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Abstract: This paper presents a comprehensive literature review on point set registration.

The state-of-the-art modeling methods and algorithms for point set registration are discussed

and summarized. Special attention is paid to methods for pairwise registration and groupwise

registration. Some of the most prominent representative methods are selected to conduct qualitative

and quantitative experiments. From the experiments we have conducted on 2D and 3D data, CPD-GL

pairwise registration algorithm and JRMPC groupwise registration algorithm seem to outperform

their rivals both in accuracy and computational complexity. Furthermore, future research directions

and avenues in the area are identified.

Keywords: point set registration; pairwise registration; groupwise registration

1. Introduction

Point set registration is a challenging aspect in pattern recognition [1–5], computer vision [6,7],

robotics [8–11] and image processing [12–14]. For example, in medical image processing, in order

to fuse multiple images by computed tomography (CT), magnetic resonance imaging (MRI) and

positron emission tomography (PET), the fundamental step is to register the feature points from

CT, MRI, and PET. In intelligent vehicles, pre-processing is an important step prior to feature points

extraction from many sensors, such as radio detection and ranging (Radar), light detection and ranging

(LiDAR) and camera. Point set registration methods [15,16] have then proposed to align the images

and extract feature points that will be further used for localization and mapping. In face recognition,

face landmarks are extracted from a face with different facial expressions or different viewpoints. Then,

point set registration can be used to perform the task of face recognition [17].

The main purpose of the point set registration is to find correspondences and to estimate the

transformation between two or more point sets. In practice, point set registration methods suffer from

many challenges due to deformation and noise. Different viewpoints or different poses may cause the

deformation between point sets. The noise between point sets includes occlusion and outliers. Missing

points occur due to feature extraction in the case of occlusion. Outliers have no correspondence

in the other point sets. These challenges are shown in Figure 1. Furthermore, high dimensionality
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and massive point sets are commonly encountered in the real world, e.g. about million points will

be obtained by LiDAR scanning. The scale-invariant feature transform (SIFT) methods [18,19] have

contributed to solving many challenging problems with LiDAR and other imagery data. Recently,

some deep learning methods have also been developed to select the feature points from medical image

and remote sensing image [20,21].

Deformation Noise 

Viewpoint Pose Occlusion Outliers 

Challenges 

Figure 1. Some challenges in the point set registration [22].

Normally, the point set registration methods fall into two categories: pairwise and groupwise.

Pairwise registration only considers two point sets while groupwise registration performs more than

two point sets simultaneously. According to the modeling methods of point set registration, they can be

categorized into parametric models and non-parametric models. Parametric models include the classic

iterative closest point (ICP) method [23,24], and probabilistic point set registration using Gaussian

mixture model (GMM) [25]. Graph matching (GM) is the traditional method in the non-parametric

model [26]. According to the difference in transformation, the point set registration methods can

be roughly classified into rigid transformation and nonrigid registration. The rigid transformation

only considers translation, rotation, and scaling. The affine transformation, which is a nonrigid

transformation, allows anisotropic scaling and skews [25]. Compared with rigid transformation,

the nonrigid transformation is more challenging as the true nonrigid transformation model is often

unknown [27,28]. The methods of point set registration are summarized in Figure 2.
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Figure 2. Taxonomy of point set registration methods.

The rest of the paper is organized as follows. Section 2 describes the pairwise point set registration

methods. Section 3 reviews the groupwise point set registration methods. Some representative point

set registration algorithms are selected to conduct experiments comparison in Section 4. Finally,

Section 5 concludes the paper and gives the future trends and research avenues in this area.



Sensors 2019, 19, 1191 3 of 20

2. Pairwise Point Set Registration

Considering two point sets X = {xi

∣

∣xi ∈ ℜD }N
i=1 and Y = {yj

∣

∣yj ∈ ℜD }M
j=1, where D denotes

the dimension of these points. An example of pairwise point set registration is shown in Figure 3.

The goal of pairwise point set registration methods is to find the suitable transformation and to

establish the correct correspondences between X and Y. Many methods have been developed to

address this problem. Some surveys on recent developments in pairwise point set registration can

be found in [29,30]. These methods can be roughly classified into three categories: distance-based

methods, filtering-based methods and probability-based methods.

Figure 3. Pairwise point set registration problem: find the correspondences and the transformation of

two point sets.

