starting point, making use

of simultaneous registration to consider small time windows of viewpoint information

rather than naive pairwise chain view alignment would prove an interesting avenue

of exploration and might help to improve registration performance for time critical

applications.

The introduced strategies provide the ability to feasibly perform effective global op-

timisation on huge viewpoint alignment problems and thus afford the advantages that

effective global optimisation bring, however real-time applicability eludes the current

methodology. This is due in part to both the strategy of iteratively improving sur-

face estimates and our density estimation approach. As discussed real-time view-point

registration is a highly attractive feature and progressing the introduced work in this

direction would offer further valuable contributions. A practical, timely and attractive

route to exploring real-time scenarios, able to combine with registration methodology

developed in this work, would benefit from a successful application of GPU based

methodology e.g. that found in [104, 190]. Such solutions are directly applicable to

elements of our density estimation models e.g. parallelising registration components

at finer granularities than the viewpoint level such as query-point density evaluation.

Investigating algorithmic implementation on GPU architecture in practice provides an

additional line of enquiry.
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