
FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR’S THESIS

Study programme/specialisation: Spring semester 2023

Bachelor in Computer Science Open

Authors: Jakob Bernhardt Danielsen, Endre Lund and Mats Husberg

Program coordinator: Erlend Tøssebro

Supervisor: Naeem Khademi

Co-Supervisor: Aitor Martin Rodriguez

Title of bachelor’s thesis:

Online Gaming Performance Evaluation over Starlink Satellite Broadband

Credits: 20

Keywords: Number of pages: 69

Satellite, Online gaming, Starlink + supplemental material/other: 58

Stavanger 15. mai 2023

JAKOB BERNHARDT DANIELSEN, ENDRE LUND AND MATS HUSBERG
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Online Gaming Performance Evaluation over
Starlink Satellite Broadband

Bachelor's Thesis - Computer Science - May 2023

I, Jakob Bernhardt Danielsen, Endre Lund and Mats Husberg,
declare that this thesis titled, “Online Gaming Performance Evaluation over Star-

link Satellite Broadband” and the work presented in it are my own. I confirm

that:

■ This work was done wholly or mainly while in candidature for a bachelor’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

i

Abstract

This thesis studies the performance and theQuality of Experience (QoE) of online

gaming over the Starlink satellite network and compares it to terrestrial access

technologies. Satellite broadband provides an opportunity to play games online

from areas where traditional access networks are insufficient or not available.

Modern games require certain standards of network performance, and games of

different game genres have different requirements for certain metrics. Said met-

rics and how Starlink performs are investigated in this thesis. Our work provides

results from experimental scenarios in two games from different game genres.

The objective of thiswork is to evaluate the performance of online gaming through

Starlink, and if the QoE meets the expectations of players.

ii

Acknowledgements

We would like to thank our supervisor Associate Professor Naeem Khademi and

co-supervisorAitorMartinRodriguez for their enthusiasmandhelpwith thework

behind this thesis. We would also thank Ståle Freyer for setting up the Starlink

and lab environment, and Theodor Ivesdal for helping with networking and se-

curity. Further, we thank our families for their support while writing this thesis.

iii

Contents

Abstract ii

Acknowledgements iii

Abbreviations viii

1 Introduction 2

1.1 Motivation . 2

1.2 Problem Definition . 3

1.2.1 Research Questions . 3

1.3 Objectives . 3

1.4 Outline . 4

2 Background 5

2.1 Satellite Broadband Service . 6

2.1.1 Satellite types . 6

2.1.1.1 GEO satellites . 6

2.1.1.2 LEO satellites . 7

2.1.1.3 MEO satellites . 7

2.1.2 Starlink . 7

2.1.2.1 Starlink Performance 8

2.1.2.2 Satellite Handovers 9

2.2 Online Gaming . 9

2.2.1 Online Gaming Architecture 9

2.2.1.1 Peer-to-Peer . 10

2.2.1.2 The Client-Server Model 10

2.2.2 Online Gaming Genres . 11

iv

2.2.2.1 Massively Multiplayer Online Games 11

2.2.2.2 First Person Shooter 11

2.2.3 Minecraft . 11

2.2.3.1 Transport Protocol 11

2.2.3.2 Metrics . 12

2.2.4 Counter Strike: Global Offensive 12

2.2.4.1 Transport Protocol 12

2.2.4.2 Metrics . 12

2.3 Summary of Related Works . 13

2.3.1 Satellite Broadband . 14

2.3.2 Performance demands of Online Gaming 16

3 Methodology 18

3.1 Game Selection . 18

3.2 Testbed overview . 18

3.3 Hardware Equipment . 19

3.3.1 Server . 19

3.3.2 Client . 20

3.3.3 Raspberry Pi . 20

3.3.4 Starlink Setup . 21

3.4 Software . 22

3.4.1 Traffic Generators . 23

3.4.1.1 iPerf3 . 23

3.4.1.2 Ping . 23

3.4.1.3 TCP ping . 24

3.4.1.4 LinuxGSM . 25

3.4.1.5 CS:GO . 26

3.4.1.6 Minecraft . 26

3.4.2 Loggers . 26

3.4.2.1 Tshark . 26

3.4.2.2 iPerf3 Logs . 27

3.4.2.3 Yr Weather API 27

3.4.2.4 Available Satellites 27

3.4.3 Experiment Automation 29

3.4.3.1 Python Scripts . 29

v

3.4.3.2 Libraries . 29

3.4.3.3 File structure . 30

3.4.4 Post Processing . 34

3.4.4.1 Game Capture . 34

3.4.4.2 Text files . 35

3.4.4.3 Synthetic Packet Pairs 35

3.4.4.4 Visualization . 36

3.4.5 Other Setup Configurations 37

3.4.5.1 Security . 37

3.4.5.2 Difficulties . 37

4 Experiments and Results 39

4.1 Scenario 1 - Baseline measurements 39

4.1.1 Ping Starlink Gateway . 40

4.1.2 Overview over available satellites 40

4.1.3 Constant Bit Rate . 40

4.1.4 Variable Bit Rate . 41

4.2 Scenario 2 - Gaming measurements 42

4.2.1 CS:GO Single Run . 42

4.2.2 CS:GO All Runs . 42

4.2.3 Minecraft Single Run . 42

4.2.4 Minecraft All Runs . 43

4.3 Results . 43

4.3.1 Ping Starlink Gateway Results 43

4.3.2 Overview over available satellites results 46

4.3.3 Constant Bit Rate Results 46

4.3.4 Variable Bit Rate Results 49

4.3.5 CS:GO Single Run Results 50

4.3.6 CS:GO All Runs Results . 53

4.4 Minecraft Single Run Results . 55

4.4.1 Minecraft All Runs Results 59

5 Discussion 63

5.1 Scenario 1 - Baseline measurements 63

5.1.1 Ping Starlink Gateway . 63

vi

5.1.2 Overview over available satellites 63

5.1.3 Constant Bit Rate . 64

5.1.4 Variable Bit Rate . 64

5.2 Scenario 2 - Gaming measurements 65

5.2.1 CS:GO . 65

5.2.2 Minecraft . 66

5.2.3 Criteria . 67

6 Conclusions 68

6.1 Answering the Research Questions 68

6.2 Future directions . 69

A Instructions to Compile and Run System 70

A.1 Server config files . 70

A.1.1 CS:GO . 70

A.1.2 Minecraft . 76

A.2 Code . 82

A.2.1 Experiments . 82

A.2.2 Post processing . 92

A.2.2.1 PCAP files . 92

A.2.2.2 Plot . 97

A.2.2.3 Satellite distance calculation 116

A.2.3 Setup . 118

vii

Abbreviations

ACK Acknowledgement

SYN Synchronize

BBR Bottleneck-Bandwidth and Round-Trip Time

CBR Constant Bit Rate

CCA Congestion Control Algorithm

CLI Command Line Interface

CS:GO Counter Strike: Global Offensive

CSmodel Client-Server model

cwnd Congestion Window

IP Internet Protocol

ISP Internet Service Provider

FPS First Person Shooter

GEO Geostationary Orbit

LEO Low Earth Orbit

MEO Medium Earth Orbit

MMOG Massively Multiplayer Online Game

P2P Peer-to-Peer

PEP Performance Enhancing Proxy

QoE Quality of Experience

QoS Quality of Service

RTT Round Trip Time

SSH Secure Shell

TCP Transmission Control Protocol

UDP User Datagram Protocol

VBR Variable Bit Rate

viii

1

Chapter 1

Introduction

1.1 Motivation

Broadband has become a requirement inmost households and businesses around

the world. Generally, broadband is associated with high speeds and continu-

ous connectivity. Fiber-based networks are still recognized as the best option for

broadband today [9].

A challenge of fiber-based broadband and other terrestrial connections is cov-

erage. How can high-speed broadband be provided to even the most rural of ar-

eas? In an analysis carried out in 2018, [5], Briglauer and Gugler suggested that a

100% penetration of fiber-based broadband is unrealistic. In the paper, the cost-

benefit analysis estimated a 50% penetration to be most beneficial for growth in

GDP due to the increasingly high costs of rolling out fiber to rural areas.

The growth in demand for high-speed internet and the coverage restraints on

the terrestrial network have led to SpaceX developing Starlink, a satellite-based

broadband service. The service aims to provide high-speed internet access to its

users all around the world through a constellation of Low-Earth-Orbiting (LEO)

satellites. Starlink promises to deliver comparable internet speeds and latency

comparable to that of terrestrial connections, even to households and businesses

in rural areas where traditional broadband services are not available or reliable.

This technology can potentially revolutionize how we access and use the inter-

net, especially for gaming enthusiasts. Online gaming has established itself as a

2

mainstream form of entertainment, with millions of people playing online games

every day.

The valued gaming market was at USD 203.2 billion in 2021 [38], and projects a

market growth at a Compound Annual Growth Rate (CAGR) of 13.4% from 2023

to 2030. With the base of online game players projected to grow, so will the de-

mand for high-speed connections with low latency andminimal packet loss. Star-

link promises to provide gamers with a fast and reliable internet connection, even

in ”remote and rural locations across the globe” [41].

1.2 Problem Definition

Satellite performance for gaming often offers high latency, packet loss, and low

bandwidth, which can cause poor performance and negatively impact the QoE

for gaming users. Starlink’s new solution for satellite networks should bring the

latency, packet loss, and bandwidth to an adequate level for online gaming.

1.2.1 Research Questions

For this thesis, we will dive deeper with these research questions:

1. Does Starlink satisfy latency and bandwidth requirements for online gam-

ing?

2. Does Starlink produce significant packet loss with regard to online gaming?

3. What are the differences in performance between terrestrial internet access

and Starlink?

1.3 Objectives

The goal is to set up a Starlink antenna/dish on the roof of the University of Sta-

vanger and create automated scripts to provide some results to analyze. Firstly

performing a baseline measurement before investigating deeper into the gaming

part.

After defining the research questions, more objectives of the work are:

3

1. Study how satellite performance is related to the metrics of gaming: La-

tency, jitter, packet loss, and bandwidth

2. Set up a testbed to run automated experiments simultaneously onboth server

and client

3. Create an automated testbed for baseline experiments of the Starlink con-

nection

4. Obtain results of performance over the Starlink connection

5. Discuss the results obtained and reflect on the impact it has on the satellite

gaming performance

1.4 Outline

This thesis has the following structure:

• Chapter 2 describes the differences in satellite solutions, and online gaming

with insight into the games used in this thesis and key metrics for perfor-

mance evaluation

• Chapter 3 shows themethodology of thework done, showing and describing

the different tools used and the scenarios

• Chapter 4 iswhere the results are presented andhow the results are achieved.

• Chapter 5 discusses the results given in Chapter 4 and how the results com-

pare to the theory behind it.

• Chapter 6 is the conclusion, wherewe summarize and conclude our findings

in this thesis and answer the research questions given in the introduction

4

Chapter 2

Background

The background aims to provide context for the work done in this thesis. It de-

scribes the foundation set by related works in the field, and it discusses its poten-

tial importance for the solution proposed for the problem statement.

This chapter starts with a section discussing satellite as a broadband service. It

introduces three of the more common orbits: the Geostationary Orbit (GEO), the

Medium Low Orbit (MEO), and the LEO. Then it describes their characteristics

and the implications those have for coverage and network performance.

The section then introduces Starlink satellite broadband. Here, a brief overview

of the constellation is given. Next, benchmarks of Starlinks network performance

are provided, giving insight into whether the service has the potential to deliver

what is necessary for online gaming. The section ends by introducing a possible

problem for Starlink when online gaming is concerned; satellite handovers could

induce spikes in the form of both packet loss and jitters. This could in turn affect

player experience.

The next section in this chapter introduces online gaming. The start of this sec-

tion explains what online gaming is and how it started, before introducing differ-

ent online gaming architectures and genres. Next, the two games through which

this thesis aims to test Starlink broadband are brought up. Related works on the

games’ demand for network performance are then presented.

5

Ending the chapter is a summary of related works. This section aims to orga-

nize the related works and present research gaps that our thesis potentially can

fill.

2.1 Satellite Broadband Service

Satellites are generally categorized by which orbit they are traveling in. The three

most common orbits are GEO, MEO, and LEO. Said categorizations are deter-

mined by altitude as seen in table 2.1.

Type of orbit Altitude

GEO 35 786 km

MEO Between GEO and LEO

LEO <1000 km

Table 2.1: Types of orbits and their altitudes per The European Space Agency [3]

With the rise in demand for high-speed internet, broadband provided by mod-

ern communications satellites has emerged as a potential solution to the lack of

coverage provided by terrestrial connections.

2.1.1 Satellite types

2.1.1.1 GEO satellites

Satellites in the geostationary orbit move at a speed of around 3 kilometers per

second at an altitude of 35 786 kilometers [3]. An advantage to orbiting at such

a high altitude is coverage, and it is estimated that three GEO satellites can pro-

vide close to global coverage. Some GEO satellites provide up to 100 Mbit/s on

the downlink for the end user [11]. GEO satellite broadband is a good option for

those in rural areas, though not for applications requiring a low propagation de-

lay. In the best-case scenario, a propagation delay of at least 240ms is achieved

[10], though together with other delays, a common Round Trip Time (RTT) for

GEO satellites is roughly 600ms.

6

Tomitigate the high delays, commercial satellite networks often use Performance

Enhancing Proxies (PEPs) [11]. A characteristic of PEPs is the varying degree to

which it is transparent to a network’s end systems or to applications. It could

turn out that Starlink Satellite Broadband does use PEPs, but not network-layer

transparent PEPs [17]. This would mean that neither the Transmission Control

Protocol (TCP)/Internet Protocol (IP) stack nor the applications would be aware

of the PEP implementation.

2.1.1.2 LEO satellites

Satellites in the LEO circle the earth in different planes, normally at altitudes less

than 1000 km but also as low as 160 km [3]. At such altitudes, LEO satellites

cover small areas of the earth at once. They are typically launched in groups (i.e.

a constellation), and thousands of them can provide global coverage.

For this to work, antennas need to be steerable and there need to be frequent

satellite handovers [10]. On the other hand, LEO satellites provide propagation

delays of only just a few milliseconds. Deutschmann et al. [11] propose that LEO

mega-constellations have the potential to provide low latencies and high data

rates for broadband internet.

2.1.1.3 MEO satellites

TheMEO is awide range of orbits anywhere betweenGEOandLEO [3]. Deutschmann

et al. [11] suggest that anMEO satellite constellation at an altitude of about 8000

kmprovides a trade-off between the number of deployed satellites and acceptable

latencies. MEO satellites are commonly used for navigation.

2.1.2 Starlink

Starlink is today the largest satellite constellation in the LEO. According to [42],

4165 satellites have been launched into space as of April 20th of this year. Of

them, 3423 are active, 475 are inactive and 267 are burned. The Starlink satellites

use an altitude of about 550 km [10]. Starlink [43] claims that their constellation

can ”deliver broadband internet capable of supporting streaming, online gaming,

video calls and more”.

7

2.1.2.1 Starlink Performance

Michel et al. [26] performed a benchmark on the Starlink service. It measured

throughput for QUIC and TCP, packet loss, and latency. In addition, the study

measured the QoE for Web browsing with Starlink. The latency was measured in

two ways; with and without load on the link. They found the minimum latency

of Starlink to be around 20ms for close destinations, rising to as high as a few

hundred milliseconds under traffic load at sub-optimal destinations. For packet

loss, they found that loss occurs more frequently under traffic load, but that it

only affects a few consecutive packets. Without traffic load, the loss occurs less

frequently but affects more consecutive packets and lasts longer.

The study then found that Starlink’s download throughput ranges between 100 to

250 Mbit/s, with a median value of 178 Mbit/s. The upload throughput median

value they found was 17 Mbit/s. Lastly, Michel et al. found that Starlink outper-

forms traditional Satellite Communication forWeb browsing; comparable to that

of regular wired access.

The same study [26] also analyzed the Starlink network for a potential presence of

PEPs, middleboxes, and traffic discrimination (TD). They did not find any pres-

ence of any PEPs. The same was the outcome regarding traffic discrimination, as

no TD policy was found.

”Starlinkstatus.space” [46] collects community Starlink performance data from

different regions in theworld. The site provides statistics on ICMPPing and avail-

able bandwidth for the downlink (DL) and for the uplink (UL), as seen in table

2.2.

Region Latency DL throughput UL throughput

Worldwide 47ms 157 Mbit/s 14 Mbit/s

USA 49ms 127 Mbit/s 11 Mbit/s

EU 45ms 206 Mbit/s 16 Mbit/s

Table 2.2: Average Starlink performance values rounded to the nearest whole
number.

8

2.1.2.2 Satellite Handovers

A potential obstacle for Starlink satellite broadband for online gaming is a po-

tential Quality of Service (QoS) degradation due to a satellite handover. When a

current satellite goes out of sight, the satellite dish needs to switch the connec-

tion to another satellite. Kassem et al. [22] found significant rates of suddenUser

Datagram Protocol (UDP) packet loss in correlation with the satellites going out

of the line of sight, strongly suggesting that the satellite switching causes severe

packet loss. The study goes on to suggest that congestion control algorithms that

are not loss-based could be an option to enhance Starlink’s performance.

2.2 Online Gaming

Online gaming is video games being played by players in different locations con-

nected together through the Internet. The players interact with a game world

(state) that needs to be maintained by either a server or the personal computers

of the players themselves.

The first online game was created when outside users connected to a text-based

dungeon adventure game called MUD [34]. The game was developed by two un-

dergraduate students at the University of Essex in the year 1980. This laid the

foundation for expansion from other programmers, and it further led to the first

wave of Massively Multiplayer Online Games (MMOG) introduced in the late 90s

[34]. Together with the expansion of broadband internet connectivity in the early

2000s, online gaming became a popular form of entertainment for millions of

people.

2.2.1 Online Gaming Architecture

When online gaming transitioned from being deployed in local area networks to

wide-area networks, two main underlying online game architectures were and

remain the favored alternatives. They are depicted in figure 2.1.

9

Client

Client

Client

Internet

Server

Client

Client Client

Client

Client/Server

Client

Client

Peer-to-Peer

Figure 2.1: Client-Server model (CS model) vs Peer-to-Peer (P2P) comparison

2.2.1.1 Peer-to-Peer

P2P is a serverless online gaming architecture where game clients connect to each

other’s PCs in order to play in a multiplayer setting. Each client in-game has to

maintain the state of the game, which leads to a greater demand for processing

and memory on client PCs compared to server-based architectures.

Though P2P is not a popular choice among developers today, it is still a favorable

choice for multiplayer indie games due to low costs [39]. Examples of popular

P2P games are GTA Online [15] and Super Smash Bros. Ultimate [30].

2.2.1.2 The Client-Server Model

CS model is a centralized online gaming architecture where a dedicated server

maintains the virtual environment and provides real-time world updates to its

connected client PCs. It is by far the most popular choice for game developers as

it is more secure and more scalable than any other architecture. The CS model

is also the online gaming architecture that is used in both of the games that this

thesis is evaluating gaming performance on.

10

2.2.2 Online Gaming Genres

There are many different genres online games fall into. Of them, only two are

considered in this thesis.

2.2.2.1 Massively Multiplayer Online Games

MMOGs are games that are played by a huge amount of players at the same time.

InMMOGs the virtual environment is persistent, meaning the gameworld cannot

be stopped. If players disconnect from the game server, the gameworld continues

without them. In networking terms, this means the server runs continuously and

that clients can connect to the persistent game world at any time. Examples of

widely popular MMOGs are Word of Warcraft [12] and Runescape [25].

2.2.2.2 First Person Shooter

First Person Shooters (FPS) are combat-oriented shooter games played from a

first-personperspective. Except forMassivelyMultiplayerOnlineFPS, FPS games

are not persistent but rather played in iterations of time-limited matches. The

most common game type of these matches is deathmatches, a game mode where

players gain points by killing other player characters. Call of Duty [1] and Valo-

rant [14] are two examples of popular FPS games today.

2.2.3 Minecraft

The first game that was picked to evaluate the Starlink Broadband is the MMOG

Sandbox gameMinecraft [27]. Minecraft was released in 2009 and is a very pop-

ular adventure and construction-based game. The game has a CSmodel architec-

ture.

2.2.3.1 Transport Protocol

From any active Minecraft server’s details description, it says that all Minecraft

game traffic uses TCP. Any client-to-server connections must first establish the

connection, and they both keep track of all packets and their sequence of them. If

a packet is lost in transmission, the packet will be re-sent as a TCP Retransmis-

sion. This essentially means that packet loss is not as relevant for TCP-based

11

games (as opposed to UDP-based games), but rather that packet loss induces

more latency.

2.2.3.2 Metrics

Minecraft is in general much less sensitive to Quality of Service degradation com-

pared to FPS games. Hohlfeld et al. [19] carried out an experiment where casual

gamers played Minecraft with induced delays of 0ms, 170ms, and 1000ms re-

spectively. The study did not find the effects of said latencies to be statistically

significant, but rather barely visible. Another study [4] found that delay will im-

pact gameplay from 250ms onwards.

2.2.4 Counter Strike: Global Offensive

The second game that was picked to evaluate the Starlink Broadband is the FPS

game Counter Strike: Global Offensive (CS:GO) [8], a very popular shooter re-

leased in 2012. The game has a Client/Server architecture.

2.2.4.1 Transport Protocol

According to a study done in 2020 regarding CS:GO [18], the transport proto-

col for this game is UDP. A characteristic of CS:GO is high interactivity with low

latency. This essentially means that the game is generating a large number of

packets per second, also referred to as the tick rate. CS:GO’s official servers run

on 64 ticks, however, third-party services can host game servers with a tick rate

of up to 128.