2.1. Distance-Based Methods

The distance-based point set registration methods involve a dual-step scheme. The first step is to

compute a distance between two point sets and to find the correspondences. Then, the distance

between two point sets with the determined correspondences is minimized in the second step.

The ICP, introduced by Besl and McKay [23] and Zhang [24], is the well-known method in the

field of point set registration for rigid transformation between two points. The ICP can be expressed

an optimization problem

arg min
R,t

{

1

M

M

∑
j=1

∥

∥yj − (Rxj + t)
∥

∥

2

}

(1)

where xj and yj is a correspondence pair, ‖.‖2 is the Euclidean norm, R and t are a rotation matrix and

translation vector, respectively; and M is the number of correspondence pairs. Some surveys on recent

developments in ICP method can be found in [31–33]. Many stages and efficient variants are given

in the literature [31], such as selection of points, matching points, weighting of pairs, rejecting pairs,

error metric and minimization, and high-speed variants. The aim of selection of point is to boost the

convergence of ICP algorithm. The step of matching points is to find the correspondences between

two point sets. Some methods have been proposed to assign the weights of correspondence [31],

such as constant weight method, larger weight method, distance points method and smaller weight

method. The purpose of rejecting pairs is to eliminate outliers for improving the performance of

point set registration. Finally, the correspondence is computed using the current transformation

and a new transformation is obtained by minimizing the sum of squared distances between the

correspondence points.

However, the ICP method is sensitive to the initial conditions and can be trapped into local

minima. A robust point matching (RPM) method [34] was proposed to solve this problem. RPM

combines deterministic annealing and soft-assign optimization to convexify the objective function.

However, the RPM method is restricted to perform rigid-body transformation. Therefore, a thin-plate

spline robust point matching (TPS-RPM) method was developed in [35]. Deterministic annealing,

soft-assign, thin-plate spline for spatial transformation and outlier rejection are used to perform both
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the correspondences and transformation parameters [35]. However, the TPS-RPM method can hardly

be easily extended for higher dimension point sets.

In [36], a kernel correlation (KC) algorithm was proposed to align intensity images. KC is a

function of point set entropy and an affinity measure. The point set registration is performed by

maximizing the KC of point sets. In [37], point set registration was formulated by kernel density

correlation metric, which is similar to the method in [36]. It is noted that a kernel function mainly

determines the performance of point set registration in the KC method.

In [38], a GMMReg method was proposed to perform point set registration. Two point sets can

be represented by two Gaussian mixture models (GMMs). The point set registration is considered

as aligning the two GMMs. The Euclidean distance of two GMMs was minimized to estimate the

transformation of two point sets. In [39], a support vector-parametrized Gaussian mixture (SVGM)

method, which is an adaptive data representation method of point sets, was developed to improve the

robustness to outliers, noises, and occlusions. In SVGM, the point set is represented by a one-class

support vector model (SVM) and the output function is approximated by a GMM.

Graph matching (GM) is a popular method in the point set registration using non-parametric

model [26]. An example of GM is shown in Figure 4. A graph consists of some vertices and edges.

GM methods find the correspondences between two graphs using the feature descriptors with vertexes

and edges [40,41]. Some surveys in the GM method are given in [42,43]. GM can be considered as an

optimization problem. The objective function of the optimization problem incorporates with vertices

and edges of two graphs. In the form of objective function, the GM methods can be classified into

three categories as first-order GM methods, second-order GM methods and high-order GM methods.

First-order GM methods only consider the local feature descriptors with the information of vertexes.

This idea is similar to ICP and its variants.

Figure 4. An example of GM problem.

Most current GM algorithms are second-order or high-order GM methods [22,44–65].

Second-order GM methods combine the similarity of vertices-to-vertices and edges-to-edges.

High-order GM methods involve the information of hyper-graph, which is hyper-edges incorporating

the angles of tuples of vertices. The second-order or high-order GM methods are expressed as a

quadratic assignment problem (QAP) [44].

