1,473 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Managing Access Control in Virtual Private Networks

    Get PDF
    Virtual Private Network technology allows remote network users to benefit from resources on a private network as if their host machines actually resided on the network. However, each resource on a network may also have its own access control policies, which may be completely unrelated to network access. Thus usersďż˝ access to a network (even by VPN technology) does not guarantee their access to the sought resources. With the introduction of more complicated access privileges, such as delegated access, it is conceivable for a scenario to arise where a user can access a network remotely (because of direct permissions from the network administrator or by delegated permission) but cannot access any resources on the network. There is, therefore, a need for a network access control mechanism that understands the privileges of each remote network user on one hand, and the access control policies of various network resources on the other hand, and so can aid a remote user in accessing these resources based on the user\u27s privileges. This research presents a software solution in the form of a centralized access control framework called an Access Control Service (ACS), that can grant remote users network presence and simultaneously aid them in accessing various network resources with varying access control policies. At the same time, the ACS provides a centralized framework for administrators to manage access to their resources. The ACS achieves these objectives using VPN technology, network address translation and by proxying various authentication protocols on behalf of remote users

    Online Gaming Performance Evaluation over Starlink Satellite Broadband

    Get PDF
    This thesis studies the performance and the Quality of Experience (QoE) of online gaming over the Starlink satellite network and compares it to terrestrial access technologies. Satellite broadband provides an opportunity to play games online from areas where traditional access networks are insufficient or not available. Modern games require certain standards of network performance, and games of different game genres have different requirements for certain metrics. Said met- rics and how Starlink performs are investigated in this thesis. Our work provides results from experimental scenarios in two games from different game genres. The objective of this work is to evaluate the performance of online gaming through Starlink, and if the QoE meets the expectations of players

    Online Gaming Performance Evaluation over Starlink Satellite Broadband

    Get PDF
    This thesis studies the performance and the Quality of Experience (QoE) of online gaming over the Starlink satellite network and compares it to terrestrial access technologies. Satellite broadband provides an opportunity to play games online from areas where traditional access networks are insufficient or not available. Modern games require certain standards of network performance, and games of different game genres have different requirements for certain metrics. Said metrics and how Starlink performs are investigated in this thesis. Our work provides results from experimental scenarios in two games from different game genres. The objective of this work is to evaluate the performance of online gaming through Starlink, and if the QoE meets the expectations of players

    Online Gaming Performance Evaluation over Starlink Satellite Broadband

    Get PDF
    This thesis studies the performance and the Quality of Experience (QoE) of online gaming over the Starlink satellite network and compares it to terrestrial access technologies. Satellite broadband provides an opportunity to play games online from areas where traditional access networks are insufficient or not available. Modern games require certain standards of network performance, and games of different game genres have different requirements for certain metrics. Said met- rics and how Starlink performs are investigated in this thesis. Our work provides results from experimental scenarios in two games from different game genres. The objective of this work is to evaluate the performance of online gaming through Starlink, and if the QoE meets the expectations of players

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Establishing Self-Healing and Seamless Connectivity among IoT Networks Using Kalman Filter

    Get PDF
    The Internet of Things (IoT) is the extension of Internet connectivity into physical devices and to everyday objects. Efficient mobility support in IoT provides seamless connectivity to mobile nodes having restrained resources in terms of energy, memory and link capacity. Existing routing algorithms have less reactivity to mobility. So, in this work, a new proactive mobility support algorithm based on the Kalman Filter has been proposed. Mobile nodes are provided with a seamless connectivity by minimizing the switching numbers between point of attachment which helps in reducing signaling overhead and power consumption. The handoff trigger scheme which makes use of mobility information in order to predict handoff event occurrence is used.  Mobile nodes new attachment points and its trajectory is predicted using the Kalman-Filter. Kalman-Filter is a predictor-estimator method used for movement prediction is used in this approach. Kalman Filtering is carried out in two steps: i) Predicting and ii) Updating. Each step is investigated and coded as a function with matrix input and output. Self-healing characteristics is being considered in the proposed algorithm to prevent the network from failing and to help in efficient routing of data. Proposed approach achieves high efficiency in terms of movement prediction, energy efficiency, handoff delay and fault tolerance when compared to existing approach

    Efficient Data Collection in IoT Networks using Trajectory Encoded with Geometric Shapes

    Get PDF
    The mobile edge computing (MEC) paradigm changes the role of edge devices from data producers and requesters to data consumers and processors. MEC mitigates the bandwidth limitation between the edge server and the remote cloud by directly processing the large amount of data locally generated by the network of the internet of things (IoT) at the edge. An efficient data-gathering scheme is crucial for providing quality of service (QoS) within MEC. To reduce redundant data transmission, this paper proposes a data collection scheme that only gathers the necessary data from IoT devices (like wireless sensors) along a trajectory. Instead of using and transmitting location information (which may leak the location anonymity), a virtual coordinate system called \u27distance vector of hops to anchors\u27 (DV-Hop) is used. The proposed trajectory encoding algorithm uses ellipse and hyperbola constraints to encode the position of interest (POI) and the trajectory route to the POI. Sensors make routing decisions only based on the geometric constraints and the DV-Hop information, both of which are stored in their memory. Also, the proposed scheme can work in heterogeneous networks (with different radio ranges) where each sensor can calculate the average one-hop distance within the POI dynamically. The proposed DV-Hop updating algorithm enables the users to collect data in an IoT network with mobile nodes. The experiments show that in heterogeneous IoT networks, the proposed data collection scheme outperforms two other state-of-the-art topology-based routing protocols, called ring routing, and nested ring. The results also show that the proposed scheme has better latency, reliability, coverage, energy usage, and provide location privacy compared to state-of-the-art schemes
    • …
    corecore