2.2.4.2 Metrics

CS:GO is an FPS game, and as mentioned in 3.1, it has the highest limits for la-

tency for any game genre. Xu et al. [51] found latency in CS:GO to be significantly

impacting player performance. Their results suggest an additional 100ms of de-

lay reduces a player’s shooting accuracy with an AK-47 assault rifle by about 15%.

They also found a reduction ofQoEof about 11%with a delay of 100ms. Quax et al.

[33] concluded that an FPS player’s QoE relies on the size of latency the network

introduces, and found delay jitters below 100ms to be hampering the experience.

The study did however show there are indications of performance degradation

12

from a delay of 60ms and onwards. Beigbeder et al. [6] found that shooting

mechanics was ”greatly affected” by latencies in a range of 75ms to 100ms and

that shooting accuracy and the number of kills decrease up to 50% for such la-

tency ranges. The study found that experiment subjects noticed latency as low as

100ms and that latency of 200ms is annoying.

A direct consequence of using UDP as the transport protocol is a higher degree of

packet loss. The priority of CS:GO is high interactivity and low latency. Beigbeder

et al. [6] did however find that packet loss did not have any measurable effect on

player performance. The study then explained that users could barely even notice

a packet loss of 5%.

2.3 Summary of RelatedWorks

Below are related works summarized in two tables: Satellite Broadband 2.3 and

Performance Demands of Online Gaming 2.4.

13

2.3.1 Satellite Broadband

Src Traffic

type(s)

Metric(s) Findings Research gap

[22] TCP Throughput, Loss Throughput: high geographical difference. Highestmedian throughput: 147Mbit/s.

Lowest: 34.3Mbit/s. Loss: Rare spikes of up to 50% loss. 12% of iPerf tests had a

loss over 5%. Loss strongly correlates with satellite handovers.

Lacks RTT measurements. Does

not evaluate UDP traffic. Does not

test gaming over Starlink.

[10] TCP Goodput, La-

tency, Loss

Median goodput around 185Mbit/s. Latency ”usually did not exceed 50ms”. Packet

loss of about 1.8%

Does not evaluateUDP traffic. Does

not test gaming over Starlink.

[26] QUIC,

TCP

Throughput, La-

tency, Loss, QoE

for Web browsing

Minimum delay 20ms. Maximum a few hundred ms under traffic load at sub-

optimal locations. Median downlink throughput 178Mbit/s. Median uplink

throughput 17Mbit/s. Starlink outperforms traditional SatCom for Web browsing.

QUIC packet loss: 1.56% on the downlink and 1.96% on the uplink. Found no pres-

ence of PEPs.

Does test Web browsing over Star-

link, but does not test gaming.

[11] GEO,

LEO

Bandwidth Some GEO satellites provide up to 100Mbit/s. They usually use PEPs to mitigate

high delays. The high latencies with GEO satellites are problematic for some appli-

cations. LEO mega-constellations have the potential for low delays and high data

rates.

Does not concludewhether the LEO

broadband solution is applicable for

gaming.

Table 2.3: Table of related works on satellite broadband

14

Related works on satellite broadband have found that although GEO satellites

provide enough bandwidth for online gaming, latencies are too high. Starlink la-

tencies are found to be promising for the most part, except in certain edge cases.

Relatedworks have found Starlink’s performance regarding throughput to be suf-

ficient for online gaming purposes. Packet loss is found to be strongly correlated

with satellite handovers, which might pose a problem for online gaming.

Althoughworks have been done onQoE for web browsing over Starlink, no previ-

ous works cover gaming over LEO satellite broadband. This thesis aims to cover

this research gap.

15

2.3.2 Performance demands of Online Gaming

Src Game

(Genre)

Metric(s) Findings Research gap

[4] Minecraft

(MMOG)

Delay Minecraft gameplay experience degrades with delays over 250ms Does not test for experience degra-

dation due to packet loss. It is not

performed over Starlink.

[19] Minecraft

(MMOG)

Delay Delays up to 1000ms in Minecraft does not degrade the player experience and is

barely visible.

It is not performed over Starlink.

[35] (MMOG) Delay, Loss, Jit-

ters

In MMOGs, increased latency negatively impacts subjective quality, more so than

jitters. MMOGs were less reliant on delay than FPS games. Packet loss leads to a

strong reduction in perceptual quality.

It is not performed over Starlink.

[33] (FPS) Latency, Jitters Indications of performance degradation with delays over 60ms for FPS games. Jit-

ters below 100ms are found to be hampering the experience.

It is not performed over Starlink.

[51] CS:GO

(FPS)

Delay, QoE Additional 100ms of delay reduces a player’s shooting accuracy with an AK-47 as-

sault rifle by about 15%. QoE down 11% with 100ms delay.

It does not test player experience

over Starlink.

[6] (FPS) Delay, Loss Shootingmechanics was ”greatly affected” by latencies in a range of 75ms to 100ms,

and that shooting accuracy and the number of kills decrease up to 50% for such

latency ranges. 100ms delay noticable, 200ms delay annoying. packet loss did not

have any measurable effect on player performance. 5% was barely noticeable.

It does not test network perfor-

mance playing FPS games over

Starlink.

[29] (FPS) Delay Found that the FPS genre has the tightest latency limits. It does not test player experience

over Starlink.

Table 2.4: Table of related works on network demands of online gaming

16

Related works on online gaming have found that the FPS game genre has the

tightest latency limits, with MMOGs being less reliant on latency.

There are related works on QoS sensitivity for both Minecraft and CS:GO. There

is no related work that evaluates to which degree the QoS for both games is satis-

factory over the Starlink broadband. This thesis aims to cover this research gap.

17

Chapter 3

Methodology

This chapter describes the different testbed implementations, hardware equip-

ment, various software and tools, post-processing, and other setup configura-

tions.

3.1 Game Selection

Different online games have different network parameter demands. Thus, the

choice of games to test in our work is important. First, we decided to pick an FPS,

as this genre is considered to have the tightest latency limits [29].

Secondly, we picked an MMOG Sandbox game. The Sandbox game genre repre-

sents an open gameworld where the player can interact freely with the world. For

MMOGs, a study [35] found that increased latency negatively impacts subjective

quality, more so than jitters. Still, MMOGs are less reliant on latency than FPSs.

Most real-time interactive games use UDP as their transport protocol. We de-

cided to pick two widely popular games to test with: one that uses UDP and one

that uses TCP.

3.2 Testbed overview

The testbed used for this thesis is rewired in two different ways, each depending

on which task to execute. The topology for the different testbed setups/networks

that were used is shown in figure 3.1 and 3.2.

18

Figure 3.1: Topology describing the network used for latency measurements

Figure 3.2: Topology describing the network used regarding iPerf3 measure-
ments and for capturing game traffic

• The Host Controller takes care of remotely accessing the various nodes and

executing commands or scripts on them

• The Host Controller uses Secure Shell (SSH) protocol to access the various

machines

• The Raspberry Pi is used for more lightweight baseline measurements

3.3 Hardware Equipment

3.3.1 Server

To host games and other services, we used an HP Compaq 8200 Elite as a server

with specifications listed in table 3.1.

19

CPU 4-core Intel i5-2400 3.40GHz

RAM 16GB DDR3

Storage 500GB

OS Debian 11

Kernel-Version 3.38.5

Table 3.1: Server PC specifications

3.3.2 Client

The client PC is mainly used for playing online games, however, it is also used for

some light-weight network measurements. Specifications listed in table 3.2.

CPU Intel core i5-6600K 3.50 GHz

GPU Geforce GTX 970 4GB

RAM 16GB DDR4 2133 MHz

Storage SSD(OS) 240GB

Storage HDD(Games) 1TB

OS Windows 10

Kernel-Version 22H2

Table 3.2: Client PC specifications

3.3.3 Raspberry Pi

For some network measurements, we used a Raspberry Pi 4Model B. This device

has the specification listed in table 3.3.

CPU 4-core Arm Cortex A-72 1.50GHz

Ram 4GB DDR4

Storage 32GB

OS Debian 11

Kernel-Version 3.38.5

Table 3.3: Raspberry Pi 4 model B specifications

20

3.3.4 Starlink Setup

The Starlink package ordered for this thesis is the baseline residential package

[41]. The equipment inside is listed below:

1. One Dish/Antenna

2. One Router

3. One Starlink Cable

4. One AC Cable

The dish consists of an electronic phased array with a 100◦field of view. It is

placed on top of Kjølv Egelands hus at UiS approximately 63 meters above sea

level, see figure 3.3. It weighs in under 3 kg and can handle winds up to 20m/s.

The antenna is facing south (180◦), with a clear view of ±50◦. The antenna com-

municates with satellites that are visible on the horizon above an elevation angle

of 25◦.

Figure 3.3: Placement of the Starlink dish.

21

The antenna is facing south to connect to LEO satellites orbiting over central parts

of Europe. Norway does not have a lot of satellite coverage as of the time of this

thesis, as shown in figure 3.4.

Figure 3.4: Screenshot of Starlink constellation map, green dot represents our
position, white dots satellites, and red dots gateways [40]

3.4 Software

This section seeks to explain the various software and tools used for the thesis.

Table 3.4 shows the software and tools used. To do this, the different sections are

divided as shown in 3.4 to make experimenting easier.

Section Title Includes

3.4.1 Traffic Generators iPerf, Ping, TCP ping, CS:GO, Minecraft

3.4.2 Loggers Tshark, iPerf3 logs, Yr weather API, N2YO API

3.4.3 Experiment Automation Python scripts, Libraries, Diagrams

3.4.4 Post Processing Analysis, SPP, Visualization

3.4.5 Other Setup Configurations Security, Difficulties

Table 3.4: Software and tools overview

22

3.4.1 Traffic Generators

3.4.1.1 iPerf3

iPerf3 is a tool for generating traffic and performing networkmeasurements [21].

It is cross-platform, so it workswithWindows, Linux,MacOS, FreeBSD, Android,

and more. The default iPerf3 port is 5201.

It is based on IP networks and works with both IPv4 and Ipv6. iPerf uses TCP as

the default protocol, however, UDP-specific tests can be instantiated. It canmea-

sure total available bandwidth through TCP. Through UDP the client can create

streams with specified bandwidth, measure packet loss, and delay jitter.

For setup, iPerf uses a client host connection and needs to be installed on both

ends, see figure 3.2. On the client side, the IP address needs to be specified along

with other inputs that fit the needs of the measurement. See table 3.5 for some

common parameters.

Parameter Description

-p Specify the port number to listen or connect to (client and host specific)

-s Run iPerf in server mode (host-specific)

-c Run iPerf in client mode, connecting to a host (client specific)

-u Use UDP rather than TCP for tests (client specific)

-b Set target bandwidth to n bit/s (client specific)

-R Run in reverse mode, default is uplink client-to-server (client specific)

-t The time in n seconds to transmit for (client specific)

Table 3.5: Table of common iPerf3 parameters [20]

3.4.1.2 Ping

Ping is a basic open-source internet application that allows users to test if a host

is reachable. To reach the destination host users need to know the destination

IP address (IPv4 or IPv6) or destination domain name. The way it works is that

users send an Internet Control Message Protocol (ICMP) echo request and then

wait for a reply. If the echo request reaches the destination host, it answers with

an echo reply. By default a ping returns values like RTT, Time To Live (TTL), and

23

averages. If the request does not reach the destination, ping reports the packet as

lost. See figure 3.5 for an example output.

Figure 3.5: Example of an ICMP echo request to google.com

3.4.1.3 TCP ping

PsPing’s [36] TCP ping uses a slightly different approach than the traditional

ICMP echo request and echo reply, where TCP ping uses the TCP protocol to cal-

culate RTT. Utilizing Synchronize (SYN), SYN-Acknowledgement (ACK), and re-

transmits it can measure the RTT of packets and if a packet has been dropped.

So instead of opening a full TCP connection with a three-way handshake, it half-

opens the connection and sends an ACK. Then it waits for the SYN-ACK so it can

calculate the RTT and close the connection, as shown in figure 3.6. This method

can be useful if ICMP packets are blocked by a firewall, and a client wants tomea-

sure RTT.

24

Figure 3.6: TCP ping

3.4.1.4 LinuxGSM

To host games on the Game server 3.1 we used a third-party application called

LinuxGSM [24] V23.2.0, which integrates the use of SteamCMD [47] without the

need to manage SteamCMD itself. The LinuxGSM software connects to Steam

servers via SteamCMD to download game data, in our case CS:GO with appID

730. For Minecraft: Java Edition, LinuxGSM downloaded game data from the

official Minecraft site [49].

LGSM is quickly downloaded using on the server using the command:

wget -O linuxgsm.sh https://linuxgsm.sh && chmod +x
linuxgsm.sh && bash linuxgsm.sh csgoserver

From the command, the CS:GO server is installed with:

./csgoserver install

Which installs the CS:GO server with appID 730 from Steam. Tomake the CS:GO

server connect to themaster server list in-game, we provided it with a valid Game

server login token (GLST) from a valid account [44].

25

The LinuxGSM uses the config files A.1 and A.2 to start up a CS:GO server. The

same goes for Minecraft which the server uses the config files A.3 and A.4. These

files contain information, parameters, and input that the server uses to start a

specific game session.

3.4.1.5 CS:GO

CS:GO is one of the games generating network traffic for this thesis. The transport

layer protocol for CS:GO game traffic is UDP. It is installed on the client’s PC with

default settings. The game version during the time of this thesis is 10905515. The

CS:GO server is installed on the game server, see figure 3.1 and sub section 3.4.1.4.

3.4.1.6 Minecraft

Minecraft is the second game generating traffic for this thesis. The transport layer

protocol for Minecraft game traffic is TCP. The game is installed on the client’s

PC with default settings. This includes graphical settings on high and a render

distance of 12 chunks. The game version during the time of this thesis is 1.20

Java edition. The Minecraft server is installed on the Game Server, see figure 3.1

and sub section 3.4.1.4.

3.4.2 Loggers

The Raspberry Pi takes care of latency and iPerf3 measurements that run over a

longer period. It also logs the results for later post-processing. The client PC and

Game Server logs the game traffic and TCP ping measurements.

3.4.2.1 Tshark

Tshark [50] is a network protocol analyzer, which is used to capture data from a

live network. The Tshark package is included in the standard Wireshark install.

The output is either displayed in a command line interface or written to a file in

PCAP format. Tshark works much like the tcpdump tool, however, with Tshark a

duration parameter can be used. This makes the code easier and cleaner, which

is the reason we chose Tshark and not tcpdump. It can also be used to estimate

RTT on captured TCP traffic which needs to be in PCAP format. It is estimated

26

based on the timestampwhen a packet is sent and the timestamp of the first ACK.

Tshark (version 3.0.2 for Windows and version 2.6.8 for Linux) is installed on

both the client PC and the server.

3.4.2.2 iPerf3 Logs

iPerf3-logs output some viable results. These are outputted in intervals that can

be set by the host and client. The default interval is 1 second, however, intervals

can be set as low as 0.1 seconds. The iPerf logs can be stored as normal text files

and accessed later for post-processing.

3.4.2.3 YrWeather API

To gather real-time weather data for the experiments, we used the API fromMET

Norway [31] with the parameters for longitude, latitude, and altitude in table 3.6:

Latitude 58.937

Longitude 5.698

Table 3.6: MET Api parameters

We got a JSON response from the API and selected the momentary forecast data

to include in our experiments. Here are some of the values that can be extracted

from the JSON:

1. Cloud coverage

2. Temperature

3. Wind

4. Precipitation

3.4.2.4 Available Satellites

To measure the distance of satellites relative to a position, an API from N2YO

[28] returns what satellites are in view in JSON format as shown in figure 3.7.

27

The table 3.7 shows the input required for the API.

Parameter Type Required Comments

Latitude Float Yes Ground latitude(decimal degree format)

Longitude Float Yes Ground longitude(decimal degree format)

Altitude Integer Yes Ground altitude above sea level in meter

Search radius Integer Yes Search radius(0-90)

Category ID Integer Yes Id of satellite category

Table 3.7: Required input for the API. Category ID for Starlink is 52.

Figure 3.7: Snippet of results from API: https://api.n2yo.com/rest/v1/satellite/
above/58.937/5.698/63.0/65/52apiKey=. API key is needed to do this request.

From the response in figure 3.7 we can extract the satlat, satlng, and satalt from

the satellites in view and calculate the distance from the dish. The satid can be

used to identify which satellite is concerned. To calculate the distance from the

satellites to a position on Earth we used Haversine formula [48]:

28

a = sin2(∆latitude/2) + cos(earthLatitude)

∗ cos(satelliteLatitude) ∗ sin2(∆longtitude/2)
(i)

c = 2 ∗ a tan 2(
√
a,
√
1− a) (ii)

Distance = EarthRadius ∗ c (iii)

This equation takes in position in latitude, longitude, and same positions for the

satellite. Then distance is calculated with the radius of the Earth. This formula is

converted to Python code shown in the appendix A.11.

3.4.3 Experiment Automation

As the list of experiments gets longer, the need for automation increases. This

can make the experiments much more efficient and time-saving. It also allows

for repeatability, to make sure that experiments are always repeated under the

same conditions.

3.4.3.1 Python Scripts

By using Python, automation of various tests can be done. The way this is set up

for this thesis is through a Command Line Interface (CLI) script on the host con-

troller from figure 3.2. When executing this script it first displays a set of options,

these show the tests that are available. Then, depending on which option is cho-

sen, it takes in some parameters that need to be set before the automated test can

run. Operations like SSH, writing results to files, storing results in corresponding

folders, executing tasks concurrently, logs to a log file, and so on. For lighter tests

that run on the Raspberry Pi, single Python scripts on the device are executed.

3.4.3.2 Libraries

1. Pyshark

Pyshark [23] is awrapper for Tshark. It allows for packet parsing using

Python. Pyshark was used to parse game capture PCAP files

29

2. Scapy

Scapy [37] is a Python library for packet manipulation. In our case, we

used Scapy to alter IP addresses and ports of packets in PCAP files

3. Matplotlib

Matplotlib [45] is a Python library for visualization

4. Fabric

Fabric [13] is a Python library used to do shell commands over SSH

5. Scipy

Scipy [7] is a library for mathematical algorithms and equations built

on the Python library Numpy [32]

3.4.3.3 File structure

This section seeks to provide a summary of the different folders and files for the

thesis including diagrams and tables. In the tables, the code is referenced from

the appendix for a more convenient overview.

Figure 3.8: General flow of test automation

30

Log commands
and errors to

a logfile

main.py

Select test
option:
CS:GO

Concurrently
SSH

Input:
DURATION
FILENAME

Wait for client to connect:
Start tshark capture
save as FILENAME

Host Controller

CS:GO
config file

if client connected:

Wait for client
to connect:

Start tshark capture
save as FILENAME

Wait for client
to connect:

RTT to server
save as FILENAME

Client
192.168.1.154

capture_traffic.py

Start CS:GO
server

Game server
152.94.120.57

psping.py

logger.py
capture_traffic.py

if test complete:

Run concurrent SSH
commands to start

RTT measurements and
traffic capture for

DURATION amount
of seconds.

if test crash:See logfile for errors

Extract results from
Game server and

Client

Figure 3.9: Flowchart of an automated test for a single CS:GO run

Figure 3.8 displays how the general flow of the test automation functions for the

experiments. Figure 3.9 shows amore concrete example of how a run of CS:GO is

tested. Figure 3.10 shows the file structure, containing folderswith Python scripts

and server configuration files.

31

main.py CsGo Minecraft

Config file Config file

Distance Pcap Plotping_test.py StarlinkMap.pypsping.py

calculate_distance_
and_satellites.py

pcap_file_
processing.py

CreateResults
Plots.py

Experiments Post-
Processing Server

Setup

config.pycapture_traffic.py game_latency.py yr_api.pyiperf_cbr.py logger.pygame_servers.py

Figure 3.10: Diagram of the folders and files used in the thesis

Table 3.8 shows the files in the experiments folder 3.10, with a description of what

the files do.

Reference File name Description

A.5 main.py Where test automation code runs

A.6 ping_test.py RTT measurement automation script

A.7 psping.py RTT measurement using PsPing tool

A.8 StarlinkMap.py Satellite API request

Table 3.8: Contents of the Experiment folder, files for running experiments

The table 3.9 shows the files used for post-processing located under the folder

32

post-processing 3.10.

Reference File name Description

A.9 pcap_file_processing.py Extracting and accessing PCAP files

A.11 calculate_distance_and_satellites.py Script for calculating satellite distance

A.10 CreateResultsPlots.py All plots for results

Table 3.9: Contents of the Post-processing folder, files to do post-processing of
data and plotting

The setup table 3.10 contains Python files for setup before an experiment run.

Reference File name Description

A.12 capture_traffic.py Capture traffic

A.13 config.py Config for experimental scripts

A.14 game_latency.py Sets up Ping script over ssh

A.15 game_servers.py Starting game server over ssh

A.16 Iperf_cbr.py Setup for running iPerf experiment

A.17 logger.py Setup for logger

A.18 yr_api.py Setup for yr api

Table 3.10: Contents of the Setup folder, files to setup the experiments

Server config files are listed in table 3.11, which shows the config files for the

CS:GO and Minecraft server.

Reference File name Description

A.1 CS:GO DefaultProperties Default properties for CS:GO server

A.2 CS:GO ServerProperties Server Properties for CS:GO server

A.3 Minecraft DefaultProperties Default properties for Minecraft server

A.4 Minecraft ServerProperties Server properties for Minecraft server

Table 3.11: Contents of the Server folder, files to configure the game server

33

3.4.4 Post Processing

After the experiment automation process, the results need to be processed. The

results vary from PCAP files to normal text files, so, therefore, a set of functions

in Python is created to handle the different results. These functions do everything

from pattern matching to generating plots. Most of the post-processing happens

on a host controller, however, some of the results are processed on other ma-

chines.