Many second-order GM methods have been reported in the literature. In contrast to the linear

assignment problem in first-order GM methods, which can be performed by the Hungarian algorithm,

the QAP is an NP-hard problem [45]. Therefore, one issue of GM method is on the development

of an accurate estimation algorithm. Many methods have been proposed to approximate the QAP

problem. It can be classified into three categories: spectral relaxation, semi-definite programming

relaxation, and doubly stochastic relaxation. In [46], a spectral relaxation was proposed to approximate

the QAP problem, and then the spectral matching (SM) method was developed. In [47], a new

SM method was incorporated with an affine constraint to provide a higher relaxation than the SM

method. The semi-definite programming (SDP) relaxation is another method for approximating the

QAP solution. The SDP methods relax the non-convex constraint using a convex semi-definite.

The correspondence is approximated using a randomized algorithm [48] or a winner-take-all
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method [49]. Using a doubly stochastic matrix, the optimizing GM is transformed as a non-convex QAP

problem. Therefore, many methods can be used to find a local optimum. In [50], the quadratic cost was

approximated using a linear program, which was performed by a simplex-based algorithm. In [51],

an integer projection algorithm was proposed to optimize the objective function in the integer domain.

In [53], a probabilistic formulation of the SM method [46] was given. It estimates the assignment

probabilities by maximum-likelihood. More recently, a factorized graph matching (FGM) method was

developed in [22]. In FGM, the large pairwise affinity matrix was factorized into some smaller matrices.

A path-following optimization algorithm was then proposed to improve the matching performance.

High-order GM methods involve high-dimensional of information of hyperedges. Third-order

GM methods are usually considered. The advantage of high-order GM methods is that the high-order

matching method is invariant to scale and affine changes. In [55], a probabilistic interpretation of

high-order GM methods was formulated. In [56], the high-order matching problem was formulated

as a tensor optimization problem. In [57], an high-order GM method was developed by adopting

jumps with a reweighting scheme. In [58], a framework of tensor block coordinate ascent methods was

proposed for high-order matching. Recently, In [65], a K-nearest-neighbor-pooling matching method,

which integrates feature pooling into GM, was introduced for a second-order GM. A sub-pattern

structure was then constructed for a high-order GM.

2.2. Filtering-Based Methods

The filter-based point set registration methods perform the point set registration using a state

space model (SSM). In general, the SSM is formulated as:

x̃k = x̃k−1 + vk

yk = f (x̃k, xk) + wk
(2)

where xk and yk are the points from two sets; x̃k is the state at time k, and it can be written as

x̃k= [tx
k , t

y
k , θk]

T in 2D point sets; tx
k and t

y
k are the translation parameters in x-axis and y-axis at time

k, respectively; θk is the rotation parameter at time k. For 3D point sets, the state is denoted as

x̃k= [tx
k , t

y
k , tz

k, θx
k , θ

y
k , θz

k ]
T, where tz

k is the translation parameter in z-axis at time k, θx
k , θ

y
k , θz

k are the

rotation parameters in the x-axis, y-axis and z-axis at time k, respectively; f (.) is the measurement

function; vk and wk are the process noise and measurement noise, respectively; vk and wk are assumed

to be zero-mean Gaussian white noise.

In [66], an unscented particle filter (UPF) was used for rigid registration. The ICP algorithm was

used to find correspondences and to compute the distance between data sets. This method is not

sensitive to outliers. In [67], a particle filter was proposed for point set registration. An iterative-based

local optimizer, which can be reinterpreted as a robust version of ICP, was formulated based on the

correlation measure. In [68], a deformable registration framework, composed of simulated annealing

with a particle filter, was proposed to point set registration. A variety of constraints on the registration

are incorporated into this method. Furthermore, a novel method to regularize the deformation field

was proposed to improve the registration performance. In [69], a map was generated by fusing inertial

measurement unit (IMU), odometry, global positioning system (GPS) and LiDAR. Live laser data

were aligned with the prior-map using a particle filter based point set registration method. In [70],

an unscented Kalman filter (UKF) method was proposed to register two data sets in the presence

of noise. However, the correspondences of these two point sets were assumed known. In [15,16],

a local shape descriptor was proposed to obtain the correspondences of point sets. A rigid point

set registration method based on cubature Kalman filter (CKF) was presented for localization in the

intelligent vehicle. In [71], the authors considered that noise, outliers, false initialization, and other

errors might exist simultaneously. A split covariance intersection filter (SCIF) was then proposed to

point set registration under a filtering framework.
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2.3. Probability-Based Methods

The coherent point drift (CPD) [25] is a popular method in field of probability-based point set

registration. In the CPD method, a rigid and non-rigid point set registration is formulated as a

maximum likelihood (ML) estimation problem using GMM method. One point set is represented by

GMM centroids, and the another point set is fitted to those of the first point set by moving coherently:

p(Y) =
M

∏
j=1

N

∑
i=1

πiN (yj

∣

∣

∣
g(xi), σ2ID ) (3)

where N (.) is the Gaussian distribution; g(.) is the rigid or non-rigid transformation; σ2

is the equal isotropic covariances; I is the identity matrix; and πi is the mixing coefficient.

