221,019 research outputs found

    Evolution of adaptation mechanisms: adaptation energy, stress, and oscillating death

    Full text link
    In 1938, H. Selye proposed the notion of adaptation energy and published "Experimental evidence supporting the conception of adaptation energy". Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye's adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyse Selye's axioms of adaptation energy together with Goldstone's modifications and propose a series of models for interpretation of these axioms. {\em Adaptation energy is considered as an internal coordinate on the `dominant path' in the model of adaptation}. The phenomena of `oscillating death' and `oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyse the optimal strategies for different systems of factors

    Sustainable energy transition: properties and constraints of regenerative energy systems with respect to spatial planning and design

    Get PDF
    Before transforming the built environment, one must understand the characteristic of regenerative systems. The aim of this study was is to compare fossil-fuel energy systems with regenerative systems. It explores key properties and constraints of regenerative energy systems with respect to spatial organization and design of the built environment. The findings of this comparative analysis are illustrated with the help of a regional case-study in South Limburg, the Netherlands

    Towards an\u2028 EU research and innovation policy agenda for nature-based solutions & re-naturing cities. Final report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities.

    Get PDF
    1. Nature-based solutions harness the power and sophistication of nature to turn environmental, social and economic challenges into innovation opportunities. They can address a variety of societal challenges in sustainable ways, with the potential to contribute to green growth, 'future-proofing' society, fostering citizen well-being, providing business opportunities and positioning Europe as a leader in world markets. \u2028 2. Nature-based solutions are actions which are inspired by, supported by or copied from nature. They have tremendous potential to be energy and resource-efficient and resilient to change, but to be successful they must be adapted to local conditions. \u2028 3. Many nature-based solutions result in multiple co-benefits for health, the economy, society and the environment, and thus they can represent more efficient and cost-effective solutions than more traditional approaches. \u2028 4. An EU Research & Innovation (R&I) agenda on nature-based solutions will enable Europe to become a world leader both in R&I and in the growing market for nature-based solutions. For this, the evidence base for the effectiveness of nature-based solutions needs to be developed and then used to implement solutions. Both need to be done in conjunction with stakeholders. The potential for transferability and upscaling of solutions also requires further investigation. There is also a need to develop a systemic approach that combines technical, business, finance, governance, regulatory and social innovation. \u2028 5. Four principal goals have been identified that can be addressed by nature-based solutions: �� Enhancing sustainable urbanisation through nature-based solutions can stimulate economic growth as well as improving the environment, making cities more attractive, and enhancing human well-being. \u2028 �� Restoring degraded ecosystems using nature-based solutions can improve the resilience of ecosystems, enabling them to deliver vital ecosystem services and also to meet other societal challenges. \u2028 �� Developing climate change adaptation and mitigation using nature-based solutions can provide more resilient responses and enhance the storage of carbon. \u2028 �� Improving risk management and resilience using nature-based solutions can lead to greater benefits than conventional methods and offer synergies in reducing multiple risks. \u2028 6. Based on the four goals, seven nature-based solutions for R&I actions are recommended to be taken forward by the European Commission and Member States: �� Urban regeneration through nature-based solutions \u2028 �� Nature-based solutions for improving well-being in urban areas \u2028 �� Establishing nature-based solutions for coastal resilience \u2028 �� Multi-functional nature-based watershed management and ecosystem restoration \u2028 �� Nature-based solutions for increasing the sustainability of the use of matter and energy \u2028 �� Nature-based solutions for enhancing the insurance value of ecosystems \u2028 �� Increasing carbon sequestration through nature-based solutions \u2028This report was produced by the Horizon 2020 Expert Group on 'Nature-Based Solutions and Re- Naturing Cities', informed by the findings of an e-consultation and a stakeholder workshop. \u202

    The surveyor’s role in monitoring, mitigating, and adapting to climate change

    Get PDF

    A Framework to Assess Returns on Investments in the Dryland Systems of Northern Kenya

    Get PDF
    Governments need quantitative assessments of the outcomes of proposed investments so they can weigh the merits of each option. Without these, there is a risk that some proposed changes could in fact reduce rather than increase benefits to the economy and society. At present, there is no definitive framework for assessing the returns to Northern Kenya's predominantly pastoralist land use, nor any prediction of its returns under anticipated climate changes. There is therefore no possibility of comparing returns between this and any alternatives. Flagship projects planned to accelerate economic development in Northern Kenya include an international transport corridor, a resort city and an international airport. In addition, mineral deposits are being discovered, towns are growing across both arid and semi-arid areas, and land speculation is increasing. The county governments are faced with the task of prioritising investments which can do the most to improve living standards for local people. This paper is intended to stimulate and contribute to a discussion of how the returns on land-based investments in the drylands should be evaluated. It presents an assessment framework for weighing the total economic value of the ecosystem services provided by pastoral and mixed land-use systems under anticipated climate changes and variability. The proposed framework draws on contributions from previous research at IIED and by other research partners focusing on ecosystem service assessment in Northern Kenya and surrounding dry regions. The paper reviews the current state of knowledge on the returns from pastoral and other land uses in the region, identifies research gaps and highlights the next steps needed for implementing the framework