3.4.4.1 Game Capture

All game traffic was captured and stored in PCAP files. A Python script (see A.9)

was thenwritten to extract certain data fromdifferent packet fields. All fields that

can be accessed are found in the Pyshark GitHub repository [23].

The script starts by importing the Pyshark library:

import pyshark

Amethod in Pyshark called ”FileCapture” was then used to read the PCAP file and

assign it to a variable. Next, there are two methods:

"get_tcp_data"

and

"get_udp_data"

that filters packets based on their transport layer field. The packets can then be

filtered by source and destination IP addresses by using the method:

"get_pkts_by_ip"

The methods:

"list_of_pkts_per_second"

and

34

"list_of_bytes_per_second"

return lists of the number of packets and a number of bytes sent per second re-

spectively. The main section of the script in A.9 is an example of processing a

CS:GO game and generating lists of bytes per second sent between the server and

the client.

3.4.4.2 Text files

Processed data was written into text files to make analysis and visualization eas-

ier. For RTTmeasurements and Constant Bit Rate (CBR) tests, RTT and through-

put values were parsed andwritten to text files. As for packet and byte rate values,

once calculated, were written to text files. All text files were structured in a way

where there is one value for each line in the file.

3.4.4.3 Synthetic Packet Pairs

Synthetic Packet Pairs (SPP) is a CLI tool developed by the Centre for Advanced

Internet Architecture [2] to measure RTT based on network data captured at the

sender and receiver end, without the need for clock synchronization. It provides

passive RTT measurement which means that it does not require running simul-

taneously to the network capture. This tool works on Linux and FreeBSD based

and is installed on a separate machine running FreeBSD.

The way that it works: SPP uses two measurement points or MP’s, MPref (ref-

erence) and MPmon (monitor). Both MP’s capture the network traffic of inter-

est(sent and received), for example using Tshark. SPP takes in two PCAP files as

input, one for eachMP. It also needs the corresponding IP address for each of the

MPs. For every recorded packet bothMPref andMPmon log a timestamp (ts) rep-

resenting when the packet was captured, and a short ’Packet ID’ (PID). The PID

is calculated from a hash function (e.g. CRC32) over key bytes within the packet.

SPP creates two lists for each of the MPs. One packet within the list consists of

a PID and a timestamp. The two lists are then combined to identify packet pairs

and calculate RTT.

35

Figure 3.11: SPP packet pairing algorithm

To better explain the packet pair algorithm a short-hand notation needs to be

defined. tj ,i where t represents the timestamp, i represents MPref (r) or MPmon

(m), and j represents the first (1) or second (2) packet of a packet pair. In figure

3.11 we see an example of how the algorithm works. SPP assumes that a packet

is used in at most one packet pair. It also searches for the closest packet pair

where tm,2 > tm,1. Once a packet pair has been discovered, the RTT calculation

is straightforward, as shown in figure 3.12 [52].

RTT = (tr,2 − tr,1 − (tm,2 − tm,1))

Figure 3.12: SPP RTT calculation equation

3.4.4.4 Visualization

To visualize the results gathered from the experiments the Matplotlib Python li-

brary was used as described in 3.4.3.2. We usedMatplotlib to create quality plots

from data collected after each experiment.

To begin using Matplotlib in Python, start by including this line in the Python

file:

import Matplotlib.pyplot as plot

This command will import the pyplot library fromMatplotlib and make it usable

in the code.

36

For some of the data collected, the need for smoothness was apparent. To smooth

out data, we used aPython library called Scipy [7] 3.4.3.2 and imported it like this:

import Scipy.signal.savgol_filter as sc

This code line imports the Savitzky-Golay filter used to smooth out data. This

filter takes in 3 important parameters: Data (array), window length, and poly

order.

3.4.5 Other Setup Configurations

3.4.5.1 Security

Because the server hosts games, the network has to open ports to let traffic in and

out. This leaves a vulnerability, the opened ports can be exploited if not handled

correctly. Underneath is a list of security measures that are applied:

1. SSH keys are generated for the machines that use SSH to access the server

2. SSH as the root user is disabled

3. SHH using a password is disabled (only SSH keys accepted)

4. Default SSH port (22) is closed

5. Firewalld installed and blocks traffic from all ports except the ones used for

the games

6. A Crowdsec bouncer is installed to block unwanted IP addresses that try to

access through the opened ports

3.4.5.2 Difficulties

During this thesis, we encountered difficulties. Some related to one of the tools

that were used, and others to the network. The difficulties and how they were

solved are listed underneath:

1. The SPP tool was not compatible with Debian 11. To be able to use the SPP

tool it was installed on another computer running FreeBSD (not the server

37

in figure 3.2 as initially intended). FreeBSD contrary to Debian 11 is com-

patible with SPP. This resulted in moving the files that needed to be pro-

cessed by SPP to the FreeBSD computer, and then copying them back after

they have been processed.

2. Another problem occurred when SPP for the first time processed the cap-

tured traffic and outputted nothing. Starlink is operating with Network Ad-

dress Translation, which means that IP addresses and ports are logically

changed between the endpoints. This results in SPP not recognizing the IP

addresses and ports for the different endpoints in the two PCAP files, hence

not returning any output.

To solve this problem Scapy from 3.4.3.2 is used. With this library, we can

manipulate IP addresses and ports in the PCAP files so that theymatch, this

way SPP can successfully measure packet pairs.

3. ICMP packets are blocked into the UiS network where the game server is

connected. This created some complications regarding RTTmeasurements

for the server. To solve this issue TCP ping was used instead. This allowed

for RTT measurement with TCP packets instead of ICMP.

4. We experienced difficulties with measuring packet loss in the Minecraft

game data. With TCP as the transport protocol, the TCP agent will retrans-

mit lost segments. TCPpacket loss can thereby be interpreted as an increase

in latency [35]. Given this and this project’s time restraints, we decided to

prioritize latency and throughput measurements of Minecraft game traffic.

38

Chapter 4

Experiments and Results

To conduct this research, a set of scenarios have been created. Most of the sce-

narios contain sub-scenarios for a more in-depth study. The results are mainly

divided into two parts, one part for baseline measurements, and one for online

gaming measurements. The table 4.1 shows a brief overview of the different sub-

scenarios.

Scenarios Description

4.1.1 Baseline latency

4.1.2 Available satellites

4.1.3 CBR measurements

4.1.4 VBR measurements

4.2.1 CS:GO single run

4.2.2 CS:GO all runs

4.2.3 Minecraft single run

4.2.4 Minecraft all runs

Table 4.1: Summary of sub scenarios

4.1 Scenario 1 - Baseline measurements

Scenario 1 will run baseline measurements of the Starlink broadband service.

This includes RTT, constant bit rate tests, variable bit rate tests with different

congestion control algorithms, and throughput. This will indicate how Starlink

performs. For each of these experiments, the client device will always be at UiS

39

directly connected to the Starlink router.

4.1.1 Ping Starlink Gateway

Latency can play a huge part when it comes to online gaming. This experiment

seeks to find the RTT from a host to the first hop back on earth from the Starlink

satellites. See figure 3.1 for the topology. The host for this experiment will be a

Raspberry Pi. Traceroute will be used to find the Starlink gateway IP address, and

then the host uses ping to send an ICMP echo request to this IP. This way we get

an estimate of RTT over the Starlink satellites. The experiment runs for 24 hours

sending bursts of 1000 ICMP echo requests with one-second intervals, every 15

minutes. This process will be automated through a Python script.

4.1.2 Overview over available satellites

Distance to the satellite can play a big role in round trip time, and when hands-

on/off satellite switching is happening. To get a better understanding of what is

happening, this experiment investigates the correlation between the distance of

the closest satellites and RTT.

As per 4.1.1, we used Starlink gateway as the address used as the receiver for

Ping. This experiment runs for 500 seconds with an ICMP request every second.

Parallel to the Ping running, to get an overview of what satellites are available

each second, an API 3.4.2.4 request is sent. This API returns a JSON 3.7 of every

satellite in view, with information on latitude, longitude, and altitude. From this

information, the distance of the closest satellite is calculated in Python.

The Python script A.8 shows the process of running the API request and Ping

concurrently, and the Python script A.11 calculates the results afterward.

4.1.3 Constant Bit Rate

This experiment aims to measure the packet loss of the Starlink service when

there is constant traffic. This will be done through a 24-hour-long CBR test. By

utilizing iPerf, the server from figure 3.2 will send UDP traffic with a constant bit

rate of 10, 20, and 30 Mbps. Two times an hour, within the 24-hour window, a

40

5-minute run is carried out for each bit rate value. Therefore, each hour is rep-

resented with two runs of 5 minutes with a 30-minute interval in between, this

counts for all bit rate values. See figure 4.1 for an example of a one-hour window.

The cloud coverage, during the test, will also be recorded and displayed adjacent

to the packet loss. This experiment gets automated through a Python script on

the Raspberry Pi.

Figure 4.1: One hour window of how CBR experiments execute

4.1.4 Variable Bit Rate

Unlike the CBR test, this Variable Bit Rate (VBR) test aims tomeasure throughput

over Starlink with different congestion control algorithms, see figure 4.8. The

algorithms that will be used are Reno, Cubic, Bottleneck Bandwidth, and Round-

trip propagation time (BBR). Again by utilizing iPerf the server from figure 3.2

will send traffic, but this time it is going to use the TCP protocol, not UDP. The

experiments will run for 60 seconds for each congestion control algorithm.

Figure 4.2: iPerf server sending TCP traffic using different congestion control
algorithms

41

4.2 Scenario 2 - Gaming measurements

Scenario 2 aims to measure the gaming QoS on two different games. The games

that will be played are CS:GO and Minecraft. Each game will have ten runs con-

sisting of five minutes of game-play. This results in four sub-scenarios, two for a

closer look at a single run for both games and two for a wider look at all the runs

for both games. All the runs are going to be played on the client PC, and hosted

on the game server in figure 3.2. Traffic will be captured along with latency mea-

surements.

4.2.1 CS:GO Single Run

This sub-scenario will take a closer look at a single five-minute run of CS:GO over

Starlink. Metrics such as RTT, throughput, and packet loss will be measured. To

have some comparison, a similar five-minute run will be carried out over the ter-

restrial internet. Since the CS:GO game traffic is UDP, and to be able to measure

RTT and packet loss, capturing of the packets needs to be done on both the client

and server end. For this task, Tshark is going to be used. To ensure that the traffic

capture starts and stops at the same time, this process will be automated using

SSH from a host controller in a Python script, see figure 3.2. For RTT measure-

ments two different tools will be utilized, TCP ping and SPP. These are also going

to be automated using Python.

4.2.2 CS:GO All Runs

This experiment is similar to the CS:GO single-run scenario with regards to met-

rics and automation, however, it will look at all ten runs. It will look at averages

over the different runs. This is to get a general understanding of how the traffic

behaves over multiple runs and whether Starlink is stable enough or not.

4.2.3 Minecraft Single Run

Like CS:GO single run, this experiment will also look at a single five-minute run

of Minecraft over Starlink. The metrics to be measured are RTT and throughput.

TCP ping and Tshark will be used formeasuring RTT, and Tshark for game traffic

capture. This processwill be automatedusingPython scripts alongwith SSH from

42

a host controller, see figure 3.2. A comparison between Starlink and terrestrial

RTT will also be added.

4.2.4 Minecraft All Runs

This experiment will also look at all ten runs, only for Minecraft. it will look at

averages over the different runs, and go through the samemetrics as forMinecraft

single run. This is to give an idea that Starlink is capable of playing Minecraft.

4.3 Results

This section presents the results for the different scenarios. They are represented

as plots with some describing text on what we see.

4.3.1 Ping Starlink Gateway Results

Figure 4.3 is a single run gathered from all of the runs which are displayed in

figure 4.4. One ICMP echo request is sent every second for 1000 seconds. The

test started at 16:00Monday 6. march 2023 and ended at 06:45Tuesday 7. march

2023.

43

0 200 400 600 800 1000
Time (s)

20

40

60

80

100

120
RT

T
(m

s)

RTT to Starlink gateway
Raw Ping data
Smoothed data

Figure 4.3: RTT measurement to Starlink gateway with one echo request each
second for 1000 seconds. The smoothing filter used is Scipy´s Savgol filter with
a window length of 21

44

16
:0

0:
03

16
:1

5:
06

16
:3

0:
08

16
:4

5:
11

18
:0

0:
16

18
:1

5:
18

18
:3

0:
01

18
:4

5:
03

20
:0

0:
09

20
:1

5:
11

20
:3

0:
13

20
:4

5:
16

22
:0

0:
02

22
:1

5:
04

22
:3

0:
06

22
:4

5:
08

00
:0

0:
14

00
:1

5:
16

00
:3

0:
18

00
:4

5:
01

02
:0

0:
06

02
:1

5:
09

02
:3

0:
11

02
:4

5:
13

04
:0

0:
19

04
:1

5:
01

04
:3

0:
04

04
:4

5:
06

06
:0

0:
11

06
:1

5:
14

06
:3

0:
16

06
:4

5:
18

Time

25

30

35

40

45

50

55

RT
T

(m
s)

RTT to Starlink gateway

Figure 4.4: Ping test to Starlink gateway. The boxes are configured with 10th and
90th percentiles. Each box contains a measurement of one ICMP request every
second for 1000 seconds

From the collective data 4.4 we see the trends of the orange line (median) and

green arrowhead (mean) is contained in a relatively smallwindowof around 10ms.

The data was captured from Monday 6. to Tuesday 7. March 2023. The weather

on this run was stable, with no clouds and no precipitation.

45

4.3.2 Overview over available satellites results

0 100 200 300 400 500
Time (s)

0

200

400

600

800

1000

1200

1400

Di
st

an
ce

 (k
m

)

Starlink satellite distance and latency
STARLINK-1925
STARLINK-3045

STARLINK-3084
STARLINK-3569

STARLINK-3599
STARLINK-3603

STARLINK-5153
STARLINK-5178

20

40

60

80

100

120

140

RT
T

(m
s)

RTT RTT smoothed

Figure 4.5: Satellite distance from Starlink dish location 3.3.4, together with re-
sult from ping to Starlink gateway (100.64.0.1). The smoothing filter used is
Scipy´s Savgol filter with a window length of 30 on the RTT

Figure 4.5 shows the satellites in view at the same time as the latency experiment.

This is a 500 seconds run of RTT measurements to a Starlink gateway and API

request to gather satellite positional data. For the RTT graph, a smoothed line is

added with a filter 3.4.4.4 to aid visualization. The figure shows satellites coming

in/out of view at given times, with overlapping distances from the ground. The

satellites stay in view up to a distance of around 1200 km. In the time interval of

500 seconds, we see eight different satellites in view.

4.3.3 Constant Bit Rate Results

In figure 4.6 and 4.7 the packet loss median stays consistently at zero percent,

however, the mean varies a bit around one percent. The runs were measured at

05.April 2023.

46

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7
Time at day

0

1

2

3

4

5

6

7

Pa
ck

et
 lo

ss
 %

Constant bitrate with 10 Mbps bitrate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cl
ou

d
co

ve
r

(a) CBR 10 Mbps

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7
Time at day

0

1

2

3

4

5

6

7

Pa
ck

et
 lo

ss
 %

Constant bitrate with 20 Mbps bitrate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cl
ou

d
co

ve
r

(b) CBR 20 Mbps

Figure 4.6: Constant bitrate baseline run with 10 Mbit/s and 20 Mbit/s, 2nd y-
axis shows the cloud cover value from each run. Each run is a 5-minute test and
started at 09.00 05.04.2023. The boxes are configured with 10th and 90th per-
centiles. The purple dot is the cloud cover value, and the green is the average
measurement

47

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7
Time at day

0

1

2

3

4

5

6

7
Pa

ck
et

 lo
ss

 %

Constant bitrate with 30 Mbps bitrate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cl
ou

d
co

ve
r

Figure 4.7: Constant bitrate baseline run with 30 Mbit/s, 2nd y-axis shows the
cloud cover value from each run. Each run is a 5-minute test and started at 09.00
05.04.2023. The boxes are configuredwith 10th and 90th percentiles. The purple
dot is the cloud cover value, and the green is the average measurement

The figures 4.6and 4.7 shows experiments described in scenario 4.1.3. These fig-

ures display a constant bit rate test with fixed bandwidth, packet loss in percent,

and cloud coverage on the y-axis.

48

4.3.4 Variable Bit Rate Results

0 10 20 30 40 50 60
Time(s)

0

2000

4000

6000

KB
yt

es

Cwnd Reno

0 10 20 30 40 50 60
Time(s)

0

100

200

300

M
bi

ts
/s

Reno Throughput

0 10 20 30 40 50 60
Time(s)

0

500

1000

1500

KB
yt

es

Cwnd Cubic

0 10 20 30 40 50 60
Time(s)

0

100

200

300

M
bi

ts
/s

Cubic Throughput

0 10 20 30 40 50 60
Time(s)

0

2000

4000

6000

KB
yt

es

Cwnd BBR

0 10 20 30 40 50 60
Time(s)

0

100

200

300

M
bi

ts
/s

BBR Throughput Smoothed

Figure 4.8: VBR downlink test with Reno, Cubic, and BBR, for 60 seconds each
with 0.1-second interval. BBR throughput is smoothed with a window length of
18. TheCongestionWindow (cwnd) is on the server endpoint, and the throughput
is measured on the receiving end

Figure 4.8 shows the results of experiment 4.1.4 with a variable bit rate. The

figure displays the usage of three different congestion controls: Reno, Cubic, and

BBR. Cwnd and throughput results of each Congestion Control Algorithm (CCA)

are plotted against each other. Reno’s throughput gradually steps down until it

stabilizes at around35Mbit/s. The same canbe observed forCubic until it reaches

a throughput of approximately 20 Mbits/s. BBR, however, achieves an average

throughput of 131 Mbit/s.

49

4.3.5 CS:GO Single Run Results

The results for this run are taken from run number 9. See figure 4.14.

0 50 100 150 200 250 300
Time (s)

50

75

100

125

150

RT
T

(m
s)

CSGO RTT SPP

Raw SPP data
SPP data smoothed
Average loss every 10 s

0 50 100 150 200 250 300
Time (s)

50

75

100

125

150

RT
T

(m
s)

CSGO RTT TCP ping

Raw TCP ping data
TCP ping data smoothed
Average loss every 10 s

0.0

2.5

5.0

7.5

10.0

12.5

Pa
ck

et
 lo

ss
(%

)

0.0

2.5

5.0

7.5

10.0

12.5

Pa
ck

et
 lo

ss
(%

)
Figure 4.9: RTT measurements over Starlink during a CS:GO run using SPP and
PsPing (TCP ping). Smoothed using Scipy’s Savgol filter with a window length of
respectively 1000 and 22. This gives a window length factor of around 15

In figure 4.9 and 4.10 we observe that RTT measurements for SPP has more data

points (around 15 000) than that of TCP ping. TCP pingmeasures RTT once every

second which equals 300 data points in both figures. The RTT over Starlink with

SPP ranges between 70-120ms with spikes up to 150ms, and the RTT with TCP

ping ranges between 70-110ms.

For the terrestrial run in figure 4.10 the RTTwith SPP ranges between 3-6mswith

spikes up to 15ms, whereas the RTT with TCP ping ranges between 4-7ms.

50

0 50 100 150 200 250 300
Time (s)

0

5

10

15

20

RT
T

(m
s)

CSGO RTT SPP

Raw SPP data
SPP data smoothed

0 50 100 150 200 250 300
Time (s)

0

5

10

15

20

RT
T

(m
s)

CSGO RTT TCP ping

Raw TCP ping data
TCP ping data smoothed

Figure 4.10: RTT measurements over terrestrial internet during a CS:GO run us-
ing SPP and PsPing (TCP ping). Same smoothing method and window lengths as
in figure 4.9

0 50 100 150 200 250 300
Time (s)

70

75

80

85

90

95

100

105

RT
T

(m
s)

SPP data smoothed
TCP ping data smoothed

Figure 4.11: Smoothed RTT data from SPP and TCP ping in figure 4.9

51

In figure 4.11 we see that the smoothed results from TCP ping and SPP follow

a similar trend, however, the TCP ping data averages a bit lower than the SPP

data. Note that SPP is measuring RTT on the actual game traffic (passive mea-

surement), whereas TCP ping is an active measurement that sits on top of the

game traffic.

0 100 200 300
Time (s)

0

20

40

60

80

100

RT
T

(m
s)

SPP

Terrestrial
Starlink

0 100 200 300
Time (s)

0

20

40

60

80

100

RT
T

(m
s)

PsPing

Terrestrial
Starlink

Figure 4.12: Comparison of RTT (measured with PsPing (TCP ping) and SPP) in
CS:GO between Starlink and terrestrial

Figure 4.12 is showing a comparison of RTT in terrestrial and Starlink networks,

on a CS:GO gaming run. The terrestrial RTT is much more stable and consistent

than the Starlink network. The difference in RTT on this run is in general around

70ms.

In figure 4.13 we see a five-minute run of CS:GO on Starlink and over terrestrial

internet. The throughput on the two runs differs with 61 Kbit/s. On the terres-

trial link, there is virtually no packet loss compared to Starlink that have around

1% on average. The RTT (measured with TCP ping) on Starlink stays regularly

between 70-100ms, and for the terrestrial run, it stays between 4-6ms.