Then, an expectation-maximization (EM) algorithm is applied to perform this ML optimization. Many

algorithms were proposed to extend the CPD method [1,72–92]. These algorithms can be summarized

as follows:

(1) Selecting a suitable non-rigid transformation function: In the CPD method, only one non-rigid

transformation function is considered. Therefore, multiple kernel functions were used to represent

non-rigid transformations in [72]. By automatically adjusting the kernel weights, this method

can prune the ineffective kernels and evaluate the importance of each kernel. Considering the

multi-layer motion between two sets of points, a robust point set registration using the GMM

model was proposed in [73].
(2) Choosing the distribution of point set: In [74], the Student’s-t distribution was used to replace the

Gaussian distribution for tackling the outliers in the point set registration. Similar to the CPD

method, one point set is treated as Student’s-t mixture model centroids, while another point set is

fitted to those of the Student’s-t mixture model centroids by moving coherently.
(3) Setting the membership probabilities: In the CPD method, equal membership probabilities were

used. To improve the performance of point set registration, the shape context was proposed to

assign the membership probabilities of the mixture model in [1].
(4) Developing the local structure descriptors: In the CPD method, the GMM centroids were forced to

move coherently to fit the data points by maximizing the likelihood, which only encodes the global

structure of the two point sets. To preserve the local structure of point sets, the idea of local linear

embedding (LLE) was proposed. The local neighbors in the point set could be preserved after the

non-rigid transformed. Each point can be represented by a weighted linear of its neighbors. Then,

an EM algorithm was derived for the ML optimization constrained with both CPD and LLE terms

[75]. Similar to the LLE, the locally linear transforming (LLF) was developed for constructing the

local structure [76]. In [1], the local features were used to assign the membership probabilities of

the GMM. A non-rigid point set registration, which preserves both global and local structures,

was developed. In [78], the shape context and LLF were proposed to the nonrigid point set

registration. In [17], a non-rigid point set registration using spatially constrained Gaussian fields

(SCGF) was developed. The shape context was also used for the membership probabilities

initialization. A graph Laplacian regularized Gaussian fields was proposed to preserve the local

structure of point sets. Furthermore, two local structure descriptors were embedded in the CPD

framework in [79]. The first descriptor was LLE. The Laplacian coordinate was used in the second

descriptor to keep the size of neighborhood structure. Therefore, the objective function of point

set registration was composed of the global distance item, non-rigid transformation constraint

item and two local structure constraints items.
(5) Extraction the feature of point sets: The spatial location of point sets is a traditional feature for

registration. In [86], the color information of point sets was used to extend the CPD algorithm.

In [87], the correlation of color information and spatial location information was formulated.

Then, a probabilistic point set registration framework with color information and spatial location

information was given.



Sensors 2019, 19, 1191 7 of 20

(6) Performing algorithm: The disadvantage of the traditional CPD algorithm is that the CPD

method has a high computation cost. Therefore, In [88], an accelerated CPD (ACPD) method

was proposed to register a 3-D point cloud. In ACPD, a global squared iterative EM algorithm

was developed to speed up the process of likelihood maximization. The dual-tree improved fast

Gauss transform method was used to accelerate the process of Gaussian summation. In [92],

the regression and clustering for performing point set registration in a Bayesian framework

were presented. The coarse-to-fine variational inference algorithm was used to estimate the

unknown parameters.

2.4. Discussion

As the distance-based methods possess acceptable performance and computation load, they

are widely used in many fields, such as target tracking [93]. The filter-based methods have the

capability to register the massive point set online. However, the correspondences of the point set

should be computed in advance. From the literature, the probability-based methods with some local

structures perform better than other methods, but the former have higher computation cost than the

distance-based methods and the filter-based methods.