    Climate Justice in a State of Emergency: What New York City Can Do

    Get PDF
    NYC Climate Justice Agenda – Climate Justice in a State of Emergency: What New York City Can Do is a roadmap with policy recommendations for how a progressive city can lead the way on environmental and climate issues while challenging the reactionary policies of the Trump administration

    Assessing financial and flexibility incentives for integrating wind energy in the grid via agent-based modeling

    Get PDF
    This article provides an agent-based model of a hypothetical standalone electricity network to identify how the feed-in tariffs and the installed capacity of wind power, calculated in percentage of total system demand, affect the electricity consumption from renewables. It includes the mechanism of electricity pricing on the Day Ahead Market (DAM) and the Imbalance Market (IM). The extra production volumes of Electricity from Renewable Energy Sources (RES-E) and the flexibility of electrical consumption of industries is provided as reserves on the IM. Five thousand simulations were run by using the agent-based model to gather data that were then fit in linear regression models. This helped to quantify the effect of feed-in tariffs and installed capacity of wind power on the consumption from renewable energy and market prices. The consumption from renewable sources, expressed as percentage of total system consumption, increased by 8.17% for every 10% increase in installed capacity of wind power. The sharpest increase in renewable energy consumption is observed when a feed-in tariff of 0.04 €/kWh is provided to the wind farm owners, resulting in an average increase of 9.1% and 5.1% in the consumption from renewable sources while the maximum installed capacity of wind power is 35% and 100%, respectively. The regression model for the annualized DAM prices showed an increase by 0.01 €cents/kWh in the DAM prices for every 10% increase in the installed wind power capacity. With every increase of 0.01 €/kWh in the value of feed-in tariffs, the mean DAM price is lowered as compared to the previous value of the feed-in tariff. DAM prices only decrease with increasing installed wind capacity when a feed-in tariff of 0.04 €/kWh is provided. This is observed because all wind power being traded on DAM at a very cheap price. Hence, no volume of electricity is being stored for availability on IM. The regression models for predicting IM prices show that, with every 10% increase in installed capacity of wind power, the annualized IM price decreases by 0.031 and 0.34 €cents/kWh, when installed capacity of wind power is between 0 and 25%, and between 25 and 100%, respectively. The models also showed that, until the maximum installed capacity of wind power is less than 25%, the IM prices increase when the value of feed-in tariff is 0.01 and 0.04 €/kWh, but decrease for a feed-in tariff of 0.02 and 0.03 €/kWh. When installed capacity of wind power is between 25 and 100%, increasing feed-in tariffs to the value of 0.03 €/kWh result in lowering the mean IM price. However, at 0.04 €/kWh, the mean IM price is higher, showing the effect of no storage reserves being available on IM and more expensive reserves being engaged on the IM. The study concludes that the effect of increasing installed capacity of wind power is more significant on increasing consumption of renewable energy and decreasing the DAM and IM prices than the effect of feed-in tariffs. However, the effect of increasing values of both factors on the profit of RES-E producers with storage facilities is not positive, pointing to the need for customized rules and incentives to encourage their market participation and investment in storage facilities

    A Risky Climate for Southern African Hydro

    Get PDF
    This in-depth study of the hydrological risks to hydropower dams on the Zambezi River gives an early warning about what Southern Africa could be facing as it contemplates plans for more large hydropower dams in a time of climate change.Currently, 13,000 megawatts of new large-dam hydro is proposed for the Zambezi and its tributaries. The report finds that existing and proposed hydropower dams are not being properly evaluated for the risks from natural hydrological variability (which is extremely high in the Zambezi), much less the risks posed by climate change.Overall, Africa's fourth-largest river will experience worse droughts and more extreme floods. Dams being proposed and built now will be negatively affected, yet energy planning in the basin is not taking serious steps to address these huge hydrological uncertainties. The result could be dams that are uneconomic, disruptive to the energy sector, and possibly even dangerous.The report recommends a series of steps to address the coming storm of hydrological changes, including changes to how dams are planned and operated
    corecore