52

200

300

400

500

Kb
it/

s

CSGO Starlink downlink

Avg recieved 335 Kbit/s

200

300

400

500

Kb
it/

s

CSGO Terrestrial downlink

Avg recieved 274 Kbit/s

Time(s)
0

1

2

3

4

Pa
ck

et
 lo

ss
(%

) Packet loss every 10s

Time(s)
0

1

2

3

4

Pa
ck

et
 lo

ss
(%

) Packet loss every 10s

0 50 100 150 200 250 300
Time(s)

60

80

100

RT
T(

m
s)

TCP ping 1s interval

0 50 100 150 200 250 300
Time(s)

0

2

4

6

8
RT

T(
m

s)

TCP ping 1s interval

Figure 4.13: Downlink throughput, packet loss, and RTT in a single CS:GO run
for Starlink and terrestrial internet. PsPing (TCP ping) is used to measure RTT

4.3.6 CS:GO All Runs Results

The CS:GO game data was captured onMarch 27th, consisting of ten five-minute

captures. The mean is represented as arrowheads and the median is a line.

53

1 2 3 4 5 6 7 8 9 10
Run number

70

75

80

85

90

95

100

RT
T

(m
s)

CSGO runs RTT measured with psping

1 2 3 4 5 6 7 8 9 10
Run number

70

75

80

85

90

95

100

RT
T

(m
s)

CSGO runs RTT measured with SPP

Figure 4.14: PsPing (TCP ping) and SPP is used to measure RTT for all CS:GO
runs. Distribution edges are set to 10 and 90 percentile

In figure 4.14 it is evident that the two box plots share a similar pattern. Here we

also notice that the RTT data from SPP is slightly higher than that of TCP ping.

SPP results in amedian of around 83ms, and for TCP ping it is slightly lower with

a median of around 80ms.

54

1 2 3 4 5 6 7 8 9 10
Run number

150

200

250

300

350

400
Kb

it/
s

Downlink
Recieved

1 2 3 4 5 6 7 8 9 10
Run number

150

200

250

300

350

400

Kb
it/

s

Sent

Figure 4.15: CS:GO downlink Bitrate for ten runs with five minutes each, the
boxes are configured with 10th and 90th percentiles

Figure 4.15 shows the traffic sent and received on the downlink. We see only a

negligible difference between the sent and the received traffic. This coincideswith

our findings for packet loss in 4.13 a single run, where the loss average is about

1%. The difference between the sent and received traffic seems to be consistent

for all the respective runs.

4.4 Minecraft Single Run Results

The results for the Minecraft data are from run number six in figure 4.20. All

smoothing methods of graphs use Scipy’s Savgol filter from the Scipy library [7].

55

0 50 100 150 200 250 300
Time (s)

0

50

100
RT

T
(m

s)

Minecraft RTT PsPing
Psping raw data
Smoothed data

0 50 100 150 200 250 300
Time (s)

0

50

100

RT
T

(m
s)

TCP raw data
Smoothed data

Minecraft RTT Tshark

Figure 4.16: RTTmeasuredwith PsPing (TCPping) andwithTshark from theTCP
packets. Grapsh are smoothed using Scipy’s Savgol filter with a window length of
20 and 1000

From figure 4.16 note that TCP ping measures the RTT once every second mean-

while the RTT of the TCP packets is measured for every packet sent in the game

capture (in this case containing 13436 data points). TCP ping measurements

show RTTs in a range of about 55ms on the lower end up to about 100ms on

the higher end. In the second graph, RTTs vary greater, with latency somewhere

between about 30ms and about 125ms. The median RTT is 75.55ms for the TCP

packets.

56

0 50 100 150 200 250 300
Time (s)

50

60

70

80

90

PsPing
Tshark

Corrolation between PsPing and Tshark

Figure 4.17: Corrolation plot between smoothed RTT measurement with PsPing
(TCP ping) and Tshark from TCP packets. Graphs are smoothed using Scipy’s
Savgol filter with a window length of respectively 20 and 1000.

Figure 4.17 is showing smoothed RTT from TCP packets and PsPing (TCP ping)

together. The graphs seem to have the same trends, although the TCP ping data

averages a slightly higher latency, the two share similar sudden ups and downs in

latency over the five minutes.

57

0 100 200 300
Time (s)

0

20

40

60

80

100

RT
T

(m
s)

Starlink
Terrestrial

0 100 200 300
Time (s)

0

20

40

60

80

100

RT
T

(m
s)

RTT PsPing

Starlink
Terrestrial

RTT Tshark

Figure 4.18: Comparison of RTT in Minecraft between Starlink and terrestrial
internet with measurement tools: Tshark and PsPing (TCP ping)

Figure 4.18 is showing a comparison of RTT in terrestrial and Starlink networks,

on a Minecraft gaming run. The terrestrial RTT is much more stable and consis-

tent than the Starlink network. The difference in RTT on this run is in general

around 70ms.

58

0 50 100 150 200 250 300
Time (s)

0

20

40

60
Kb

it/
s

Uplink Throughput
Avg 29 Kbit/s

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

2000

2500

Kb
it/

s

Downlink Throughput
Avg 329 Kbit/s

Figure 4.19: Minecraft uplink and downlink on run number 6 of Minecraft gam-
ing

The throughput on the links in figure 4.19 are asymmetrical. On the uplink, the

throughput lies mostly between 25 Kbit/s per second and 50 Kbit/s per second

with some exceptions. As for the downlink, the throughput is mostly in the range

of 10 Kbit/s per second to 20 Kbit/s, but it experiences significant traffic bursts of

up to about 2300 Kbit/s per second. Why this could be the case will be addressed

in the discussion section.

4.4.1 Minecraft All Runs Results

The Minecraft game data was captured on March 28th, consisting of ten five-

minute captures. In this section, our findings are represented in box plots. For

the plots, the distribution edges are set to 10 and 90, the mean is represented as

arrowheads and the median is displayed as a line.

Figure 4.20 shows RTT values using TCP ping and TCP packet measurements

for all the Minecraft game captures.

59

1 2 3 4 5 6 7 8 9 10
Run number

40

50

60

70

80

90

100
RT

T
(m

s)
Minecraft runs RTT measured with psping

1 2 3 4 5 6 7 8 9 10
Run number

40

50

60

70

80

90

100

RT
T

(m
s)

Minecraft runs RTT measured from TCP packages

Figure 4.20: RTT data from 10 Minecraft gaming runs, measured with PsPing
(TCP ping) and on TCP packets with Tshark. The boxes are configured with 10th
and 90th percentiles

Results show consistent RTTdistributionswith TCPpingmeasurements andwith

TCP measurements but to a lesser extent. Overall, neither of the plots appears to

be skewed in any direction. With TCP ping the median RTT ranges from 75ms to

85ms. As for the captured TCP data, median RTTs are slightly lower in a range

from 68ms to 79ms. Given the significantly larger data set, the second box plot

indicates a greater variance in RTT. Each box in the first plot consists of 300 RTT

values, whereas in the second plot, the boxes consist of about 13 thousand to 14

thousand RTT values.

Figures 4.21 and 4.22 show Kbits per second for all runs on the uplink and the

downlink respectively.

60

1 2 3 4 5 6 7 8 9 10
Run number

15

20

25

30

35

40
Kb

it/
s

Minecraft Uplink

Figure 4.21: Boxplot with Kbit/s on theUplink for 10 runs of gaming inMinecraft.
The boxes are configured with 10th and 90th percentiles

We see that throughput varies on the uplink. For instance, the difference in av-

erage Kbit per second between the second and the third run is close to 8 Kbit/s.

The median figure is in a range between 26 Kbit/s and 34 Kbit/s. It appears that

in half of the test runs the box plots are skewed upwards.

61

1 2 3 4 5 6 7 8 9 10
Run number

200

400

600

800

1000

1200
Kb

it/
s

Minecraft Downlink

Figure 4.22: Boxplot with Kbit/s on the Downlink with 10 runs of gaming in
Minecraft. The boxes are configured with 10th and 90th percentiles

The throughput on the downlink is affected by the extreme deviations in traffic

as mentioned in subsection 4.4 covering a singleMinecraft game capture. We see

that the median value on the downlink is between 100 Kbit/s to 160 Kbit/s. The

averages are skewed by the extreme server loads and vary from 200 Kbit/s up to

slightly above 600 Kbit/s.

62

Chapter 5

Discussion

5.1 Scenario 1 - Baseline measurements

5.1.1 Ping Starlink Gateway

The results from scenario 4.3.1 give a solid indication of the RTT over the Starlink

network which sits around 40msmost of the time. However, as seen in figure 4.3

it is coherent that the RTT is ramping up and down. A reason for this could be the

variation in the satellite distance. Since the satellite ismoving at great speeds, the

latency probably gets a little higher or lower depending on if the satellite ismoving

closer, or further away. It is also evident from figure 4.3 that there are some high

spikes up to 120ms, this could be because of the satellite hand-offs. Weather data

is not measured during this experiment due to clouds and rain not having any

impact on the speed of light, and therefore no impact on latency.

5.1.2 Overview over available satellites

From the results in figure 4.5 we see some spikes in the RTT. This happens when

the closest satellite is overtaken by another closer satellite which could indicate a

hand-off (switching). The study [22] finds packet loss when an overtaking satel-

lite comes closer than the previous closest satellite. A similar tendency could oc-

cur when we have spikes in the RTT.

As the satellites travel closer to our position at UiS, we can see a trend in lower

RTT, which can indicate a correlation between satellite distance andRTT. The op-

63

posite is the case when satellites travel further away from us, which can be seen

in figure 4.5 at around 300 seconds.

5.1.3 Constant Bit Rate

We can see from the results in figures 4.6 and 4.7 that the Starlink Satellite broad-

band service ismore than capable of delivering a stable connectionwith sufficient

bandwidth for online gaming. This experiment shows the combination of satellite

and terrestrial connection since the server receiving the CBR is located in theUiS.

Included in the plots is the cloud coverage for each run, which tells us that the

cloudiness does little to nothing for the packet loss in our case. Themedian shows

us that the packet loss stays mostly at the fixed rate of the selected bandwidth for

the experiment, but the average packet loss is above 1% across all runs and band-

widths. From other studies [10], it has been found packet loss is around 0.1% for

GEO satellites and LEO (Starlink) around 1.8%. This tells us that our connection

with Starlink is on the better side, compared to this study.

5.1.4 Variable Bit Rate

From figure 4.8 it is apparent that BBR outperforms both Reno and Cubic in

terms of throughput. The study in [16] about cellular networks informs that it

has been tested that BBR outperforms Cubic and NewReno in terms of through-

put and latency trade-off. Another paper [22] shows that BBR achieves much

higher throughput over Starlink than other CCAs such as Cubic, Reno, Veno, and

Vegas. BBR, in this study, achieves a throughput of 55% of the capacity com-

pared to Cubic and Reno which achieve respectively 37% and 30%. The same

paper [22] reports that Starlink’s satellite hand-offs introduce packet loss. This

could explain why there is such a drop in throughput in both Reno and Cubic.

By the nature of how those two (Reno and Cubic) algorithms work, they drop the

sending rate of packets based on loss detection. The way Cubic and Reno lower

the sending rate is by adjusting the cwnd, when the loss is detected the cwnd is

reduced by half. They also have a slow start followed by increasing the sending

rate rapidly. Although the two share similar patterns, the way the cwnd is incre-

mented differs. For Reno, this results in a linear recovery state, whichmeans that

64

the cwnd is incremented linearly. For Cubic the recovery state resembles more

that of a cubic function, hence the name Cubic. These characteristics for Reno

and Cubic can be seen in figure 4.8.

BBR, however, factors in latency rather than packet loss, and attempts to utilize

as much bandwidth as possible. If the latency increases significantly it indicates

that buffer queues are full and the sending rate of packets needs to be paused un-

til the queues are emptied. This is also referred to as ”draining” the queues. This

results in sudden drops in the cwnd which also can be seen in figure 4.8.

5.2 Scenario 2 - Gaming measurements

5.2.1 CS:GO

Based on the results from scenario 4.2.1 it is noticeable that CS:GO does not re-

quiremuch bandwidth. On average for a five-minute run of a classic Deathmatch,

the download throughput sits around 300 Kbit/s which translates to 0.3 Mbit/s.

From the results in scenario 4.3.3 there is barely any packet loss at 10, 20, and 30

Mbit/s on the downlink. In figure 4.13 we see an average packet loss per ten sec-

ondsmostly around one percent. This study [33] says that the limit for acceptable

packet loss for FPS games is five percent, which makes Starlink a suitable Inter-

net Service Provider (ISP) for playing CS:GO in terms of packet loss.

The throughput for Starlink compared to terrestrial internet is roughly the same,

but there is slightly less on terrestrial as can be seen in figure 4.13. This is proba-

bly because the in-game maps that was played were different. The terrestrial test

was done only ten km away from UiS, which explains the RRT of around 4ms.

Before investigating further into the RTT, it is worth mentioning that the game

server the client connects to is located at University in Stavanger. This means

that the traffic travels from UiS through the Starlink satellite network, back to

Earth (probably somewhere in Germany based on the angle of the dish), and fi-

nally back to UiS through terrestrial internet. The average RTT from UiS to the

closest hops near the Starlink gateways in Germany is about 30ms.

65

In figure 4.9 the RTT results from SPP shows some significant spikes. They seem

to appear quite regularly and can be caused by satellite hand-offs as shown in

figure 4.5. However, some spikes in SPP data can also be seen in the terrestrial

run.

5.2.2 Minecraft

In figure 4.17, Tshark and PsPing data are shown together to illustrate that their

trends in RTT values are correlated, thus validating our measurements. Figure

4.16 shows that RTT changes frequently, with highs up to about 125ms and lows

at about 30ms. We speculate these changes in RTT may be caused by satellite

switching or Starlink gateway switching.

Figure 4.20 shows us the RTT with PsPing and Tshark for all of the Minecraft

runs. Here the boxplots display a trend in RTT with values mostly in the region

of 65-95ms. With 30ms of deviation between the 10th and the 90th percentile

of latency, the distribution of RTTmeasurements appear promising in regards to

Starlink. As seen in a relevant study [19], latency up to 1000ms does not impact

gaming QoE, and another study [4] states that a latency of 250ms does start to

degrade the performance of the game. Measured against related works, our re-

sults prove that Starlink is capable of delivering adequate RTT for Minecraft.

We did compare gaming in Minecraft on both Starlink and terrestrial networks,

as can be seen in figure 4.18. This experiment shows us how big of a gap there is

in RTT between satellite and terrestrial connection, which is approximately 60-

70msmore on the satellite connection. When gaming on the satellite network, we

did not feel and noticed the high latency compared to the terrestrial connection.

The connection on Starlink did feel as seamless when gaming in Minecraft, as it

did on the terrestrial network.

Figure 4.19 shows the throughput Minecraft requires as displayed in the graph

of a single experiment run. We see that the average throughput on the downlink

stays at around 330 kbit/s which Starlink is more than capable of delivering. This

is still the case when the game traffic spikes to almost 2500 kbit/s which occurs

when players are exploring and rendering new world data in the game.

66

Minecraft utilizes an asymmetric downlink/uplink pattern which can be seen in

the figure displaying downlink and uplink 4.19 on the same single run. Here we

can see that the uplink is far lower than the downlink, which is comparable to the

asymmetrical links of the Starlink broadband.

5.2.3 Criteria

Table 5.1 shows a brief overview of the different metrics and their corresponding

criteria for CS:GO andMinecraft. It also shows our findings to check if the criteria

are satisfied.

Criteria Related work Our results Criteria met?

RTT CS:GO: < 60ms [33] 83ms No

RTT Minecraft: < 250ms [4] 80ms Yes

Throughput CS:GO: > 400 Kbit/s 4.15 150 Mbit/s Yes

Throughput Minecraft: > 2400 Kbit/s 4.19 150 Mbit/s Yes

Packet loss CS:GO: < 5% [6] 1% Yes

Table 5.1: QoS metric criteria for CS:GO and Minecraft

67

Chapter 6

Conclusions

This thesis has evaluated the Starlink broadband service for the following met-

rics: latency, throughput, and packet loss. These metrics were evaluated in base-

line experiments, and through online gaming experiments. This is to establish if

Starlink as an ISP meets the QoS criteria for CS:GO and Minecraft, this is shown

in table 5.1. Some online gaming experiments over the terrestrial internet have

also been done for comparison reasons. Additionally, we did an experiment to

figure out how the satellites move in/out of our Starlink dish view. This result

showed us the distance of satellites in correlation with a latency experiment in

parallel. The testbed used was rewired depending on the different scenarios, and

all of the experiments ran over some variation of automated Python scripts.

The results from this thesis offer some answers to the different research ques-

tions that were given in the introduction part. They also open up for some more

research regarding Starlink as an ISP for online gaming.

6.1 Answering the Research Questions

• RQ1: Does Starlink satisfy latency and bandwidth requirements for online

gaming?

Yes. Our results show that for both CS:GO andMinecraft the through-

put Starlink provides, is more than enough for playing these games.

One paper about Minecraft [4] points out that it tolerates RTTs up to

68

250ms. Our results show that Minecraft gameplay has on average a

RTT of around 80ms over Starlink. A study on CS:GO QoE [33] found

that forRRThigher than60ms, performance isdegrading. The results

for this thesis show that RTTs for CS:GO over Starlink are averaging

around 85ms. However, as mentioned in the discussion section, the

game server is located at UiS which adds an additional 30ms. When

connecting to official game servers hosted by Valve, CS:GO automati-

cally tries to find a serverwith the lowest possible latency. Thismeans

that the RTT would be substantially lower (probably in the 50-60ms

range) when connecting to an official game server, rather than con-

necting to the private hosted server at UiS.

• RQ2: Does Starlink produce significant packet loss with regard to online

gaming?

For CS:GO, yes. In table 5.1 we see that the packet loss criteria for

CS:GO isunder 5%. Our results haveproven that packet loss overStar-

link while playing CS:GO is roughly 1%, as shown in figure 4.13.

• RQ3: What are the differences in performance between terrestrial internet

access and Starlink?

The clear difference between Starlink and our terrestrial connection

is in the latency. Compared to the fiber-based terrestrial connection,

Starlink achieves delays that are 60 to 70ms higher. Regarding band-

width, both connections provide more than enough capacity for on-

line gaming. Lastly, the packet loss on the terrestrial network was

close to none while Starlink averaged at about 1%.

6.2 Future directions

To further discover the online gaming performance on Starlink, we propose con-

ducting thorough QoE surveys on online games. Further, we suggest testing the

Starlink broadband through a wider selection of online games and game genres.

69

Appendix A

Instructions to Compile and

Run System

Write your Appendix content here.

A.1 Server config files

A.1.1 CS:GO

1 ##################################
2 ######## Default Settings ########
3 ##################################
4 # DO NOT EDIT, ANY CHANGES WILL BE OVERWRITTEN!
5 # Copy settings from here and use them in either:
6 # common.cfg - applies settings to every instance.
7 # [instance].cfg - applies settings to a specific instance.
8

9 #### Game Server Settings ####
10

11 ## Predefined Parameters | https://docs.linuxgsm.com/configuration/
start-parameters

12 # https://docs.linuxgsm.com/game-servers/counter-strike-global-
offensive

13 gametype="0"
14 gamemode="0"
15 gamemodeflags="0"
16 skirmishid="0"
17 mapgroup="mg_active"

70

18 ip="0.0.0.0"
19 port="27015"
20 clientport="27005"
21 sourcetvport="27020"
22 steamport="26901"
23 defaultmap="de_mirage"
24 maxplayers="16"
25 tickrate="64"
26

27 ## Game Server Login Token (GSLT): Required
28 # GSLT is required for running a public server.
29 # More info: https://docs.linuxgsm.com/steamcmd/gslt
30 gslt=""
31

32 ## Workshop Parameters | https://developer.valvesoftware.com/wiki/
CSGO_Workshop_For_Server_Operators

33 # To get an API key visit - https://steamcommunity.com/dev/apikey
34 wsapikey=""
35 wscollectionid=""
36 wsstartmap=""
37

38 ## Server Parameters | https://docs.linuxgsm.com/configuration
39 /start-parameters#additional -parameters
40 startparameters="-game csgo -usercon -strictportbind -ip ${ip}
41 -port ${port} +clientport ${clientport}
42 +tv_port ${sourcetvport} +sv_setsteamaccount ${gslt}
43 -tickrate ${tickrate} +map ${defaultmap}
44 +servercfgfile ${servercfg} -maxplayers_override
45 ${maxplayers} +mapgroup ${mapgroup} +game_type
46 ${gametype} +game_mode ${gamemode} +sv_game_mode_flags
47 ${gamemodeflags} +sv_skirmish_id ${skirmishid}
48 +host_workshop_collection ${wscollectionid}
49 +workshop_start_map ${wsstartmap} -authkey ${wsapikey} -nobreakpad"
50

51 #### LinuxGSM Settings ####
52

53 ## LinuxGSM Stats
54 # Send useful stats to LinuxGSM developers.
55 # https://docs.linuxgsm.com/configuration/linuxgsm -stats
56 # (on|off)
57 stats="off"
58

59 ## Notification Alerts

71

60 # (on|off)
61

62 # Display IP | https://docs.linuxgsm.com/alerts#display-ip
63 displayip=""
64

65 # More info | https://docs.linuxgsm.com/alerts#more-info
66 postalert="off"
67

68 # Discord Alerts | https://docs.linuxgsm.com/alerts/discord
69 discordalert="off"
70 discordwebhook="webhook"
71

72 # Email Alerts | https://docs.linuxgsm.com/alerts/email
73 emailalert="off"
74 email="email@example.com"
75 emailfrom=""
76

77 # Gotify Alerts | https://docs.linuxgsm.com/alerts/gotify
78 gotifyalert="off"
79 gotifytoken="token"
80 gotifywebhook="webhook"
81