3. Groupwise Point Set Registration

Let Mj = [Mj1, Mj2...MjNj
] be the j-th point set. Let M = {Mj}

M
j=1 denote the union of multiple

point sets, where M is the number of sets. One important issue is on the registration of these point sets.

Traditionally, this problem is performed using pairwise registration repeatedly [2], such as sequentially

strategy [94–98] and one-versus-all strategy [99–101]. In the sequentially pairwise registration strategy,

the parameters are updated by a ICP method or a probabilistic method when additional point sets are

available. The main drawback of sequentially pairwise registration strategy consists in the error

propagation in the subsequent steps [2,3]. For the one-versus-all pairwise registration strategy,

the reference point set should be chosen in advance. The other point sets are used to register with the

reference point set.

Simultaneous registration of multiple point sets is another method which brings further

improvement to the point set methods. They are called groupwise point set registrations. In [102], some

correspondences between the point sets were assumed known in advance, and the transformation

parameters were estimated. Furthermore, in [103], the same formulation as [102] was extended to

perform unknown correspondences. The above literature also developed the simultaneous multiple

point sets registration with a pairwise strategy. Some methods have been developed to register

multiple point sets simultaneously without the resource of a pairwise strategy. It can be categorized as

information theoretic-based methods and probability-based methods.

For information theoretic-based methods, the joint multiple point sets registration is performed

according to some information theoretic measures. In [104], an information theoretic measure, which

is named as cumulative distribution functions Jensen Shannon (CDF-JS) method, was proposed to

register multiple point sets. As the CDF-JS method is symmetric and had no bias to any point sets,

it can register the multiple point sets simultaneously. The cost function was defined as the CDF-JS

divergence and was minimized by computing analytic gradients in a quasi-Newton scheme. However,

this method has a high computation cost for the CDF-JS and has no closed-form solutions. In [105],

another information theoretic measure, called cumulative distribution functions Havrda-Charvát

(CDF-HC) method, was developed. The CDF-HC method uses the same idea as the CDF-JS method

but with a different divergence for the cumulative distribution functions. In the CDF-HC method,

the Havrda-Charvát divergence was proposed instead of Jensen Shannon divergence. Compared

with CDF-JS method, the CDF-HC method is much simpler to implement and has lower computation

cost [105]. Recently, a Rényi’s second order entropy method was proposed for groupwise point set

registration in [106]. It is a closed-form solution to the cost function.
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For probability-based methods, the multiple point sets are formulated as some probability

functions and cast into a clustering problem. It can be classified as forward and backward

approaches [107]. In the forward approach [108], the multiple point sets are assumed to be noisy

observations of the mean point set. In the backward approach [2,3,109], the mean point set is assumed

to be a noisy observation of multiple point sets. Both the forward and backward approaches consist of

two steps:

• the construction of the mean point set.
• the estimation of the transformation between the multiple point sets and mean point set.

These two steps are iteratively computed to register the multiple point sets. In [108], the forward

approach of groupwise point set registration method was proposed and it is shown schematically in

Figure 5. It is assumed that the multiple point sets are noisy observations of mean point set:

p(Mji) =
K

∑
k=1

αkN (Mji

∣

∣φj(Γk), Ωk ) (4)

where Γk and Ωk are the mean vector and covariance matrix, respectively; αk is the mixing coefficient;

and φj(.) is the transformation function for the forward approach. Γk is assumed as the mean point set

in the forward approach. In [108], the EM algorithm was proposed to estimate the mean point set and

the parameters in the transformation function.

In [2,3], the backward approach of groupwise point set registration method was developed and

it is shown schematically in Figure 6. It is assumed that the multiple point sets are transformed

realizations of mean point set:

p(Mji) =
K

∑
k=1

βkN (ϕj(Mji) |Υk, Ξk ) (5)

where Υk and Ξk are the mean vector and covariance matrix, respectively; βk is the mixing coefficient;

and ϕj(.) is the transformation function for the backward approach. The Υk is assumed as the mean

point set in the backward approach. The EM algorithm is also used to register the multiple point sets

simultaneously. Table 1 summarizes some representative methods for point set registration.

Point Set 2: M2

Point Set 1: M1

Point Set 3: M3

Point Set M: MM

Figure 5. The forward approach of groupwise point set registration method in [108].

