14,537 research outputs found

    The ATLAS SCT grounding and shielding concept and implementation

    Get PDF
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper

    IMPROVEMENT OF GROUNDING SYSTEM TO REDUCE THE EFFECT OF LIGHTNING OVERVOLTAGE BY BONDING METHOD

    Get PDF
    āļ§āļīāļ—āļĒāļēāļ™āļīāļžāļ™āļ˜āđŒāļ™āļĩāđ‰āļ™āļģāđ€āļŠāļ™āļ­āđāļ™āļ§āļ—āļēāļ‡āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļĢāļ°āļšāļšāļāļēāļĢāļ•āđˆāļ­āļĨāļ‡āļ”āļīāļ™āđāļĨāļ°āļĢāļ°āļšāļšāļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™ āđ€āļžāļ·āđˆāļ­āļĨāļ”āļœāļĨ āļˆāļēāļāđāļĢāļ‡āļ”āļąāļ™āđ€āļāļīāļ™āļŸāđ‰āļēāļœāđˆāļē āđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļēāļĢāļ›āļĢāļ°āļŠāļēāļ™āļĻāļąāļāļĒāđŒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄ āđƒāļŦāđ‰āļāļąāļšāļ­āļēāļ„āļēāļĢāļŠāļ–āļēāļ™āļĩāļŠāđˆāļ‡āļ§āļīāļ—āļĒāļļāđāļĨāļ°āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāđˆāļ§āļĒ āđ€āļ”āļīāļ™āļ­āļēāļāļēāļĻ āļĻāļđāļ™āļĒāđŒāļ„āļ§āļšāļ„āļļāļĄāļāļēāļĢāļšāļīāļ™ āļ—āļĩāđˆāđ„āļ”āđ‰āļĢāļąāļšāļœāļĨāļāļĢāļ°āļ—āļšāļˆāļēāļāđāļĢāļ‡āļ”āļąāļ™āđ€āļāļīāļ™āļŸāđ‰āļēāļœāđˆāļē āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļĢāļ°āļšāļšāđ„āļŸāļŸāđ‰āļēāđāļĨāļ°āļ­āļļāļ›āļāļĢāļ“āđŒ āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāđˆāļ§āļĒāđ€āļ”āļīāļ™āļ­āļēāļāļēāļĻāđ€āļāļīāļ”āļ„āļ§āļēāļĄāđ€āļŠāļĩāļĒāļŦāļēāļĒ āđ‚āļ”āļĒāļ—āļģāļāļēāļĢāļŠāļģāļĢāļ§āļˆāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ­āļēāļ„āļēāļĢ, āļĢāļ°āļšāļšāļāļēāļĢāļ•āđˆāļ­āļĨāļ‡āļ”āļīāļ™āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļĢāļ°āļšāļšāļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™āļ‚āļ­āļ‡āļ­āļēāļ„āļēāļĢ āđāļĨāļ° āļŠāļēāļĒāļŠāļąāļāļāļēāļ“āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ•āđˆāļ­āļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ­āļēāļ„āļēāļĢāļāļąāļšāļ­āļļāļ›āļāļĢāļ“āđŒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāđˆāļ§āļĒāđ€āļ”āļīāļ™āļ­āļēāļāļēāļĻ āđāļĨāļ°āļ—āļģāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāđ€āļāļīāļ”āđāļĢāļ‡āļ”āļąāļ™āļŠāļąāđˆāļ§āļ„āļĢāļđāđˆāļ—āļĩāđˆāļĄāļĩāļœāļĨāļˆāļēāļāļ„āđˆāļēāļ„āļ§āļēāļĄāļ•āđ‰āļēāļ™āļ—āļēāļ™āđāļĨāļ°āļ„āđˆāļēāļ­āļīāļĄāļžāļĩāđāļ”āļ™āļ‹āđŒāļ‚āļ­āļ‡āļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™ āđ€āļžāļ·āđˆāļ­ āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļĢāļ°āļšāļšāļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™ āđāļĨāļ°āļ•āļīāļ”āļ•āļąāđ‰āļ‡āļ­āļļāļ›āļāļĢāļ“āđŒāļ›āđ‰āļ­āļ‡āļāļąāļ™āđ€āļŠāļīāļĢāđŒāļˆ āđ‚āļ”āļĒāļ—āļģāļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļ•āļēāļĄ āļĄāļēāļ•āļĢāļāļēāļ™ IEC āđāļĨāļ°āļĄāļēāļ•āļĢāļāļēāļ™āļ›āđ‰āļ­āļ‡āļāļąāļ™āļŸāđ‰āļēāļœāđˆāļēāļ‚āļ­āļ‡āļ§āļīāļĻāļ§āļāļĢāļĢāļĄāļŠāļ–āļēāļ™āđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļāđˆāļ­āļ™āļ—āļģāļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļĢāļ°āļšāļšāļāļēāļĢāļ•āđˆāļ­āļĨāļ‡āļ”āļīāļ™āđāļĨāļ°āļĢāļ°āļšāļšāļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™ āļžāļšāļ§āđˆāļēāđ„āļĄāđˆāļĄāļĩāļāļēāļĢāļ›āļĢāļ°āļŠāļēāļ™āđƒāļŦāđ‰āļĻāļąāļāļĒāđŒ āđ€āļ—āđˆāļēāļāļąāļ™āļ­āļĒāđˆāļēāļ‡āļŠāļĄāļšāļđāļĢāļ“āđŒ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļĄāļĩāļ„āļ§āļēāļĄāđāļ•āļāļ•āđˆāļēāļ‡āļ‚āļ­āļ‡āļ„āđˆāļēāļ„āļ§āļēāļĄāļ•āđ‰āļēāļ™āļ—āļēāļ™āļ”āļīāļ™āđāļ•āđˆāļĨāļ°āļˆāļļāļ” āļ‹āļķāđˆāļ‡āļĄāļĩāļ„āđˆāļēāļŠāļđāļ‡āđ€āļāļīāļ™āļāļ§āđˆāļēāļ„āđˆāļē āļĄāļēāļ•āļĢāļāļēāļ™ āļ„āļ·āļ­ 4.7, 5.62 āđāļĨāļ° 35.9 āđ‚āļ­āļŦāđŒāļĄ āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļŦāļ™āļĩāđˆāļĒāļ§āļ™āļģāļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļĢāļ°āļšāļšāļ—āļĩāđˆ 9.235 āđ„āļĄāđ‚āļ„āļĢāđ€āļŪāļ™āļĢāļĩāđˆ āđ€āļĄāļ·āđˆāļ­ āļ—āļģāļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļāļēāļĢāļ•āđˆāļ­āļĨāļ‡āļ”āļīāļ™āđāļĨāļ°āļĢāļ°āļšāļšāļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™ āđāļĨāļ°āļ•āļīāļ”āļ•āļąāđ‰āļ‡āļ­āļļāļ›āļāļĢāļ“āđŒāļ›āđ‰āļ­āļ‡āļāļąāļ™āđ€āļŠāļīāļĢāđŒāļˆāļ—āļĩāđˆāļĢāļ°āļšāļšāđ„āļŸāļŸāđ‰āļēāļ āļēāļĒāđƒāļ™ āļ­āļēāļ„āļēāļĢ āļœāļĨāļˆāļēāļāļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļ—āļģāđƒāļŦāđ‰āļĢāļ°āļšāļšāļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™āđāļĨāļ°āļˆāļļāļ”āļ•āđˆāļ­āļĨāļ‡āļ”āļīāļ™ āļ›āļĢāļ°āļŠāļēāļ™āļĻāļąāļāļĒāđŒāļ–āļķāļ‡āļāļąāļ™āđ‚āļ”āļĒāļŠāļĄāļšāļđāļĢāļ“āđŒ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļ„āđˆāļēāļ„āļ§āļēāļĄāļ•āđ‰āļēāļ™āļ—āļēāļ™āļ”āļīāļ™āļĨāļ”āļĨāļ‡āđ€āļŦāļĨāļ·āļ­ 2.44 āđ‚āļ­āļŦāđŒāļĄ āđāļĨāļ°āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļŦāļ™āļĩāđˆāļĒāļ§āļ™āļģāļĢāļ§āļĄāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļĨāļ”āļĨāļ‡āđ€āļŦāļĨāļ·āļ­ 6.595 āđ„āļĄāđ‚āļ„āļĢāđ€āļŪāļ™āļĢāļĩāđˆ āđ€āļĄāļ·āđˆāļ­āļ—āļģāļāļēāļĢāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļāļēāļĢāđ€āļāļīāļ”āđāļĢāļ‡āļ”āļąāļ™āļŠāļąāđˆāļ§āļ„āļĢāļđāđˆāļ—āļĩāđˆāļ•āļāļ„āļĢāđˆāļ­āļĄāļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™āļāđˆāļ­āļ™āđāļĨāļ° āļŦāļĨāļąāļ‡āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡ āļ—āļĩāđˆāļ„āđˆāļēāļāļĢāļ°āđāļŠāļŸāđ‰āļēāļœāđˆāļēāļ•āļĢāļ‡ āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļąāļ™āļ‚āļ­āļ‡āļāļĢāļ°āđāļŠāļŦāļ™āđ‰āļēāļ„āļĨāļ·āđˆāļ™āđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āđ„āļ›āļžāļšāļ§āđˆāļēāđāļĢāļ‡āļ”āļąāļ™ āļ•āļāļ„āļĢāđˆāļ­āļĄāļĢāļēāļāļŠāļēāļĒāļ”āļīāļ™āļĄāļĩāļ„āđˆāļēāļĨāļ”āļĨāļ‡ āļ‹āļķāđˆāļ‡āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡āļ•āđˆāļ­āļ„āļ§āļēāļĄāđ„āļĄāđˆāļ›āļĨāļ­āļ”āļ āļąāļĒāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļāļēāļĢāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢ āļˆāļĢāļēāļˆāļĢāļ—āļēāļ‡āļ­āļēāļāļēāļĻ āļĢāļ°āļšāļšāļāļēāļĢāļŠāļ·āđˆāļ­āļŠāļēāļĢāļāļēāļĢāļšāļīāļ™ āļĢāļ§āļĄāļ—āļąāđ‰āļ‡āļ„āļ§āļēāļĄāđ€āļŠāļĩāļĒāļŦāļēāļĒāļ•āđˆāļ­āļŠāļĩāļ§āļīāļ•āđāļĨāļ°āļ—āļĢāļąāļžāļĒāđŒāļŠāļīāļ™āđ„āļ”āđ‰This thesis presents the improvement of grounding and earth termination system. To reduce the effect of lightning overvoltage, the suitable bonding method with Non-Direction Beacon (NDB) station building is proposed. The lightning overvoltage can cause of electrical equipment damage. The research methods were proposed as follows : first, the surveying of the building area, existing grounding and earth termination system, and coaxial cables which are connected to NDB equipment. Next, the analysis of transient overvoltage behavior is performed to investigate the affect of resistance and inductance of grounding system. Finally, the improvement has been done by modification of the grounding system and installation of the surge protection device (SPD) by referring the IEC 62305 standard and EIT standard. Before the improvement of grounding system, it is dearly seen that the grounding resistance of each points is different due to lack of equipotential bonding. Thus, the values of grounding system are strongly deviated e.g., 4.7 ÎĐ, 5.62 ÎĐ and 35.9 ÎĐ, and the total inductance value is 9.235 ΞH. After grounding system has been improved and SPD has been installed, the results of grounding system improvement and earth termination system are shown that the grounding resistance is reduced to 2.44 ÎĐ and total inductance value is decreased to 6.595 ΞH. The analysis of grounding system behavior due to transient overvoltage by ATP/EMTP program. The current source in the equivalent circuit is modeled by using the direct stroke current with different front time slope. It can be found that voltage drop across earth termination has been reduced. The results of grounding system improvement can reduce the risks of damage to person, equipments and Aeronautical radio system