82 # IFTTT Alerts | https://docs.linuxgsm.com/alerts/ifttt
83 iftttalert="off"
84 ifttttoken="accesstoken"
85 iftttevent="linuxgsm_alert"
86

87 # Mailgun Email Alerts | https://docs.linuxgsm.com/alerts/mailgun
88 mailgunalert="off"
89 mailgunapiregion="us"
90 mailguntoken="accesstoken"
91 mailgundomain="example.com"
92 mailgunemailfrom="alert@example.com"
93 mailgunemail="email@myemail.com"
94

95 # Pushbullet Alerts | https://docs.linuxgsm.com/alerts/pushbullet
96 pushbulletalert="off"
97 pushbullettoken="accesstoken"
98 channeltag=""
99

100 # Pushover Alerts | https://docs.linuxgsm.com/alerts/pushover
101 pushoveralert="off"
102 pushovertoken="accesstoken"

72

103 pushoveruserkey="userkey"
104

105 # Rocket.Chat Alerts | https://docs.linuxgsm.com/alerts/rocket.chat
106 rocketchatalert="off"
107 rocketchatwebhook="webhook"
108 rocketchattoken=""
109

110 # Slack Alerts | https://docs.linuxgsm.com/alerts/slack
111 slackalert="off"
112 slackwebhook="webhook"
113

114 # Telegram Alerts | https://docs.linuxgsm.com/alerts/telegram
115 # You can add a custom cURL string eg proxy (useful in Russia) in "

curlcustomstring".
116 # For example "--socks5 ipaddr:port" for socks5 proxy see more in "curl

--help".
117 telegramapi="api.telegram.org"
118 telegramalert="off"
119 telegramtoken="accesstoken"
120 telegramchatid=""
121 curlcustomstring=""
122

123 ## Updating | https://docs.linuxgsm.com/commands/update
124 updateonstart="off"
125

126 ## Backup | https://docs.linuxgsm.com/commands/backup
127 maxbackups="4"
128 maxbackupdays="30"
129 stoponbackup="on"
130

131 ## Logging | https://docs.linuxgsm.com/features/logging
132 consolelogging="on"
133 logdays="7"
134

135 ## Monitor | https://docs.linuxgsm.com/commands/monitor
136 # Query delay time
137 querydelay="1"
138

139 ## ANSI Colors | https://docs.linuxgsm.com/features/ansi-colors
140 ansi="on"
141

142 #### Advanced Settings ####
143

73

144 ## Message Display Time | https://docs.linuxgsm.com/features/message-
display-time

145 sleeptime="0.5"
146

147 ## SteamCMD Settings | https://docs.linuxgsm.com/steamcmd
148 # Server appid
149 appid="740"
150 steamcmdforcewindows="no"
151 # SteamCMD Branch | https://docs.linuxgsm.com/steamcmd/branch
152 branch=""
153 betapassword=""
154 # Master Server | https://docs.linuxgsm.com/steamcmd/steam-master-

server
155 steammaster="true"
156

157 ## Stop Mode | https://docs.linuxgsm.com/features/stop-mode
158 # 1: tmux kill
159 # 2: CTRL+c
160 # 3: quit
161 # 4: quit 120s
162 # 5: stop
163 # 6: q
164 # 7: exit
165 # 8: 7 Days to Die
166 # 9: GoldSrc
167 # 10: Avorion
168 # 11: end
169 stopmode="9"
170

171 ## Query mode
172 # 1: session only
173 # 2: gamedig (gsquery fallback)
174 # 3: gamedig
175 # 4: gsquery
176 # 5: tcp
177 querymode="2"
178 querytype="protocol -valve"
179

180 ## Console type
181 consoleverbose="yes"
182 consoleinteract="yes"
183

184 ## Game Server Details

74

185 # Do not edit
186 gamename="Counter-Strike: Global Offensive"
187 engine="source"
188 glibc="2.15"
189

190 #### Directories ####
191 # Edit with care
192

193 ## Game Server Directories
194 systemdir="${serverfiles}/csgo"
195 executabledir="${serverfiles}"
196 executable="./srcds_run"
197 servercfgdir="${systemdir}/cfg"
198 servercfg="${selfname}.cfg"
199 servercfgdefault="server.cfg"
200 servercfgfullpath="${servercfgdir}/${servercfg}"
201

202 ## Backup Directory
203 backupdir="${lgsmdir}/backup"
204

205 ## Logging Directories
206 logdir="${rootdir}/log"
207 gamelogdir="${systemdir}/logs"
208 lgsmlogdir="${logdir}/script"
209 consolelogdir="${logdir}/console"
210 lgsmlog="${lgsmlogdir}/${selfname}-script.log"
211 consolelog="${consolelogdir}/${selfname}-console.log"
212 alertlog="${lgsmlogdir}/${selfname}-alert.log"
213 postdetailslog="${lgsmlogdir}/${selfname}-postdetails.log"
214

215 ## Logs Naming
216 lgsmlogdate="${lgsmlogdir}/${selfname}-script-$(date '+%Y-%m-%d-%H:%M:%

S').log"
217 consolelogdate="${consolelogdir}/${selfname}-console-$(date '+%Y-%m-%d

-%H:%M:%S').log"

Listing A.1: default properties for csgo server

1 ##################################
2 ####### Instance Settings ########
3 ##################################

75

4 # PLACE INSTANCE SETTINGS HERE
5 ## These settings will apply to a specific instance.
6 defaultmap="de_dust2"
7 gslt="7A5801E75278DB8BD7B6D1AFB9BD3883"
8 gametype="1"
9 gamemode="2"
10 gamemodeflags="32"
11 maxplayers="32"

Listing A.2: server properties for csgo server

A.1.2 Minecraft

1 ##################################
2 ######## Default Settings ########
3 ##################################
4 # DO NOT EDIT, ANY CHANGES WILL BE OVERWRITTEN!
5 # Copy settings from here and use them in either:
6 # common.cfg - applies settings to every instance.
7 # [instance].cfg - applies settings to a specific instance.
8

9 #### Game Server Settings ####
10

11 ## Predefined Parameters | https://docs.linuxgsm.com/configuration
12 /start-parameters
13 javaram="1024" # -Xmx$1024M
14

15 ## Server Parameters | https://docs.linuxgsm.com/configuration
16 /start-parameters#additional -parameters
17 startparameters="nogui"
18

19 ## Release Settings | https://docs.linuxgsm.com/game-servers
20 /minecraft#release-settings
21 # Branch (release|snapshot)
22 branch="release"
23 # Version (latest|1.16)
24 mcversion="latest"
25

26 #### LinuxGSM Settings ####
27

28 ## LinuxGSM Stats

76

29 # Send useful stats to LinuxGSM developers.
30 # https://docs.linuxgsm.com/configuration/linuxgsm -stats
31 # (on|off)
32 stats="off"
33

34 ## Notification Alerts
35 # (on|off)
36

37 # Display IP | https://docs.linuxgsm.com/alerts#display-ip
38 displayip=""
39

40 # More info | https://docs.linuxgsm.com/alerts#more-info
41 postalert="off"
42

43 # Discord Alerts | https://docs.linuxgsm.com/alerts/discord
44 discordalert="off"
45 discordwebhook="webhook"
46

47 # Email Alerts | https://docs.linuxgsm.com/alerts/email
48 emailalert="off"
49 email="email@example.com"
50 emailfrom=""
51

52 # Gotify Alerts | https://docs.linuxgsm.com/alerts/gotify
53 gotifyalert="off"
54 gotifytoken="token"
55 gotifywebhook="webhook"
56

57 # IFTTT Alerts | https://docs.linuxgsm.com/alerts/ifttt
58 iftttalert="off"
59 ifttttoken="accesstoken"
60 iftttevent="linuxgsm_alert"
61

62 # Mailgun Email Alerts | https://docs.linuxgsm.com/alerts/mailgun
63 mailgunalert="off"
64 mailgunapiregion="us"
65 mailguntoken="accesstoken"
66 mailgundomain="example.com"
67 mailgunemailfrom="alert@example.com"
68 mailgunemail="email@myemail.com"
69

70 # Pushbullet Alerts | https://docs.linuxgsm.com/alerts/pushbullet
71 pushbulletalert="off"

77

72 pushbullettoken="accesstoken"
73 channeltag=""
74

75 # Pushover Alerts | https://docs.linuxgsm.com/alerts/pushover
76 pushoveralert="off"
77 pushovertoken="accesstoken"
78 pushoveruserkey="userkey"
79

80 # Rocket.Chat Alerts | https://docs.linuxgsm.com/alerts/rocket.chat
81 rocketchatalert="off"
82 rocketchatwebhook="webhook"
83 rocketchattoken=""
84

85 # Slack Alerts | https://docs.linuxgsm.com/alerts/slack
86 slackalert="off"
87 slackwebhook="webhook"
88

89 # Telegram Alerts | https://docs.linuxgsm.com/alerts/telegram
90 # You can add a custom cURL string eg proxy (useful in Russia) in "

curlcustomstring".
91 # For example "--socks5 ipaddr:port" for socks5 proxy see more in "curl

--help".
92 telegramapi="api.telegram.org"
93 telegramalert="off"
94 telegramtoken="accesstoken"
95 telegramchatid=""
96 curlcustomstring=""
97

98 ## Updating | https://docs.linuxgsm.com/commands/update
99 updateonstart="off"
100

101 ## Backup | https://docs.linuxgsm.com/commands/backup
102 maxbackups="4"
103 maxbackupdays="30"
104 stoponbackup="on"
105

106 ## Logging | https://docs.linuxgsm.com/features/logging
107 consolelogging="on"
108 logdays="7"
109

110 ## Monitor | https://docs.linuxgsm.com/commands/monitor
111 # Query delay time
112 querydelay="1"

78

113

114 ## ANSI Colors | https://docs.linuxgsm.com/features/ansi-colors
115 ansi="on"
116

117 #### Advanced Settings ####
118

119 ## Message Display Time | https://docs.linuxgsm.com/features/message-
display-time

120 sleeptime="0.5"
121

122 ## Stop Mode | https://docs.linuxgsm.com/features/stop-mode
123 # 1: tmux kill
124 # 2: CTRL+c
125 # 3: quit
126 # 4: quit 120s
127 # 5: stop
128 # 6: q
129 # 7: exit
130 # 8: 7 Days to Die
131 # 9: GoldSrc
132 # 10: Avorion
133 # 11: end
134 stopmode="5"
135

136 ## Query mode
137 # 1: session only
138 # 2: gamedig (gsquery fallback)
139 # 3: gamedig
140 # 4: gsquery
141 # 5: tcp
142 querymode="2"
143 querytype="minecraft"
144

145 ## Console type
146 consoleverbose="yes"
147 consoleinteract="yes"
148

149 ## Game Server Details
150 # Do not edit
151 gamename="Minecraft"
152 engine="lwjgl2"
153 glibc="null"
154

79

155 #### Directories ####
156 # Edit with care
157

158 ## Game Server Directories
159 systemdir="${serverfiles}"
160 executabledir="${serverfiles}"
161 preexecutable="java -Xmx${javaram}M -jar"
162 executable="./minecraft_server.jar"
163 servercfgdir="${systemdir}"
164 servercfg="server.properties"
165 servercfgdefault="server.properties"
166 servercfgfullpath="${servercfgdir}/${servercfg}"
167

168 ## Backup Directory
169 backupdir="${lgsmdir}/backup"
170

171 ## Logging Directories
172 logdir="${rootdir}/log"
173 gamelogdir="${systemdir}/logs"
174 lgsmlogdir="${logdir}/script"
175 consolelogdir="${logdir}/console"
176 lgsmlog="${lgsmlogdir}/${selfname}-script.log"
177 consolelog="${consolelogdir}/${selfname}-console.log"
178 alertlog="${lgsmlogdir}/${selfname}-alert.log"
179 postdetailslog="${lgsmlogdir}/${selfname}-postdetails.log"
180

181 ## Logs Naming
182 lgsmlogdate="${lgsmlogdir}/${selfname}-script-$(date '+%Y-%m-%d-%H:%M:%

S').log"
183 consolelogdate="${consolelogdir}/${selfname}-console-$(date '+%Y-%m-%d

-%H:%M:%S').log"

Listing A.3: default properties for minecraft server

1 #Minecraft server properties
2 #Wed Apr 19 09:49:20 CEST 2023
3 enable-jmx-monitoring=false
4 level-seed=
5 rcon.port=27016
6 enable-command-block=false
7 gamemode=survival

80

8 enable-query=true
9 generator -settings={}
10 enforce-secure-profile=true
11 level-name=world
12 motd=LinuxGSM
13 query.port=27017
14 pvp=true
15 generate-structures=true
16 max-chained-neighbor-updates=1000000
17 difficulty=easy
18 network-compression -threshold=256
19 max-tick-time=60000
20 require-resource -pack=false
21 max-players=20
22 use-native-transport=true
23 online-mode=true
24 enable-status=true
25 allow-flight=false
26 initial-disabled -packs=
27 broadcast -rcon-to-ops=true
28 view-distance=10
29 max-build-height=256
30 server-ip=152.94.120.57
31 resource-pack-prompt=
32 allow-nether=true
33 server-port=27015
34 enable-rcon=false
35 sync-chunk-writes=true
36 op-permission -level=4
37 prevent-proxy-connections=false
38 hide-online-players=false
39 resource-pack=
40 entity-broadcast -range-percentage=100
41 simulation -distance=10
42 player-idle-timeout=0
43 rcon.password=adminvpuplYWH
44 force-gamemode=false
45 rate-limit=0
46 hardcore=false
47 white-list=false
48 broadcast -console-to-ops=true
49 spawn-npcs=true
50 spawn-animals=true

81

51 snooper-enabled=true
52 function-permission -level=2
53 initial-enabled-packs=vanilla
54 level-type=default
55 text-filtering -config=
56 spawn-monsters=true
57 enforce-whitelist=false
58 resource-pack-sha1=
59 spawn-protection=16
60 max-world-size=29999984

Listing A.4: server properties for minecraft server

A.2 Code

A.2.1 Experiments

1 from setup.game_servers import CSGOServer , MinecraftServer
2 from setup.iperf_cbr import run_iperf_cbr_udp , filter_iperf_cbr_udp
3 from setup.yr_api import yr
4 from setup.config import SERVER_IP , CS_PORT, MINECRAFT_PORT
5 from setup.loggers import clear_log , log
6 from setup.capture_traffic import CSGOClientCapture , CSGOServerCapture ,

MinecraftCapture
7 from setup.game_latency import ping_client_server
8 from colorama import Fore, Style
9 from multiprocessing import Process
10

11 import time
12 import sys
13

14

15 if __name__ == "__main__":
16

17 tests = ["iperf_cbr", "iperf_tcp", "csgo_capture", "mc_capture"]
18 print("")
19

20 clear_log()
21

22 for i in tests:
23 print(Fore.GREEN + i)

82

24

25 print(Fore.WHITE + "")
26

27 while True:
28 test_option = input(Fore.WHITE + "Choose one of the test

options above: ").lower().strip()
29

30 if test_option not in tests:
31 print(Fore.RED + "Invalid option: " + test_option)
32 continue
33 log(f"Test option: {test_option}")
34 break
35

36 print("")
37

38 while True:
39 test_duration = input(Fore.WHITE + "Enter test duration in

seconds: ")
40

41 try:
42 test_duration = int(test_duration.strip())
43 except ValueError:
44 print(Fore.RED + "Invalid duration , not an interger: " +

test_duration)
45 continue
46 log(f"Test duration: {test_duration}")
47 break
48

49 print("")
50

51 while True:
52 test_iterations = input(Fore.WHITE + "Enter test iterations: ")
53

54 try:
55 test_iterations = int(test_iterations.strip())
56 except ValueError:
57 print(Fore.RED + "Invalid iteration , not an interger: " +

test_iterations)
58 continue
59 log(f"Test iterations: {test_iterations}")
60 break
61

62 print("")

83

63

64 while True:
65 if test_option == "iperf_cbr":
66

67 test_iperf_stream = input("Upload or download test(up/down)
?: ").lower()

68 if test_iperf_stream == "up":
69 revert = True
70 elif test_iperf_stream == "down":
71 revert = False
72 else:
73 revert = False
74

75 test_bandwidth = input(Fore.WHITE + "Enter test bandwidth
in Mbps: ")

76 try:
77 test_bandwidth = int(test_bandwidth)
78 except ValueError:
79 print(Fore.RED + "Invalid bandwidth , not an interger: "

+ test_iterations)
80 continue
81 log(f"Test bandwidth: {test_bandwidth}")
82

83 break
84

85

86 if test_option == "csgo_capture":
87

88 cs_server = CSGOServer("2", "de_dust2")
89

90 log("Starting CSGO-server")
91

92 try:
93 cs_server.start_csgo_server()
94 except TimeoutError:
95 log("FATAL ERROR: Failed to start CSGO-server, check ssh

connection")
96 sys.exit(0)
97 except:
98 log("CSGO-server already running")
99

100 input("Press 'Enter' when client is connected to the server: ")
101

84

102 log("Client is connected")
103

104 cs_server_capture = CSGOServerCapture(test_duration)
105 cs_client_capture = CSGOClientCapture(test_duration)
106

107 time_now_string = f"{time.localtime().tm_mday}-{time.localtime
().tm_mon}-{time.localtime().tm_hour}-{time.localtime().tm_min}"

108

109 for i in range(test_iterations):
110

111 if i > 0:
112 input("Press 'Enter' when client is connected to the

server: ")
113

114 filename = str(time.localtime().tm_mday)+"-"+str(time.
localtime().tm_mon)+"-"+str(time.localtime().tm_hour)+"-"+str(time.
localtime().tm_min)+"_"+str(i+1)

115

116 try:
117 yr(f"csgo_capture_{time_now_string}", i+1)
118 except:
119 log("FATAL ERROR: Failed to fetch yr weather statistics

")
120

121 log(f"Yr api weather measure complete run: {i+1}")
122

123 log(f"Starting CSGO capture on server and client run: {i+1}
")

124

125 try:
126 cs_server_capture_process = Process(target=

cs_server_capture.start_csgo_capture , args=[filename])
127 cs_server_capture_process.start()
128

129 cs_client_capture_process = Process(target=
cs_client_capture.start_csgo_capture , args=[filename])

130 cs_client_capture_process.start()
131

132 ping_process = Process(target=ping_client_server , args
=(SERVER_IP , test_duration , filename, CS_PORT))

133 ping_process.start()
134

135 cs_server_capture_process.join()

85

136 cs_client_capture_process.join()
137 ping_process.join()
138

139 except TimeoutError:
140 log("FATAL ERROR: Failed to capture CSGO-traffic, check

ssh connection")
141 sys.exit(0)
142

143 log(f"Capture run complete: {i+1}")
144

145 log("FINISHED! CSGO-capture complete")
146

147

148

149 if test_option == "iperf_cbr":
150 for i in range(test_iterations):
151 filename = str(time.localtime().tm_mday)+"-"+str(time.

localtime().tm_mon)+"-"+str(time.localtime().tm_hour)+"-"+str(time.
localtime().tm_min)+"_"+str(i+1)

152 run_iperf_cbr_udp(test_bandwidth , test_duration , filename ,
revert)

153

154

155

156 if test_option == "mc_capture":
157

158 mc_server = MinecraftServer()
159

160 log("Starting Minecraft -server")
161

162 try:
163 mc_server.start_mc_server()
164 except TimeoutError:
165 log("FATAL ERROR: Failed to start Minecraft -server, check

ssh connection")
166 sys.exit(0)
167 except:
168 log("Minecraft -server already running")
169

170 input("Press 'Enter' when client is connected to the server: ")
171

172 mc_capture = MinecraftCapture(test_duration)
173

86

174 time_now_string = f"{time.localtime().tm_mday}-{time.localtime
().tm_mon}-{time.localtime().tm_hour}-{time.localtime().tm_min}"

175

176 for i in range (test_iterations):
177

178 if i > 0:
179 input("Press 'Enter' when client is connected to the

server: ")
180

181 try:
182 yr(f"minecraft_capture_{time_now_string}", i+1)
183 except:
184 log("FATAL ERROR: Failed to fetch yr weather statistics

")
185

186 log(f"Yr api weather measure complete run: {i+1}")
187

188 log(f"Starting Minecraft run: {i+1}")
189 filename = str(time.localtime().tm_mday)+"-"+str(time.

localtime().tm_mon)+"-"+str(time.localtime().tm_hour)+"-"+str(time.
localtime().tm_min)+"_"+str(i+1)

190 mc_filename = "mc_ping_"+filename
191

192 try:
193 mc_capture_porcess = Process(target=mc_capture.

start_mc_capture , args=[filename])
194 mc_capture_porcess.start()
195

196 ping_process = Process(target=ping_client_server , args
=(SERVER_IP , test_duration , mc_filename , MINECRAFT_PORT))

197 ping_process.start()
198

199 mc_capture_porcess.join()
200 ping_process.join()
201

202 except TimeoutError:
203 log("FATAL ERROR: Failed to start Minecraft capture,

check ssh connection")
204 sys.exit(0)
205

206

207

208 if test_option == "iperf_tcp":

87

209 pass

Listing A.5: Main script

1 import subprocess
2 import time
3 import re
4 import matplotlib.pyplot as _plot
5 from setup.yr_api import yr
6

7 def ping(target, interval, burst_size):
8

9 command = "ping -i %s -c %s %s" % (interval , burst_size , target)
10 print(command)
11

12 dict = {}
13 errorList = []
14 connection = True
15 timeOfPing = time.asctime()
16 timeOut = 0
17

18 #If connection drops, it retries the ping
19 while connection:
20 try:
21 ping = subprocess.check_output(command, shell=True, stderr=

subprocess.STDOUT).decode("utf-8")
22 connection = False
23 except subprocess.CalledProcessError as e:
24 errorList.append(["error",e.stdout,time.asctime()])
25 print("error")
26 time.sleep(10)
27 timeOut += 1
28 if timeOut == 4:
29 connection = False
30