Point Set 2: M2

Point Set 1: M1

Point Set 3: M3

Point Set M: MM

Figure 6. The backward approach of groupwise point set registration method in [2].
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Table 1. The representative methods for point set registration.

Research Study
Pairwise/
Groupwise

Method Rigid/Non-Rigid
Parametric/
Non-Parametric Model

Characteristics

Besl and McKay [23] Pairwise
Distance-based
method

Rigid Parametric Model
(1) Sensitive to the initialization
(2) Trapping into local minima

Gold et al. [34] Pairwise
Distance-based
method

Rigid Parametric Model

(1) Combining deterministic annealing and
softassign optimization
(2) Restricting to perform the rigid-body
transformation

Chui et al. [35] Pairwise
Distance-based
method

Non-rigid Parametric Model
Difficult to extend to perform
higher dimension

Tsin et al. [36] Pairwise
Distance-based
method

Rigid and Non-rigid Parametric Model Maximizing the KC of point sets

Jian et al. [38] Pairwise
Distance-based
method

Rigid and Non-rigid Parametric Model
Minimizing the Euclidean distance of
two GMMs

Leordeanu et al. [46] Pairwise
Distance-based
method

Rigid and Non-rigid Non-Parametric Model
Convexifying the QAP problem by spectral
relaxation method

Cour et al. [47] Pairwise
Distance-based
method

Rigid and Non-rigid Non-Parametric Model
Convexifying the QAP problem by
semidefinite-programming relaxation

Almohamad et al. [50] Pairwise
Distance-based
method

Rigid and Non-rigid Non-Parametric Model
Convexifying the QAP problem by doubly
stochastic relaxation

Zhou et al. [22] Pairwise
Distance-based
method

Rigid and Non-rigid Non-Parametric Model
Factorizing the large pairwise affinity
matrix into some smaller matrices

Sandhu et al. [67] Pairwise Filter-based method Rigid Non-Parametric Model
Using a particle filter to register the
point sets

Li et al. [16] Pairwise Filter-based method Rigid Non-Parametric Model

(1) Using a cubature Kalman filter to
register the point sets
(2) The correspondence should be
computed in advance
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Table 1. Cont.

Research Study
Pairwise/
Groupwise

Method Rigid/Non-Rigid
Parametric/
Non-Parametric Model

Characteristics

Myronenko et al. [25] Pairwise
Probability-based
method

Rigid and Non-rigid Parametric Model
(1) Using a GMM model to formulate the
distribution of the point sets
(2) Maximizing the likelihood of GMM

Ma et al. [76] Pairwise
Probability-based
method

Rigid and Non-rigid Parametric Model
Developing a locally linear transforming
for local structure constrict

Wang et al. [104] Groupwise
Information theoretic
measure

Rigid and Non-rigid Parametric Model
Proposing a CDF-JS divergence as the
cost function

Chen et al. [105] Groupwise
Information theoretic
measure

Rigid and Non-rigid Parametric Model
Developing a CDF-HC divergence as the
cost function

Giraldo et al. [106] Groupwise
Information theoretic
measure

Rigid and Non-rigid Parametric Model
Using a Rényi’s second order entropy
divergence as the cost function

Rasoulian et al. [108] Groupwise
Probability-based
method

Non-rigid Parametric Model
Assumed that the multiple point sets are
the noisy observations of mean point set

Evangelidis et al. [2,3] Groupwise
Probability-based
method

Rigid Parametric Model
Assumed that the multiple point sets are
transformed realizations of mean point set
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4. Experiments

In this section, 10 representative point set registration algorithms are selected to conduct

some experiments. These 10 representative methods are as follows: ICP (Available at http:

//www.cvlibs.net/software/libicp/) [110], TPS-RPM (Available at https://www.cise.ufl.edu/

~anand/publications.html) [35], KC (Available at http://www.cs.cmu.edu/~ytsin/KCReg/) [36],

CPD (Available at https://sites.google.com/site/myronenko/research/cpd) [25], CPD-GL (Available

at https://sites.google.com/site/jiayima2013/) [1], SCGF (Available at https://sites.google.com/site/

2013gwang/SCGF.zip) [17], CDF-HC (Available at https://www.cise.ufl.edu/~anand/publications.