    Assessment and control of spacecraft electromagnetic interference

    Get PDF
    Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods

    270741 - Telephone - Data Installation Requirements

    Get PDF

    Electromagnetic Compatibility Considerations for International Space Station Payload Developers

    Get PDF
    The International Space Station (ISS) is a laboratory for scientific research, innovative technology development, and global education. The ISS provides a number of facilities and platforms for payload developers and investigators to conduct biological, microgravity, and Earth and space observation science, as well as for performing technology development. Due to the unique nature of the ISS vehicle and its electrical power and data systems, achieving electromagnetic compatibility (EMC) with the vehicle requires special considerations by the payload developer. The ISS electromagnetic interference (EMI) requirements and test methods are based on MIL-STD-461, Electromagnetic Emissions and Susceptibility Requirements for the Control of Electromagnetic Interference, Revision C, and MIL-STD-462, Electromagnetic Interference Characteristics, Measurement of, respectively. The low source impedance of the test setup requires special considerations when designing or selecting EMI power filters and switched mode power supplies. Many filters, suited for later revisions of MIL-STD-461, will result in non-compliant designs. ISS electrical power system power quality requirements, imposed to protect the stability of the system, can also affect EMI filter design. The selection and use of commercial-off-the-shelf (COTS) equipment for ISS applications requires special considerations to meet both EMC and crew safety requirements. Furthermore, the ISS environment can provide unique immunity challenges; if the payload developer ignores these challenges, the result is a possible loss of science or impact to technology demonstration. The ISS provides a unique opportunity for the science and technology development community. However, in order to be successful, the payload developer must incorporate special EMC considerations, many of which will be presented

    How to protect a wind turbine from lightning

    Get PDF
    Techniques for reducing the chances of lightning damage to wind turbines are discussed. The methods of providing a ground for a lightning strike are discussed. Then details are given on ways to protect electronic systems, generating and power equipment, blades, and mechanical components from direct and nearby lightning strikes

    On-line monitoring of relative dielectric losses in cross-bonded cables using sheath currents

    Get PDF

    Aircraft electromagnetic compatibility

    Get PDF
    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting

    Online monitoring and diagnosis of HV cable faults by sheath system currents

    Get PDF
    • â€Ķ
    corecore