31 #Split ping data to list
32 try:
33 splitPingToList = re.split("\s", ping)
34 except:
35 splitPingToList = []
36

88

37 #Add time of ping and errors
38 dict["time"] = timeOfPing
39 dict["error"] = errorList
40

41 #Add pings to dict
42 dict["ping"] = []
43 for i in splitPingToList:
44 if re.search("^time=", i):
45 float_ping = round(float(i[5:]), 1)
46 dict["ping"].append(float_ping)
47 if re.search("^packet",i):
48 dict["loss"] = splitPingToList[splitPingToList.index(i)-1]
49

50 #Get weather information
51 try:
52 weather = yr()
53 dict["cloud"] = str(weather["shortIntervals"][0]["symbol"]["

clouds"])
54 dict["uv"] = str(weather["shortIntervals"][0]["uvIndex"]["value

"])
55 except:
56 dict["cloud"] = "No data"
57 dict["uv"] = "No data"
58 return dict
59

60

61 def dayRun(stopdate , stophour):
62 nowDate = time.localtime().tm_mday
63 nowHour = time.localtime().tm_hour
64 counter = 0
65

66 while nowDate < stopdate or nowHour < stophour:
67 if time.localtime().tm_hour % 2 == 0:
68 if time.localtime().tm_min % 15 == 0:
69 #Get dictionary with pings and data
70 dict = ping("100.64.0.1", 0.5, 1000)
71

72 file = open(f'{counter}','w')
73 file.write(dict["time"] + "\t" + "cloud:" + dict["cloud

"] + "\t" + "uv:" + dict["uv"] + "\t" + "loss:" + dict["loss"] + "\
n")

74

75 for index in range(len(dict["ping"])):

89

76 file.write(str(dict["ping"][index])+ "\n")
77 file.close()
78

79 if len(dict["error"]) > 0:
80 file = open(f'error_{dict["time"]}','w')
81 for i in range(len(dict["error"])):
82 file.write(str(dict["error"][i]))
83 file.close()
84

85 counter += 1
86 nowDate = time.localtime().tm_mday
87 nowHour = time.localtime().tm_hour
88 else:
89 print("15 min sleep")
90 nowDate = time.localtime().tm_mday
91 nowHour = time.localtime().tm_hour
92 time.sleep(20)
93 else:
94 print("hour sleep")
95 nowDate = time.localtime().tm_mday
96 nowHour = time.localtime().tm_hour
97 time.sleep(20)

Listing A.6: Python script to run ping script

1 import subprocess
2 import sys
3

4 args = sys.argv[1:]
5

6 def psping(target, duration , filename):
7

8 pingList = subprocess.run(f"psping -n {duration}s {target} ",stdout=
subprocess.PIPE, shell=True).stdout.decode("utf-8")

9

10 file = open(f"psping{filename}.txt","w")
11

12 line = pingList.splitlines()
13 for i in line[8:-4]:
14 splittedLine = i.split(" ")
15 file.write(str(splittedLine[5][:-2]) + "\n")

90

16

17 file.close()
18

19 psping(args[0], args[1], args[2])
20 #psping("152.94.120.57:27015","5","3")

Listing A.7: Main script

1 from multiprocessing import Process
2 import subprocess
3 import time
4 from urllib import request
5 from setup.config import LATITUDE, LONGTIDUDE , ALTITUDE, DEG,

N2YO_API_URL , STARLINK_CATEGORY
6

7 def closest_sat():
8 key ="xxxxx"
9 index = 0
10 file = open("satellitesMap.txt", "w")
11 while index < 500:
12 if time.localtime().tm_sec % 2 == 0:
13 index += 1
14 response = request.get(f"{N2YO_API_URL}above/{LATITUDE}/{

LONGTIDUDE}/{ALTITUDE}/{DEG}/{STARLINK_CATEGORY}&apiKey={key}").
json()

15 file.write(str(response)+"\n")
16 file.close()
17

18 def ping():
19

20 file = open("satellitePing.txt", "w")
21 runPing = subprocess.run(f"ping -n 500s 100.64.0.1",stdout=

subprocess.PIPE, shell=True).stdout.decode("utf-8")
22 file.write(runPing)
23 file.close()
24

25 def main():
26

27 satellite_map = Process(target=closest_sat)
28 satellite_map.start()
29

91

30 ping_map = Process(target=ping)
31 ping_map.start()
32

33 satellite_map.join()
34 ping_map.join()

Listing A.8: Python script to run API for satellite distance measurment

A.2.2 Post processing

A.2.2.1 PCAP files

1 import pyshark
2 from datetime import datetime
3 import matplotlib.pyplot as plt
4

5 pathToFileTcp = "" # Path to tcp pcap file
6

7 # Specified path to Pcap-file
8 pathToFileClient = ""
9 pathToFileServer = ""
10 iteration = 10
11

12 # Returns a list of packets filtered by provided source and dst IP
addresses

13 def get_pkts_by_ip(list, ipSrc, ipDst):
14 listPackets = []
15

16 # Assigns source and destination IPs for every packet in a list to
two variables.

17 for packet in list:
18 try:
19 ipExists = packet.ip.src
20 except:
21 pass
22 try:
23 ipExist = packet.ip.dst
24 except:
25 pass
26 # Checks if packet IPs matches IPs we are filtering for
27 if ipExists == ipSrc and ipExist == ipDst:

92

28 listPackets.append(packet)
29

30 return listPackets
31

32

33 # Returns Pcap-file from specified path
34 def capture(path):
35 cap = pyshark.FileCapture(path)
36 return cap
37

38 # Returns Pcap-file of only TCP retransmission packets
39 def capture_file_tcp_retransmit(path):
40 cap = pyshark.FileCapture(path, display_filter='tcp.analysis.

retransmission')
41 return cap
42

43 # Returns a list of all captured UDP data
44 def get_udp_data(capFile):
45 udpData = []
46 for packet in capFile:
47 if packet.transport_layer == "UDP":
48 udpData.append(packet)
49 #might need try/except
50 return udpData
51

52 # Returns a list of all captured TCP data
53 def get_tcp_data(capFile):
54 tcpData = []
55 for packet in capFile:
56 if packet.transport_layer == "TCP":
57 tcpData.append(packet)
58 #might need try/except
59 return tcpData
60

61 # Writes a single value to the end of a txt file.
62 # You need to specify your path and fileNum represents the iteration

number
63 def write_single_variable_to_txt(path, variable , fileNum):
64 f = open(f"{path}_{fileNum}.txt", "a+")
65 f.write(f"{variable}"+ "\n")
66 f.close()
67

68

93

69 # Returns a list of lists where each list contains the amount of
packets sent in a single second

70 def list_of_pkts_per_second(someList):
71 megaList = []
72 newList = []
73 nextSeconds = 0
74 currSeconds = 0
75

76 newList.append(someList[0])
77

78 for i in range(len(someList) - 1):
79 # Parses the time field of the packet to seconds and compares

it to the seconds of the next packet
80 currSeconds = int(someList[i].sniff_time.second)
81 nextSeconds = int(someList[i+1].sniff_time.second)
82 if nextSeconds != currSeconds:
83 # Appends the list if they are inequal, empties the

concurrent list and appends the next packet to it.
84 megaList.append(newList)
85 newList = []
86 newList.append(someList[i+1])
87 else:
88 # The packets are in the same second and appends the packet

.
89 newList.append(someList[i+1])
90

91 return megaList
92

93 # Returns a list of lists where each list contains the sum of bytes in
a single second

94 def list_of_bytes_per_second(someList):
95 megaList = []
96 newList = []
97 nextSeconds = 0
98 currSeconds = 0
99

100 newList.append(int(someList[0].length))
101

102 for i in range(len(someList) - 1):
103 # Parses the time field of the packet to seconds and compares

it to the seconds of the next packet
104 currSeconds = int(someList[i].sniff_time.second)
105 nextSeconds = int(someList[i+1].sniff_time.second)

94

106 if nextSeconds != currSeconds:
107 # If inequal, sums bytelengths of packets in the concurrent

list and appends it, empties the concurrent list and appends the
next packet to it.

108 sum = 0
109 for i in newList:
110 sum += i
111 megaList.append(sum)
112 newList = []
113 sum = 0
114 newList.append(int(someList[i+1].length))
115 else:
116 # If equal, appends packet to concurrent list.
117 newList.append(int(someList[i+1].length))
118

119 return megaList
120

121 # How to process a CSGO run with pcap files from both the client and
the server

122 # It writes bytes per second to txt files of specified paths
123

124 if __name__ == "__main__":
125 print("Analyzing packets...")
126

127 # IP addresses of the client and of the server. Used to filter out
game data

128 clientIp = ""
129 serverIp = ""
130

131 # Specify paths to write to
132 pathServerDataFromServer = ""
133 pathServerDataFromClient = ""
134 pathClientDataFromServer = ""
135 pathClientDataFromClient = ""
136

137 # Read server pcap file and extract UDP data
138 csgoDataServer = capture(pathToFileServer)
139 csgoUdpDataServer = get_udp_data(csgoDataServer)
140

141 # Read client pcap file and extract UDP data
142 csgoDataClient = capture(pathToFileServer)
143 csgoUdpDataClient = get_udp_data(csgoDataClient)
144

95

145 # Extract packets by specified client and server IPs.
146 serverDataFromServer = get_pkts_by_ip(csgoUdpDataServer ,serverIp,

clientIp)
147 serverDataFromClient = get_pkts_by_ip(csgoUdpDataServer ,clientIp,

serverIp)
148 clientDataFromServer = get_pkts_by_ip(csgoUdpDataClient ,serverIp,

clientIp)
149 clientDataFromClient = get_pkts_by_ip(csgoUdpDataClient ,clientIp,

serverIp)
150

151 # Get a list of lists of bytes per second for the game data
152 serverDataFromServerBytesPerSecond = list_of_bytes_per_second(

serverDataFromServer)
153 serverDataFromClientBytesPerSecond = list_of_bytes_per_second(

serverDataFromClient)
154 clientDataFromServerBytesPerSecond = list_of_bytes_per_second(

clientDataFromServer)
155 clientDataFromClientBytesPerSecond = list_of_bytes_per_second(

clientDataFromClient)
156

157

158 # Lastly, loop through the list of lists to get the number of bytes
each second and write it to a txt file.

159 # The txt file will be written to the specified path with the run
number in the end of it.

160 for listOfBytes in serverDataFromServerBytesPerSecond:
161 write_single_variable_to_txt(pathServerDataFromServer ,

listOfBytes , iteration)
162

163 for listOfBytes in serverDataFromClientBytesPerSecond:
164 write_single_variable_to_txt(pathServerDataFromClient ,

listOfBytes , iteration)
165

166 for listOfBytes in clientDataFromServerBytesPerSecond:
167 write_single_variable_to_txt(pathClientDataFromServer ,

listOfBytes , iteration)
168

169 for listOfBytes in clientDataFromClientBytesPerSecond:
170 write_single_variable_to_txt(pathClientDataFromClient ,

listOfBytes , iteration)

Listing A.9: Processing pcap files

96

A.2.2.2 Plot

1 import json
2 import os
3 import signal
4 import statistics
5 import matplotlib.pyplot as _plot
6 import numpy as np
7 import scipy.signal as sc
8 import pandas as pd
9 import statistics
10

11 #############################
12 #######Helper functions######
13 #############################
14 def return_minecraft_psping_measurment_list(path):
15 file = open(path, "r")
16 list = []
17 for i in file:
18 value = i.strip("\n")
19 if(float(value) < 250): # filter out outliers
20 list.append(float(value))
21 return list
22

23 def return_minecraft_tshark_measurmentlist(path):
24 file = open(path, "r")
25 list = []
26 lines = file.readlines()
27 for i in lines:
28 if float(i.strip("\n")) < 130:
29 list.append(float(i.strip("\n")))
30 else:
31 list.append(float(80))
32 return list
33

34 def psping_terrestrial_minecraft(path):
35 file = open(path, "r")
36 lines = file.readlines()
37 list = []
38 for line in lines:
39 list.append(float(line.strip("\n")))
40 file.close()

97

41

42 return list
43

44 def tshark_terrestiral_minecraft(path):
45 file = open(path, "r")
46 lines = file.readlines()
47 list = []
48 for line in lines:
49 list.append(float(line.strip("\n")))
50 file.close()
51

52 return list
53

54 def return_psping_measurment_list_from_minecraft_runs(path):
55 arr = os.listdir(path)
56 tcpping_list = []
57 for i in arr:
58 file = open(f"{path}/{i}", "r")
59 list = []
60 for i in file:
61 value = i.strip("\n")
62 if(float(value) < 250):
63 list.append(float(value))
64 tcpping_list.append(list)
65 return tcpping_list
66

67

68 def return_spp_measurment_list_from_minecraft_runs(path):
69 arr = os.listdir(path)
70 list = []
71 for i in arr[7:]:
72 file = open(f"{path}/{i}", "r")
73 lines = file.readlines()
74 list = []
75 for line in lines:
76 list.append(float(line.strip("\n")))
77

78 list.append(list)
79 return list
80

81 def return_csgo_psping_measurment_list(path):
82 arr = os.listdir(path)
83 tcpping_list = []

98

84 for i in arr:
85 file = open(f"{path}/{i}", "r")
86 list = []
87 for i in file:
88 value = i.strip("\n")
89 if(float(value) < 250):
90 list.append(float(value))
91 tcpping_list.append(list)
92 return tcpping_list
93

94

95 def return_csgo_spp_measurment_list(path):
96 arr = os.listdir(path)
97 tcpping_list = []
98 for i in arr:
99 file = open(f"{path}/{i}", "r")
100 list = []
101 for i in file:
102 value = i.strip("\n")
103 if round(float(value[-9:-1])*1000, 2) < 250:
104 list.append(round(float(value[-9:-1])*1000, 2))
105 tcpping_list.append(list)
106 return tcpping_list
107

108 def get_weather_from_cbr_run(path):
109 file = open(path, "r")
110 line = file.readlines()
111 list = []
112 counter = 1
113 for i in line:
114 if counter % 2 == 0:
115 a = i.split("\t")
116 list.append(int(a[0]))
117 counter += 1
118 return list
119

120 def box_plot(data, edge_color , fill_color):
121 bp = _plot.boxplot(data, whis=[10,90],patch_artist=True, showfliers

=False,showmeans=True)
122

123 for element in ['boxes', 'whiskers', 'fliers', 'means', 'medians',
'caps']:

124 _plot.setp(bp[element], color=edge_color)

99

125

126 for patch in bp['boxes']:
127 patch.set(facecolor=fill_color)
128

129 return bp
130

131 def CSGO_TCPping_list(path):
132 file = open(path, "r")
133 tcpping_list = []
134 for i in file:
135 value = i.strip("\n")
136 if(float(value) < 250):
137 tcpping_list.append(float(value))
138

139 y = np.array(tcpping_list)
140 return y
141

142 def get_packet_loss_percent(clientfile , serverfile):
143 clientFile_downlink = open(clientfile , "r")
144 serverFile_uplink = open(serverfile , "r")
145

146 server_lines = serverFile_uplink.readlines()
147 client_lines = clientFile_downlink.readlines()
148

149 client_list = []
150 server_list = []
151

152 for i in client_lines:
153 i.strip("\n")
154 if int(i) > 50:
155 client_list.append(int(i))
156 else:
157 client_list.append(64)
158

159 for i in server_lines:
160 i.strip("\n")
161 if int(i) > 50:
162 server_list.append(int(i))
163 else:
164 server_list.append(64)
165

166 packet_loss_list = []
167 counter = 0

100

168 num_of_packets_sent = 0
169 packet_loss = 0
170

171 while counter < 299:
172 for i in range(10): ## Adjust this range to set window length.
173 packet_loss += client_list[counter] - server_list[counter]
174 num_of_packets_sent += server_list[counter]
175 counter += 1
176 pl_percent = round(float(packet_loss/num_of_packets_sent*100),

2)
177 if pl_percent < 0:
178 packet_loss_list.append(0.0)
179 else:
180 packet_loss_list.append(pl_percent)
181 num_of_packets_sent = 0
182 packet_loss = 0
183

184 return(packet_loss_list)
185

186

187 #############################
188 #######Plot functions#######
189 #############################
190

191 ####### Baseline
##

192

193 def baseline_single_run_to_starlink_gateWay(path): # Create RTT plots
for a single run with baseline measurment to starlink gateway

194 runNumber = "20"
195 file = open(path, "r")
196 tcpping_list = []
197 for i in file.readlines()[1:]:
198 value = i.strip("\n")
199 if(float(value) < 250):
200

201 tcpping_list.append(round(float(value),2))
202

203 smoothendGraph = sc.savgol_filter(tcpping_list , window_length=21,
polyorder=3, mode="nearest")

204

205 _plot.plot(tcpping_list)

101

206 _plot.plot(smoothendGraph ,"r-",lw=1)
207 _plot.legend(["Raw Ping data", "Smoothed data"])
208 _plot.ylabel("RTT (ms)")
209 _plot.xlabel("Time (s)")
210 _plot.title("RTT to Starlink gateway")
211 _plot.xlim(0, 1000)
212 _plot.grid()
213 _plot.show()
214

215 def baseline_all_runs_to_starlink_gateway_box_plot(path): #Create RTT
plots for all baseline runs to starlink gateway

216 pingsTotalList = []
217 dateList = []
218 count = 0
219 TotalCount = 0
220

221 for i in range(0,32):
222 file = open(f"{path}/{i}", "r") # open files
223 lines = file.readlines()
224 pings = []
225

226 for line in lines[1:]:
227 TotalCount += 1
228 splittedLine = line.strip("\n")
229 if float(splittedLine) < 250:
230 pings.append(float(splittedLine))
231

232 if float(splittedLine) > 100:
233 count += 1
234

235 pingsTotalList.append(pings)
236

237 for data in lines[0:1]:
238 splittedData = data.split("\t")
239 date = splittedData[0]
240 dateList.append(date[11:19])
241 file.close()
242 print(f"Count: {count}, TotalCount = {TotalCount}")
243 print(dateList)
244 _plot.boxplot(pingsTotalList ,whis=[10,90],showfliers=False,

showmeans=True)
245 _plot.xticks(np.arange(1, len(dateList)+1), dateList , rotation=90)
246 _plot.xlabel("Time")

102

247 _plot.ylabel("RTT (ms)")
248 _plot.ylim(23,55)
249 _plot.title("RTT to Starlink gateway")
250 _plot.show()
251

252

253 ##### CsGo
##

254 def combine_psping_and_spp_all_csgo_runs(): # Combine RTT measurments
from CSGO runs

255 pspingList = return_csgo_psping_measurment_list("Ping")
256 sppList = return_csgo_spp_measurment_list()
257

258 fig, (ax1, ax2) = _plot.subplots(1, 2)
259

260 ax1.boxplot(pspingList , whis=[10,90], showfliers=False, showmeans=
True)

261 ax1.set_title("CSGO runs RTT measured with psping")
262 ax1.set_ylim(70,100)
263 ax1.set_xlabel("Run number")
264 ax1.set_ylabel("RTT (ms)")
265

266 ax2.boxplot(sppList, whis=[10,90], showfliers=False, showmeans=
True)

267 ax2.set_title("CSGO runs RTT measured with SPP")
268 ax2.set_ylim(70,100)
269 ax2.set_xlabel("Run number")
270 ax2.set_ylabel("RTT (ms)")
271

272 _plot.show()
273

274 def CSGo_starlink_spp_tcpping_loss_plot(path, path2,path3):
275

276 spp_ping_list = []
277

278 file = open(path, "r")
279

280 lines = file.readlines()
281 for line in lines:
282 spp_ping_list.append(round(float(line[-9:-1])*1000, 2))
283

284 _plot.rcParams['font.size'] = 13

103

285

286 y1 = np.array(spp_ping_list)
287 x1 = np.arange(0, 300, 50/2527)
288 yhat = signal.savgol_filter(y1, window_length=501, polyorder=3,

mode="nearest")
289

290 fig, (ax1, ax2) = _plot.subplots(2, 1)
291

292 y3 = packet_loss_percent(path2,
293 path3)
294 x3 = np.arange(5, 305, 10)
295

296 ax3 = ax1.twinx()
297 ax3.plot(x3, y3, "o", markersize="4", color="red",)
298 ax3.set_ylim(0, 13)
299 ax3.set_ylabel("Packet loss(%)")
300

301 ax1.plot(x1, y1, "-", markersize="5", label="SPP")
302 ax1.plot(x1, yhat, "-", lw=2, color="lime")
303 ax1.plot(x3, y3, "o", markersize="4", color="red",)
304 ax1.set_ylabel("RTT (ms)", fontsize=13)
305 ax1.grid()
306 ax1.set_xlim(0, 300)
307 ax1.set_ylim(40, 170)
308 ax1.legend(["Raw SPP data", "SPP data smoothed", "Average loss

every 10 s"], loc="upper center", fontsize=13)
309 ax1.set_xlabel("Time (s)", fontsize=13)
310 ax1.set_title("CSGO RTT SPP", fontsize=13)
311

312 y2 = CSGO_TCPping_list("psping27 -3-16-11_9.txt")
313 x2 = np.arange(0, len(y2))
314 yhat2 = signal.savgol_filter(y2, window_length=22, polyorder=3,

mode="nearest")
315

316 ax3 = ax2.twinx()
317 ax3.plot(x3, y3, "o", markersize="4", color="red")
318 ax3.set_ylim(0, 13)
319 ax3.set_ylabel("Packet loss(%)")
320