html) [105], Rényi’s second order entropy (Rényi’s) [106], Student’s t-mixture model (TMM) [111],

and groupwise probability-based method (JRMPC) (Available at https://team.inria.fr/perception/

research/jrmpc/) [2,3]. The ICP, TPS-RPM, KC, CPD, CPD-GL, and SCGF are pairwise point

set registration methods. The CDF-HC, Rényi’s, TMM, and JRMPC are groupwise point set

registration methods. The performance of these representative point set registration algorithms

is validated on the toy data sets from [35]. The validation considers different levels of noise, to

object deformation, rotation, and occlusion. To evaluate the performance of the rivals, the cost

function of the optimization problem defined in (1), that is the Mean Squared Error Distance (MSED),

is used. These representative point set registration algorithms were implemented compared in Matlab.

The transformed function in the TPS-RPM, CPD, CPD-GL, and SCGF are chosen using a nonrigid

transformation. The parameters in these representative algorithms are set as in the original papers.

Each algorithm is carried out until it is converged or runs at least 50 iterations.

In the pairwise point set registration experiments, the fish and Chinese character datasets [35]

are considered. The qualitative results of these pairwise point set registration algorithms are given in

Figure 7. It is observed that most algorithms can register under deformation degradations. The distance

metrics for correspondence matching of these pairwise point set registration algorithms under varying

deformation in fish and Chinese dataset are shown in Figure 8. It is observed that the SCGF has better

registration accuracy performance than other algorithms. The average runtime of these algorithms are

given in Table 2, which illustrates that the CPD is computationally most efficient.

Table 2. Runtime of pairwise point set registration algorithms on different datasets.

Method KC ICP TPS-RPM CPD CPD-GL SCGF

Fish 0.41 s 0.47 s 2.37 s 0.22 s 0.42 s 37.04 s
Chinese 0.39 s 0.50 s 2.38 s 0.22 s 0.73 s 27.64 s

The 3D COPD data http://www.dir-lab.com/index.html is employed here.

The “COPDID_300_iBH_xyz” is chosen as the model point set, while “COPDID_300_eBH_xyz”

is considered as the scene point set. Thus, ten pairs of point sets are generated, where

“ID” ∈ [1, 10]. The example of the registration results of pairwise point set registration algorithms on

“COPD1_300_iBH_xyz” vs. “COPD1_300_eBH_xyz” is depicted in Figure 9, which demonstrates that

SCGF and CPD-GL can register the 3D COPD point set. Furthermore, the comparison results using

registration error are illustrated in Figure 10. It can be observed that the CPD-GL has almost same

registration accuracy performance with SCGF.

In brief, the SCGF algorithm have more accuracy, while it needs more computational effort.

The CPD-GL algorithm has almost same registration accuracy performance with SCGF, but it has a

lower computation load than SCGF algorithm. Therefore, the CPD-GL algorithm has the tradeoff

between accuracy and computational complexity.

http://www.cvlibs.net/software/libicp/
http://www.cvlibs.net/software/libicp/
https://www.cise.ufl.edu/~anand/publications.html
https://www.cise.ufl.edu/~anand/publications.html
http://www.cs.cmu.edu/~ytsin/KCReg/
https://sites.google.com/site/myronenko/research/cpd
https://sites.google.com/site/jiayima2013/
https://sites.google.com/site/2013gwang/SCGF.zip
https://sites.google.com/site/2013gwang/SCGF.zip
https://www.cise.ufl.edu/~anand/publications.html
https://www.cise.ufl.edu/~anand/publications.html
https://team.inria.fr/perception/research/jrmpc/
https://team.inria.fr/perception/research/jrmpc/
http://www.dir-lab.com/index.html
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Figure 7. Registration results obtained from the application of pair-wise rivals on the Chinese characters

set and fish shapes for different level of degradation. Data with different levels of deformation (first row)

and the corresponding obtained results by KC (second row), ICP (third row), TPS-RPM (fourth row),

CPD (fifth row), CPD-GL (sixth row), and SCGF (seventh row).
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Figure 8. MSED, in log-scale, achieved from the application of the under-comparison pair-wise

registration algorithms on the Chinese characters set and fish shapes for different levels of degradation.
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Figure 9. Registration results obtained from the application of pair-wise rivals on a specific example

generated from 3D COPD data. Initial unregistered point sets (first column) and the results of CPD

(second column), CPD-GL (third column), and SCGF (fourth column).
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Figure 10. MSED achieved from the application of the under-comparison pair-wise registration

algorithms on multiple point set groups generated by 3D COPD data (please see text for the details).

In the groupwise point set registration experiments, the fish and Chinese character datasets are

also considered and there are four-point sets. To generate the multiple point set groups, parameters

of deformation in a rigid transformation are chosen uniformly in the following range: [0.02, 0.08].

The qualitative results of the groupwise point set registration experiments are shown in Figure 11.

The distance metrics for correspondence matching of these groupwise point set registration algorithms

under varying deformation in fish and Chinese dataset are depicted in Figure 12. From the Figures 11

and 12, it can be observed that JRMPC, TMM, and Rényi’s algorithms can register under deformation

degradations. The average runtime of these algorithms are given in Table 3, which illustrates that the

JRMPC is the computationally most efficient.

Then, multiple 3D COPD point set groups are generated. It has ten point set groups, where

each group has four point sets. The four point sets in each group are generated, where deformation

parameters in a rigid transformation are chosen uniformly in the following range: [0.02, 0.08] on

“COPDID_300_eBH_xyz”, where “ID” ∈ [1, 10], respectively. The example of the registration results

of JRMPC and TMM algorithms on COPD data are depicted in Figure 13, which demonstrates that

JRMPC and TMM algorithms can register this point set group. The statistics for the compared results

are given in Figure 14, which unfolds that JRMPC algorithm has almost the same performance with

the TMM algorithm.

Figure 11. Registration results obtained from the application of group-wise rivals on the Chinese

characters set and fish shapes for different level of degradation. Data with different levels of

deformation (first row) and the corresponding obtained results by CDF-HC (second row), JRMPC

(third row), TMM (fourth row), and Rényi’s (fifth row).
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Figure 12. MSED, in log-scale, achieved from the application of the under-comparison group-wise

registration algorithms on the Chinese characters set and fish shapes for different levels of degradation.

Thus, from the results in the point set group experiment, the JRMPC and TMM algorithms present

almost the same registration accuracy performance, but the JRMPC has lower computational load.
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Figure 13. Registration results obtained from the application of group-wise rivals on a specific example

generated from 3D COPD data. Initial unregistered point sets (first column) and the results of JRMPC

(second column) and TMM (third column).
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Figure 14. MSED achieved from the application of the under-comparison group-wise registration

algorithms on multiple point set groups generated by 3D COPD data (please see text for the details).
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Table 3. Runtime of groupwise point set registration algorithms on different datasets.

Method CDF-HC JRMPC TMM Rényi’s

Fish 58.34 s 20.06 s 27.11 s 60.06 s
Chinese 77.70 s 20.17 s 31.70 s 72.72 s

5. Conclusions

This paper presents a review of the state-of-the-art point set registration methods. From the

pairwise point set registration to groupwise point set registration, the modeling methods are discussed

with a summary of their pros and cons. In the pairwise point set registration, the point set registration

methods can be classified as distance-based methods, filtering-based methods and probability-based

methods. In the groupwise point set registration, the point set registration methods have been classified

as information theoretic-based methods and probability-based methods. Some evaluation metrics to

evaluate the performance of point set registration are given. Furthermore, several experiments with

some representative point set registration algorithms are performed. From the numerical experiments,

the CPD-GL pairwise registration [1] and the JRMPC groupwise registration algorithms [2,3] offer a

tradeoff between accuracy and computational burden.

Although many methods have been proposed for point set registration, there are still many

challenges necessary for further study:

(1) Object localization for the purpose of autonomous vehicles and in health systems requires point

set registration over massive and high-dimensional point sets. One direction for alleviating this

problem relies on point or feature selection. Clustering algorithms can then be used to cope with

such challenges. Sparse Bayesian learning methods are also capable of identifying the suitable

features for point set registration.
(2) There is a need for more benchmark examples and large scale datasets with ground truth for

thorough performance evaluation of the developed approaches.
(3) Point set registration is an essential step towards target tracking and pattern recognition. There is

a scope of assessing its impact on the entire monitoring system of interest, with different levels

of autonomy.
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