321 ax2.plot(x2, y2, "-", markersize=5)
322 ax2.plot(x2, yhat2, "-",lw=2, color="lime")
323 ax2.plot(x3, y3, "o", markersize="4", color="red")
324 ax2.set_ylabel("RTT (ms)", fontsize=13)

104

325 ax2.set_ylim(40,170)
326 ax2.set_xlim(0, 300)
327 ax2.grid()
328 ax2.legend(["Raw TCP ping data", "TCP ping data smoothed", "Average

loss every 10 s"], loc="upper center", fontsize=13)
329 ax2.set_xlabel("Time (s)", fontsize=13)
330 ax2.set_title("CSGO RTT TCP ping", fontsize=13)
331

332 _plot.subplots_adjust(hspace=0.5)
333 _plot.show()
334

335 def CSGO_terrestrial_spp_tcpping_plot(path):
336 tcpping_list = []
337

338 file = open(path, "r")
339

340 lines = file.readlines()
341 for line in lines:
342 tcpping_list.append(round(float(line[-9:-1])*1000, 2))
343

344 _plot.rcParams['font.size'] = 13
345

346 y1 = np.array(tcpping_list)
347 x1 = np.arange(0, 300, 100/6353)
348 yhat = signal.savgol_filter(y1, window_length=501, polyorder=3,

mode="nearest")
349

350 fig, (ax1, ax2) = _plot.subplots(2, 1)
351

352 ax1.plot(x1, y1, "-", markersize="5", label="SPP")
353 ax1.plot(x1, yhat, "-", lw=2, color="lime")
354 ax1.set_ylabel("RTT (ms)", fontsize=13)
355 ax1.grid()
356 ax1.set_xlim(0, 300)
357 ax1.set_ylim(0, 20)
358 ax1.legend(["Raw SPP data", "SPP data smoothed", "Average loss

every 10 s"], loc="upper center", fontsize=13)
359 ax1.set_xlabel("Time (s)", fontsize=13)
360 ax1.set_title("CSGO RTT SPP", fontsize=13)
361

362 y2 = CSGO_TCPping_list("psping1CSGOClient.txt")
363 x2 = np.arange(0, len(y2))
364 yhat2 = signal.savgol_filter(y2, window_length=22, polyorder=3,

105

mode="nearest")
365

366 ax2.plot(x2, y2, "-", markersize=5)
367 ax2.plot(x2, yhat2, "-",lw=2, color="lime")
368 ax2.set_ylabel("RTT (ms)", fontsize=13)
369 ax2.set_ylim(0,20)
370 ax2.set_xlim(0, 300)
371 ax2.grid()
372 ax2.legend(["Raw TCP ping data", "TCP ping data smoothed", "Average

loss every 10 s"], loc="upper center", fontsize=13)
373 ax2.set_xlabel("Time (s)", fontsize=13)
374 ax2.set_title("CSGO RTT TCP ping", fontsize=13)
375

376 _plot.subplots_adjust(hspace=0.5)
377 _plot.show()
378

379 def CSGO_downlink_starlink_terrestrial_rtt_packetloss_plot(client_path ,
server_path , terr_path , terr_ping_path , sl_ping_path ,

client_downlink_path , server_uplink_path , terr_downlink_path ,
terr_uplink_path):

380 clientFile = open(client_path , "r")
381 serverFile = open(server_path , "r")
382

383 terr_client = open(terr_path , "r")
384 terr_ping = open(terr_ping_path , "r")
385 sl_ping = open(sl_ping_path ,"r")
386

387 lines_client = clientFile.readlines()
388 lines_server = serverFile.readlines()
389 lines_terr = terr_client.readlines()
390 lines_terr_ping = terr_ping.readlines()
391 lines_sl_ping = sl_ping.readlines()
392

393 nyList1 = []
394 nyList2 = []
395 terr_list = []
396 terr_ping_list = []
397 sl_ping_list = []
398

399 for i in lines_client:
400 i.strip("\n")
401 if int(i) > 50:
402 nyList1.append(float(i)/1000*8)

106

403 else:
404 nyList1.append(64)
405

406 x1 = np.arange(0, len(nyList1), 1)
407 y1 = np.array(nyList1)
408

409 for i in lines_server:
410 i.strip("\n")
411 if int(i) > 50:
412 nyList2.append(float(i)/1000*8)
413 else:
414 nyList2.append(64)
415

416 mean_client = round(statistics.mean(nyList1))
417

418 for i in lines_terr:
419 i.strip("\n")
420 terr_list.append(float(i)/1000*8)
421

422 for i in lines_terr_ping:
423 i.strip("\n")
424 terr_ping_list.append(float(i))
425

426 for i in lines_sl_ping:
427 i.strip("\n")
428 sl_ping_list.append(float(i))
429

430 _plot.rcParams['font.size'] = 13
431

432 fig, ((ax1, ax4),(ax2, ax3),(ax6, ax5)) = _plot.subplots(3, 2,
sharex=True)

433 mean_terr = round(statistics.mean(terr_list))
434

435 ax1.plot(x1, y1)
436

437 ax2.set_xlabel("Time(s)", fontsize=13)
438 ax1.set_ylabel("Kbit/s", fontsize=13)
439

440 ax1.legend([f"Avg recieved {mean_client} Kbit/s"], fontsize=13, loc
='upper right')

441 ax1.set_title("CSGO Starlink downlink", fontsize=13)
442 ax1.set_ylim(151, 550)
443 ax1.grid()

107

444

445 y2 = packet_loss_percent(client_downlink_path ,
446 server_uplink_path)
447 x2 = np.arange(5, 305, 10)
448

449 ax2.plot(x2, y2, "ro", markersize="3")
450 ax2.legend(["Packet loss every 10s"], fontsize=13, loc='upper right

')
451 ax2.set_ylim(0, 4)
452 ax2.set_xlim(0, 300)
453 ax2.set_ylabel("Packet loss(%)", fontsize=13)
454 ax2.grid()
455

456 y3 = packet_loss_percent(terr_downlink_path ,
457 terr_uplink_path)
458 x3 = np.arange(5, 305, 10)
459

460 y4 = np.array(terr_list)
461 x4 = np.arange(0, 300)
462

463 ax3.plot(x3, y3, "ro", markersize="3")
464 ax3.set_ylim(0, 4)
465 ax3.set_ylabel("Packet loss(%)", fontsize=13)
466 ax3.legend(["Packet loss every 10s"], fontsize=13, loc='upper right

')
467 ax3.grid()
468 ax3.set_xlabel("Time(s)", fontsize=13)
469

470 ax4.set_title("CSGO Terrestrial downlink", fontsize=13)
471 ax4.set_ylabel("Kbit/s", fontsize=13)
472 ax4.plot(x4, y4)
473 ax4.legend([f"Avg recieved {mean_terr} Kbit/s"], fontsize=13, loc='

upper right')
474 ax4.set_ylim(151,550)
475 ax4.set_xlim(0,300)
476 ax4.grid()
477

478 y5 = np.array(terr_ping_list)
479 x5 = np.arange(0, 300)
480

481 ax5.plot(x5, y5)
482 ax5.set_ylabel("RTT(ms)", fontsize=13)
483 ax5.set_xlabel("Time(s)", fontsize=13)

108

484 ax5.legend(["TCP ping 1s interval"])
485 ax5.set_ylim(0, 9)
486 ax5.grid()
487

488 y6 = np.array(sl_ping_list)
489 x6 = np.arange(0, 300)
490

491 ax6.plot(x6, y6)
492 ax6.set_ylabel("RTT(ms)", fontsize=13)
493 ax6.set_xlabel("Time(s)", fontsize=13)
494 ax6.legend(["TCP ping 1s interval"])
495 ax6.grid()
496

497 _plot.subplots_adjust(hspace=0)
498 _plot.show()
499

500 def CSGO_compare_spp_tcpping(sppPath, tcppingPath):
501

502 spp_ping_list = []
503 spp_file = open(sppPath, "r")
504

505 lines = spp_file.readlines()
506 for line in lines:
507 spp_ping_list.append(round(float(line[-9:-1])*1000, 2))
508

509 tcpping_file = open(tcppingPath , "r")
510

511 tcpping_list = []
512 for i in tcpping_file:
513 value = i.strip("\n")
514 if(float(value) < 250):
515 tcpping_list.append(float(value))
516

517 y1 = np.array(spp_ping_list)
518 x1 = np.arange(0, 300, 50/2527)
519 yhat1 = signal.savgol_filter(y1, window_length=1000, polyorder=3,

mode="nearest")
520

521 x2 = np.arange(0, len(tcpping_list))
522 y2 = np.array(tcpping_list)
523 yhat2 = signal.savgol_filter(y2, window_length=22, polyorder=3,

mode="nearest")
524

109

525 _plot.plot(x1, yhat1, "r-", lw=2)
526 _plot.plot(x2, yhat2, "b-", lw=2)
527 _plot.legend(["SPP data smoothed", "TCP ping data smoothed"], loc="

upper left", fontsize=14)
528 _plot.xlabel("Time (s)")
529 _plot.ylabel("RTT (ms)")
530 _plot.xlim(0,300)
531 _plot.ylim(70, 105)
532

533 _plot.grid()
534 _plot.show()
535

536

537 ##### Minecraft runs
##

538

539 def combine_minecraft_single_run_rtt_plots(psPingPath , TsharkPath): #
Create RTT plots for a single run with minecraft measurments with
different RTT measurment tools

540 psPingList = return_minecraft_psping_measurment_list(psPingPath)
541 tsharkList = return_minecraft_tshark_measurmentlist(TsharkPath)
542

543 ## Uncomment if wanting terrestrial data
544 #tsharkList = RTTTerrestiralMinecraft()
545 #tsharkList = pspingTerrestrialMinecraft()
546

547 filteredPsPing = sc.savgol_filter(psPingList , window_length=11,
polyorder=3, mode="nearest")

548

549 filteredTshark = sc.savgol_filter(tsharkList , window_length=451,
polyorder=3, mode="nearest")

550

551 x2 = np.arange(0,300,300/len(tsharkList))
552

553 medianTCP = statistics.median(tsharkList)
554 print(medianTCP)
555

556 # create subplots with the two lists
557 fig, (ax1, ax2) = _plot.subplots(2)
558

559 ax1.plot(psPingList)
560 ax1.plot(filteredPsPing ,"r-",lw=1)

110

561 ax1.set_title("Minecraft RTT PsPing")
562 ax1.legend(["Psping raw data ","Smoothed data"],loc ="upper right")
563 ax1.set_ylim(0,140)
564 ax1.set_xlabel("Time (s)")
565 ax1.set_ylabel("RTT (ms)")
566 ax1.grid(True)
567 ax1.set_xlim(0,300)
568

569 ax2.plot(x2,tsharkList)
570 ax2.plot(x2,filteredTshark ,"r-",lw=1)
571

572 ax2.set_title("Minecraft RTT TcpPing")
573 ax2.set_ylim(0,140)
574 ax2.legend(["TCP raw data","Smoothed data"],loc ="upper right")
575 ax2.set_xlabel("Time (s)")
576 ax2.set_ylabel("RTT (ms)")
577 ax2.grid(True)
578 ax2.set_xlim(0,300)
579 _plot.show()
580

581

582 def combine_spp_and_psping_minecraft_runs(psPingPath , TsharkPath): #
Combine RTT measurments from Minecraft runs

583 pspingList = return_psping_measurment_list_from_minecraft_runs(
psPingPath)

584 sppList = return_spp_measurment_list_from_minecraft_runs(TsharkPath
)

585

586 fig, (ax1, ax2) = _plot.subplots(1, 2)
587

588 ax1.boxplot(pspingList , whis=[10,90], showfliers=False, showmeans=
True)

589 ax1.set_title("Minecraft runs RTT measured with psping")
590 ax1.set_ylim(40,100)
591 ax1.set_xlabel("Run number")
592 ax1.set_ylabel("RTT (ms)")
593

594 ax2.boxplot(sppList, whis=[10,90], showfliers=False, showmeans=
True)

595 ax2.set_title("Minecraft runs RTT measured from TCP packages")
596 ax2.set_ylim(40,100)
597 ax2.set_xlabel("Run number")
598 ax2.set_ylabel("RTT (ms)")

111

599

600 _plot.show()
601

602 def combine_tcpping_and_psping_minecraft_starlink_and_terrestrial():#
Combine Terrestrial and Starlink RTT measurments when gaming on
Minecraft

603 pspingListStarlink = return_minecraft_psping_measurment_list()
604 pspingListTerrestrial = psping_terrestrial_minecraft()
605

606 tcpPingStarlink = return_minecraft_tshark_measurmentlist()
607 tcpPingTerrestrial = tshark_terrestiral_minecraft()
608

609 smoothendPsPingStarlink = sc.savgol_filter(pspingListStarlink ,
window_length=11, polyorder=3, mode="nearest")

610

611 smoothendPsPingTerrestrial = sc.savgol_filter(pspingListTerrestrial
, window_length=11, polyorder=3, mode="nearest")

612

613 smoothendTcpPingStarlink = sc.savgol_filter(tcpPingStarlink ,
window_length=451, polyorder=3, mode="nearest")

614

615 smoothendTcpPingTerrestrial = sc.savgol_filter(tcpPingTerrestrial ,
window_length=451, polyorder=3, mode="nearest")

616

617 x1 = np.arange(0,300,300/len(smoothendTcpPingStarlink))
618 x2 = np.arange(0,300,300/len(smoothendTcpPingTerrestrial))
619

620 fig, (ax1, ax2) = _plot.subplots(1, 2)
621

622 ax1.plot(x1,smoothendTcpPingStarlink)
623 ax1.plot(x2,smoothendTcpPingTerrestrial ,"r-",lw=1)
624 ax1.legend(["Starlink", "Terrestrial"])
625 ax1.set_title("RTT TcpPing")
626 ax1.set_ylim(0,100)
627 ax1.set_xlabel("Time (s)")
628 ax1.set_ylabel("RTT (ms)")
629 ax1.grid(True)
630 ax1.set_xlim(0,300)
631

632 ax2.plot(smoothendPsPingStarlink)
633 ax2.plot(smoothendPsPingTerrestrial ,"r-",lw=1)
634 ax2.legend(["Starlink", "Terrestrial"])
635 ax2.set_title("RTT PsPing")

112

636 ax2.set_ylim(0,100)
637 ax2.set_xlabel("Time (s)")
638 ax2.set_ylabel("RTT (ms)")
639 ax2.grid(True)
640 ax2.set_xlim(0,300)
641

642 _plot.show()
643

644

645 #### Iperf CBR
##

646

647 def create_cbr_box_plot_with_clod_coverage(path): # Create CBR box
plot with cloud coverage

648 file = open(path, "r")
649

650 line = file.readlines()
651

652 totalList = []
653 counter = 0
654 intList = []
655 intss = 1
656

657 for i in line:
658 if counter % 2 == 0:
659 intList.append(intss)
660 intss += 1
661 a = i.strip("\n")
662 nylist = json.loads(a)
663 totalList.append(nylist)
664 counter += 1
665

666 yrList = get_weather_from_cbr_run()
667

668 x = np.arange(1, len(totalList)+1, 1)
669

670 fig, ax1 = _plot.subplots()
671

672 dateList = []
673 for i in range(len(totalList)):
674

675 if i > 15:

113

676 dateList.append(int(09.00 + i - 24))
677

678 else:
679 dateList.append(int(09.00 + i))
680

681 ax2 = ax1.twinx()
682 ax1.boxplot(totalList ,whis=[10,90],showfliers=False, showmeans=

True)
683 ax1.set_title("Constant bitrate with 30 Mbps bitrate")
684

685 ax2.plot(x,yrList,".", color='purple')
686 ax2.set_ylabel("Cloud cover")
687 ax1.set_xticklabels(dateList , ha="right")
688

689 ax1.set_ylabel("Packet loss % ")
690 ax1.set_xlabel("Time at day")
691 _plot.show()
692

693 ##### Uplink & Downlink
##

694

695 def byte_rate_all_runs_minecraft(serverUplinkPath , serverDownlinkPath):
Create box plot of byte rate for all runs of Minecraft

696 serverUplink = os.listdir(serverUplinkPath)
697 serverDownlink = os.listdir(serverDownlinkPath)
698

699 serverUploadTotalList = []
700 serverDownloadTotalList = []
701

702 for i in range(len(serverUplink)):
703

704 serverUplinkFile = open(f"{serverUplinkPath}\{serverUplink[i]}"
, "r")

705 serverDownlinkFile = open(f"{serverDownlinkPath}\\{
serverDownlink[i]}", "r")

706

707 serverUplinkLines = serverUplinkFile.readlines()
708 serverDownlinkLines = serverDownlinkFile.readlines()
709 serverUplinkList = []
710 serverDownlinkList = []
711

712 for i in serverUplinkLines:

114

713 i.strip("\n")
714 serverUplinkList.append(8*(int(i)/1000))
715

716

717 for i in serverDownlinkLines:
718 i.strip("\n")
719

720 serverDownlinkList.append(8*(int(i)/1024))
721

722 serverUploadTotalList.append(serverUplinkList)
723 serverDownloadTotalList.append(serverDownlinkList)
724

725 _plot.boxplot(serverUploadTotalList ,whis=[10,90],showfliers=False,
showmeans=True)

726

727 _plot.title("Minecraft Downlink")
728 _plot.xlabel("Run number")
729 _plot.ylabel("Kbit/s")
730 _plot.show()
731

732

733 def packet_rate_all_runs_minecraft(serverUplinkPath , serverDownlinkPath
):

734 serverUplink = os.listdir(serverUplinkPath)
735 serverDownlink = os.listdir(serverDownlinkPath)
736

737 serverUploadTotalList = []
738 serverDownloadTotalList = []
739

740 for i in range(len(serverUplink)):
741 serverUplinkFile = open(f"{serverUplinkPath}\\{serverUplink[i]}

", "r")
742 serverDownlinkFile = open(f"{serverDownlinkPath}\\{

serverDownlink[i]}", "r")
743

744 serverUplinkLines = serverUplinkFile.readlines()
745 serverDownlinkLines = serverDownlinkFile.readlines()
746 serverUplinkList = []
747 serverDownlinkList = []
748

749 for i in serverUplinkLines:
750 i.strip("\n")
751 serverUplinkList.append(int(i))

115

752

753 for i in serverDownlinkLines:
754 i.strip("\n")
755 serverDownlinkList.append(int(i))
756

757 serverUploadTotalList.append(serverUplinkList)
758 serverDownloadTotalList.append(serverDownlinkList)
759

760 fig, ax = _plot.subplots()
761

762 bp1 = box_plot(serverUploadTotalList , 'black', 'lightgreen')
763 bp2 = box_plot(serverDownloadTotalList , 'black', 'lightblue')
764

765 ax.legend([bp1["boxes"][0], bp2["boxes"][0]], ['Downlink', 'Uplink'
],loc='upper right')

766

767 ax.set_title('Minecraft Packet rate')
768 ax.set_ylim(20,370)
769 ax.set_xlabel('Run number')
770 ax.set_ylabel('Packets/s')
771 _plot.show()

Listing A.10: Script for making plots

A.2.2.3 Satellite distance calculation

1 import ast
2 import math
3 from setup.config import LATITUDE, LONGTIDUDE , ALTITUDE
4

5 def calculate_distance(satellite_latitude , satellite_longtitude ,
satellite_altitude):

6

7 # convert longitude and latitude to radians
8 converted_latitude = math.radians(LATITUDE)
9 converted_longitude = math.radians(LONGTIDUDE)
10 converted_satellite_latitude = math.radians(satellite_latitude)
11 converted_satellite_longtitude = math.radians(satellite_longtitude)
12

13 # Using Haversine formula to calculate the great circle distance
14 line_1 = math.sin((converted_satellite_latitude -

116

converted_latitude) / 2) ** 2 + math.cos(converted_latitude) * math
.cos(converted_satellite_latitude) * math.sin((
converted_satellite_longtitude - converted_longitude) / 2) ** 2

15

16 line_2 = 2 * math.atan2(math.sqrt(line_1), math.sqrt(1 - line_1))
17

18 radius_earth = 6371 # Radius of earth in km
19 distance_earth = radius_earth * line_2
20

21 # Calculate distance from earth to satellite
22 radius_earth = 6371 + ALTITUDE # Radius of the Earth plus altitude

of first point
23 radius_satellite = radius_earth + satellite_altitude # Radius of

the satellite plus altitude of second point
24 distance_space = math.sqrt(radius_earth ** 2 + radius_satellite **

2 - 2 * radius_earth * radius_satellite * math.cos(distance_earth))
25

26 return distance_space
27

28 def get_sat(path): # get overview over all satellites in the file that
is closest

29

30 file = open(path, "r")
31

32 lines = file.readlines()
33

34

35 distanseList = []
36 nameList = []
37 listOverSatelliteNames = []
38

39 for index in range(len(lines)):
40 findAboveIndex = lines[index].find("above")
41

42 satelliteList = lines[index][findAboveIndex+8:-2]
43 res = ast.literal_eval(satelliteList)
44

45 if float(res[i]["satlat"]) < LATITUDE:
46 distanse = calculate_distance(res[i]["satlat"], res[i]["

satlng"], res[i]["satalt"])
47 distanseList.append(distanse)
48 nameList.append(res[i]["satname"])
49

117

50 if distanse < lowestDistanse:
51 lowestDistanse = distanse
52 lowestSatname = res[i]["satname"]
53 listOverSatelliteNames.append(f"{res[i]['satname']} +{

index} ")
54 distanseList.sort()
55

56 distanseRef = 1000000
57 satname = ""
58

59 for i in range(len(distanseList)):
60 if distanseList[i] < distanseRef:
61 distanseRef = distanseList[i]
62 satname = nameList[i]
63

64 listOverSatelliteNames.append(f"{satname} is {distanseRef} km
away at time: + {index} ")

65

66 fila = open("satellitesCalculated.txt", "w")
67

68 for i in range(len(listOverSatelliteNames)):
69 print(listOverSatelliteNames[i])
70 fila.write(listOverSatelliteNames[i] + "\n")
71

72 fila.close()

Listing A.11: Script for calculating satellite distance

A.2.3 Setup

1 from fabric import Connection
2

3 class CSGOServerCapture:
4

5 def __init__(self, duration):
6 self.duration = duration
7 self.test_option = "csgo_server_capture"
8

9

10 def server_connection(self,user,host,port,key_path):
11 with Connection(host=host, user=user, port=port, connect_kwargs

118

={'key_filename': {key_path}}) as connection:
12 return connection
13

14

15 def start_csgo_capture(self, filename):
16 with self.server_connection() as sl_server:
17 sl_server.run(f'tshark -i eno1 -w /home/ss/server/TCPDUMP/

CSGOoutput/{self.test_option}_{filename}.pcap -f "udp or tcp
portrange 27005-27015" -a duration:{self.duration}')

18

19 class CSGOClientCapture:
20

21 def __init__(self, duration):
22 self.duration = duration
23 self.test_option = "csgo_client_capture"
24

25

26 def client_connection(self,host,user,port,key_path):
27 with Connection(host=host, user=user, port=port, connect_kwargs

={'key_filename': {key_path}}) as connection:
28 return connection
29

30

31 def start_csgo_capture(self, filename):
32 with self.client_connection() as sl_client:
33 sl_client.run(f'tshark -i 4 -w C:/Users/masth/Desktop/{self

.test_option}_{filename}.pcap -f "udp or tcp portrange 27005-27015"
-a duration:{self.duration}')

34

35 class MinecraftCapture:
36

37 def __init__(self, duration):
38 self.duration = duration
39 self.test_option = "mc_capture"
40

41

42 def server_connection(self,host,user,port,key_path):
43 with Connection(host=host, user=user, port=port, connect_kwargs

={'key_filename': {key_path}}) as connection:
44 return connection
45

46

47 def start_mc_capture(self, filename):

119

48 with self.server_connection() as sl_server:
49 sl_server.run(f'tshark -i eno1 -w /home/ss/server/TCPDUMP/

output/{self.test_option}_{filename}.pcap -f "tcp port 27015" -a
duration:{self.duration}')

Listing A.12: Python script to capture network traffic

1 IPERF3_PORT = 27050
2 IPERF_HOST_IP = '152.94.120.57'
3 IPERF_CBR_PATH = 'ENTER PATH TO IPERF CBR LOGS HERE'
4

5 YR_PATH = 'ENTER PATH FOR YR CAPTURE FILE HERE'
6 YR_API_URL = "https://yr.no/api/v0/locations/10-991227/forecast?"
7

8 LOG_PATH = 'ENTER PATH TO LOGS HERE'
9

10 SERVER_IP = '152.94.120.57'
11 CLIENT_IP = '192.168.1.154'
12

13 CS_PORT = '27015'
14 MINECRAFT_PORT = '27015'
15

16 LONGTIDUDE = 5.733107
17 LATITUDE = 58.969975
18 ALTITUDE = 63.0
19 DEG = 65
20 N2YO_API_URL = 'https://api.n2yo.com/rest/v1/satellite/'
21 STARLINK_CATEGORY = 52

Listing A.13: Python config

1 from fabric import Connection
2 from config import CLIENT_IP
3

4 def ping_client_server(target,user, duration, filename, port):
5 with Connection(host=CLIENT_IP , user=user, port=port,

connect_kwargs={'key_filename': 'ENTER KEY PATH'}) as connection:
6 connection.run(f"python3 psping.py {target}:{port} {duration} {

120

filename}")

Listing A.14: Python script to ssh to client

1 from fabric import Connection
2

3 class CSGOServer:
4

5 def __init__(self, game_mode , map, tick_rate=64):
6 self.game_mode = game_mode
7 self.map = map
8 self.tick_rate = tick_rate
9

10 def server_connection(self,host,user,port,key_path):
11 with Connection(host=host, user=user, port=port, connect_kwargs

={'key_filename': {key_path}}) as connection:
12 return connection
13

14

15 def start_csgo_server(self):
16 with self.server_connection() as sl_server:
17 with sl_server.cd("server"):
18 sl_server.run(f"bash csgostart.bash {self.map}")
19

20

21 def stop_csgo_server(self):
22 pass
23

24 class MinecraftServer:
25

26 def __init__(self) -> None:
27 pass
28

29 def server_connection(self,host,user,port,key_path):
30 with Connection(host=host, user=user, port=port, connect_kwargs

={'key_filename': {key_path}}) as connection:
31 return connection
32

33

34 def start_mc_server(self):
35 with self.server_connection() as sl_server:

121

36 with sl_server.cd("mcjaca"):
37 sl_server.run("./mcserver start")

Listing A.15: Python script to connect and start game server

1 from config import IPERF3_PORT , IPERF_HOST_IP , IPERF_CBR_PATH
2 from loggers import log
3 import os
4

5

6 def run_iperf_cbr_udp(bandwidth , duration, filename, revert=False):
7

8 if revert:
9 log(f"Running Iperf CBR command download: iperf3 -c {

IPERF_HOST_IP} -p {IPERF3_PORT} -b {bandwidth} -t {duration} -u -R
--logfile {IPERF_CBR_PATH}{filename}")

10 iperf_run = os.system(f"iperf3 -c {IPERF_HOST_IP} -p {
IPERF3_PORT} -b {bandwidth} -t {duration} -u -R --logfile {
IPERF_CBR_PATH}{filename}")

11 else:
12 log(f"Running Iperf CBR command upload: iperf3 -c {

IPERF_HOST_IP} -p {IPERF3_PORT} -b {bandwidth} -t {duration} -u --
logfile {IPERF_CBR_PATH}{filename}")

13 iperf_run = os.system(f"iperf3 -c {IPERF_HOST_IP} -p {
IPERF3_PORT} -b {bandwidth} -t {duration} -u --logfile {
IPERF_CBR_PATH}{filename}")

Listing A.16: Python script to do iPerf

1 from os.path import exists
2 from config import LOG_PATH
3

4 import os
5

6 def log(log_string):
7 if log_string == "":
8 return
9

10 log_file = open(LOG_PATH+"logfile.log", "a+")

122

11 log_file.write(log_string+"\n")
12 log_file.close()
13

14

15 def clear_log():
16 if exists(LOG_PATH+"logfile.log"):
17 os.remove(LOG_PATH+"logfile.log")

Listing A.17: Python script to start loggers

1 from config import YR_PATH, YR_API_URL
2 import requests
3

4 def yr(filename, iteration):
5

6 response = requests.get(YR_API_URL).json()
7

8 cloud_value = response["shortIntervals"][0]["symbol"]["clouds"]
9 uv_value = response["shortIntervals"][0]["uvIndex"]["value"]
10 precip = response["shortIntervals"][0]["symbol"]["precip"]
11

12 file = open(YR_PATH+filename , "a+")
13

14 file.write(str(cloud_value)+"\t")
15 file.write(str(uv_value)+"\t")
16 file.write(str(precip)+"\t")
17 file.write(str(iteration)+"\n")
18 file.close()
19

20 return

Listing A.18: Python script for weather API request

123

Bibliography

[1] Activision. CALL of DUTY. URL: https://www.callofduty.com/. (ac-
cessed: 13.04.2023).

[2] Centre for Advanced Internet Architecture. Synthetic Packet Pairs (SPP) -

Tool for passive round trip timemeasurement. URL: http://caia.swin.
edu.au/tools/spp/. (accessed: 30.04.2023).

[3] The European Space Agency. Types of orbits. URL: https://www.esa.
int/Enabling_Support/Space_Transportation/Types_of_orbits?
fbclid=IwAR1-awivuJGcjV0cPnldsU-WrabbX4t2Zw145iT0E15C97_lijI-
Q_gcPOg#GEO. (accessed: 17.04.2023).

[4] Trevor Alstad et al. “Minecraft computer game simulation and network

performance analysis.” In: Nov. 2014.

[5] G. Klaus B. Wolfgang. “Go for Gigabit? First Evidence on Economic Ben-

efits of (Ultra-)Fast Broadband Technologies in Europe”. In: Discussion

Paper No. 18-020 (Apr. 2018), pp. 0-37. ISSN: 18-020. URL: http : / /
ftp.zew.de/pub/zew-docs/dp/dp18020.pdf.

[6] Tom Beigbeder et al. “The Effects of Loss and Latency on User Perfor-

mance in Unreal Tournament 2003®”. In: Proceedings of 3rd ACM SIG-

COMMWorkshop onNetwork and SystemSupport forGames. NetGames

’04. Portland, Oregon, USA: Association for Computing Machinery, 2004,

pp. 144–151. ISBN: 158113942X. DOI: 10.1145/1016540.1016556. URL:
https://doi.org/10.1145/1016540.1016556.

[7] The SciPy community. scipy. URL: https : / / docs . scipy . org / doc /
scipy/index.html. (accessed: 20.04.2023).

124

https://www.callofduty.com/
http://caia.swin.edu.au/tools/spp/
http://caia.swin.edu.au/tools/spp/
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits?fbclid=IwAR1-awivuJGcjV0cPnldsU-WrabbX4t2Zw145iT0E15C97_lijI-Q_gcPOg#GEO
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits?fbclid=IwAR1-awivuJGcjV0cPnldsU-WrabbX4t2Zw145iT0E15C97_lijI-Q_gcPOg#GEO
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits?fbclid=IwAR1-awivuJGcjV0cPnldsU-WrabbX4t2Zw145iT0E15C97_lijI-Q_gcPOg#GEO
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits?fbclid=IwAR1-awivuJGcjV0cPnldsU-WrabbX4t2Zw145iT0E15C97_lijI-Q_gcPOg#GEO
http://ftp.zew.de/pub/zew-docs/dp/dp18020.pdf
http://ftp.zew.de/pub/zew-docs/dp/dp18020.pdf
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1145/1016540.1016556
https://docs.scipy.org/doc/scipy/index.html
https://docs.scipy.org/doc/scipy/index.html

[8] ValveCorporation.Counter-Strike:GlobalOffensive. URL: https://store.
steampowered.com/app/730/CounterStrike_Global_Offensive/. (ac-
cessed: 13.04.2023).

[9] BENNETT CYPHERS and ERNESTO FALCON. Fiber. URL: https : / /
www . eff . org / deeplinks / 2019 / 10 / why - fiber - vastly - superior -
cable-and-5g. (accessed: 07.05.2023).

[10] JoergDeutschmann,Kai-SteffenHielscher, andReinhardGerman. “Broad-

band Internet Access via Satellite: PerformanceMeasurements with differ-

ent Operators and Applications”. In: Broadband Coverage in Germany;

16th ITG-Symposium. 2022, pp. 1–7.

[11] Joerg Deutschmann et al. “Broadband Internet Access via Satellite: State-

of-the-Art and Future Directions”. In: Broadband Coverage in Germany;

15th ITG-Symposium. 2021, pp. 1–7.

[12] BlizzardEntertainment.World ofWarcraft. URL: https://worldofwarcraft.
blizzard.com/en-us/. (accessed: 13.04.2023).

[13] Jeff Forcier.Fabric. URL: https://www.fabfile.org/. (accessed: 20.04.2023).

[14] Riot Games. VALORANT. URL: https://playvalorant.com/en- gb/.
(accessed: 13.04.2023).

[15] RockstarGames.GrandTheft AutoOnline. URL: https://www.rockstargames.
com/gta-online. (accessed: 13.04.2023).

[16] Carlo Augusto Grazia et al. “BBR+: improving TCP BBR Performance over

WLAN”. In: ICC 2020 - 2020 IEEE International Conference on Commu-

nications (ICC). 2020, pp. 1–6. DOI: 10.1109/ICC40277.2020.9149220.

[17] Jim Griner et al. Performance Enhancing Proxies Intended to Mitigate

Link-RelatedDegradations. RFC3135. June2001.DOI: 10.17487/RFC3135.
URL: https://www.rfc-editor.org/info/rfc3135.

[18] Aditi Gupta andSubratKar. “Analysis of PacketAggregation onCloudGames”.

In: 2020. DOI: 10.1109/INDICON49873.2020.9342583.

[19] Oliver Hohlfeld et al. “Insensitivity to Network Delay: Minecraft Gaming

Experience of CasualGamers”. In:201628th International Teletraffic Congress

(ITC 28). Vol. 03. 2016, pp. 31–33. DOI: 10.1109/ITC-28.2016.313.

125

https://store.steampowered.com/app/730/CounterStrike_Global_Offensive/
https://store.steampowered.com/app/730/CounterStrike_Global_Offensive/
https://www.eff.org/deeplinks/2019/10/why-fiber-vastly-superior-cable-and-5g
https://www.eff.org/deeplinks/2019/10/why-fiber-vastly-superior-cable-and-5g
https://www.eff.org/deeplinks/2019/10/why-fiber-vastly-superior-cable-and-5g
https://worldofwarcraft.blizzard.com/en-us/
https://worldofwarcraft.blizzard.com/en-us/
https://www.fabfile.org/
https://playvalorant.com/en-gb/
https://www.rockstargames.com/gta-online
https://www.rockstargames.com/gta-online
https://doi.org/10.1109/ICC40277.2020.9149220
https://doi.org/10.17487/RFC3135
https://www.rfc-editor.org/info/rfc3135
https://doi.org/10.1109/INDICON49873.2020.9342583
https://doi.org/10.1109/ITC-28.2016.313

[20] Iperf3. Iperf3 user docs. URL: https://iperf.fr/iperf-doc.php. (ac-
cessed: 16.04.2023).

[21] Iperf3.What is iPerf/iPerf3?URL: https://iperf.fr/. (accessed: 16.04.2023).

[22] Mohamed M. Kassem et al. “A Browser-Side View of Starlink Connectiv-

ity”. In: Proceedings of the 22nd ACM Internet Measurement Conference.

IMC ’22.Nice, France: Association forComputingMachinery, 2022, pp. 151–

158. ISBN: 9781450392594.DOI: 10.1145/3517745.3561457. URL: https:
//doi.org/10.1145/3517745.3561457.

[23] KimiNewt. pyshark. URL: https : / / github . com / KimiNewt / pyshark.
(accessed: 20.04.2023).

[24] LinuxGSM.LinuxGSM. URL: https://linuxgsm.com//. (accessed: 15.04.2023).

[25] Jagex Ltd.WELCOME TO THE WORLD OF RUNESCAPE. URL: https:
//play.runescape.com/. (accessed: 13.04.2023).

[26] François Michel et al. “A First Look at Starlink Performance”. In: Proceed-

ings of the 22nd ACM Internet Measurement Conference. IMC ’22. Nice,

France: Association for Computing Machinery, 2022, pp. 130–136. ISBN:

9781450392594. DOI: 10.1145/3517745.3561416. URL: https://doi.
org/10.1145/3517745.3561416.

[27] Mojang.WELCOMETOTHEOFFICIALSITEOFMINECRAFT. URL: https:
//www.minecraft.net/en-us. (accessed: 13.04.2023).

[28] N2YO. N2YO.COM REST API v1. URL: https://www.n2yo.com/api/.
(accessed: 07.05.2023).

[29] R.Nakatsu et al. “QoEandLatency Issues inNetworkedGames”. In:Hand-

book of Digital Games and Entertainment Technologies (2015), pp. 1–36.

DOI: 10.1007/978-981-4560-52-8_23-1.

[30] Nintendo. Super Smash Bros. Ultimate. URL: https://www.smashbros.
com/en_GB/index.html. (accessed: 13.04.2023).

[31] MET Norway.MET Norway. URL: https://api.met.no/weatherapi/.
(accessed: 25.04.2023).

[32] NumFOCUS.numpy. URL: https://numpy.org/. (accessed: 20.04.2023).

126

https://iperf.fr/iperf-doc.php
https://iperf.fr/
https://doi.org/10.1145/3517745.3561457
https://doi.org/10.1145/3517745.3561457
https://doi.org/10.1145/3517745.3561457
https://github.com/KimiNewt/pyshark
https://linuxgsm.com//
https://play.runescape.com/
https://play.runescape.com/
https://doi.org/10.1145/3517745.3561416
https://doi.org/10.1145/3517745.3561416
https://doi.org/10.1145/3517745.3561416
https://www.minecraft.net/en-us
https://www.minecraft.net/en-us
https://www.n2yo.com/api/
https://doi.org/10.1007/978-981-4560-52-8_23-1
https://www.smashbros.com/en_GB/index.html
https://www.smashbros.com/en_GB/index.html
https://api.met.no/weatherapi/
https://numpy.org/

[33] Peter Quax et al. “Objective and Subjective Evaluation of the Influence

of Small Amounts of Delay and Jitter on a Recent First Person Shooter

Game”. In: NetGames ’04. Portland, Oregon, USA: Association for Com-

puting Machinery, 2004, pp. 152–156. ISBN: 158113942X. DOI: 10.1145/
1016540.1016557. URL: https://doi.org/10.1145/1016540.1016557.

[34] Michael Ray. online gaming. URL: https : / / www . britannica . com /
technology/online-gaming. (accessed: 10.05.2023).

[35] Michal Ries, Philipp Svoboda, andMarkus Rupp. “Empirical study of sub-

jective quality for Massive Multiplayer Games”. In: 2008 15th Interna-

tional Conference onSystems, Signals and ImageProcessing. 2008, pp. 181–

184. DOI: 10.1109/IWSSIP.2008.4604397.

[36] Mark Russinovich. PsPing v2.12. URL: https://learn.microsoft.com/
en-us/sysinternals/downloads/psping. (accessed: 17.04.2023).

[37] Scapy.Welcome to Scapy. URL: https://scapy.net/. (accessed: 20.04.2023).

[38] Geographic Scope and Forecast. Gaming market. URL: https : / / www .
verifiedmarketresearch . com / product / gaming - market/. (accessed:
15.04.2023).

[39] Servers.com.Differences between peer to peer and dedicated game server

hosting. URL: https://www.servers.com/news/blog/differences-
between-peer-to-peer-and-dedicated-game-server-hosting. (ac-
cessed: 13.04.2023).

[40] Starlink.Live Starlink Satellite andCoverageMap. URL: https://satellitemap.
space/. (accessed: 13.04.2023).

[41] Starlink. Order Starlink. URL: https://www.starlink.com. (accessed:
7.05.2023).

[42] Starlink.Starlink. URL: https://satellitemap.space/?constellation=
starlink. (accessed: 25.04.2023).

[43] Starlink.WORLD’SMOSTADVANCEDBROADBANDSATELLITE INTER-

NET. URL: https://www.starlink.com/technology. (accessed: 25.04.2023).

[44] Steam.GLST. URL: https://steamcommunity.com/dev/managegameservers.
(accessed: 15.04.2023).

127

https://doi.org/10.1145/1016540.1016557
https://doi.org/10.1145/1016540.1016557
https://doi.org/10.1145/1016540.1016557
https://www.britannica.com/technology/online-gaming
https://www.britannica.com/technology/online-gaming
https://doi.org/10.1109/IWSSIP.2008.4604397
https://learn.microsoft.com/en-us/sysinternals/downloads/psping
https://learn.microsoft.com/en-us/sysinternals/downloads/psping
https://scapy.net/
https://www.verifiedmarketresearch.com/product/gaming-market/
https://www.verifiedmarketresearch.com/product/gaming-market/
https://www.servers.com/news/blog/differences-between-peer-to-peer-and-dedicated-game-server-hosting
https://www.servers.com/news/blog/differences-between-peer-to-peer-and-dedicated-game-server-hosting
https://satellitemap.space/
https://satellitemap.space/
https://www.starlink.com
https://satellitemap.space/?constellation=starlink
https://satellitemap.space/?constellation=starlink
https://www.starlink.com/technology
https://steamcommunity.com/dev/managegameservers

[45] TheMatplotlib development team.Matplotlib. URL: https://matplotlib.
org/. (accessed: 20.04.2023).

[46] tynet.eu.Sarlink Statuspage. URL: https://www.starlinkstatus.space.
(accessed: 10.05.2023).

[47] Valve. SteamCMD. URL: https : / / developer . valvesoftware . com /
wiki/SteamCMD. (accessed: 15.04.2023).

[48] Chris Veness. Calculate distance, bearing and more between Latitude/-

Longitude points. URL: https://www.movable-type.co.uk/scripts/
latlong.html. (accessed: 10.05.2023).

[49] Windows.Minecraft Server. URL: https://minecraft.net/en/download/
server. (accessed: 15.04.2023).

[50] Wireshark. Tshark Manual Page. URL: https://www.wireshark.org/
docs/man-pages/tshark.html. (accessed: 20.04.2023).

[51] Xiaokun Xu, Shengmei Liu, and Mark Claypool. “The Effects of Network

Latency on Counter-strike: Global Offensive Players”. In: 2022 14th In-

ternational Conference on Quality of Multimedia Experience (QoMEX).

2022, pp. 1–6. DOI: 10.1109/QoMEX55416.2022.9900915.

[52] Sebastian Zander and Grenville Armitage. “Minimally-intrusive frequent

round trip timemeasurements using Synthetic Packet-Pairs”. In: 38th An-

nual IEEE Conference on Local Computer Networks. 2013, pp. 264–267.

DOI: 10.1109/LCN.2013.6761245.

128

https://matplotlib.org/
https://matplotlib.org/
https://www.starlinkstatus.space
https://developer.valvesoftware.com/wiki/SteamCMD
https://developer.valvesoftware.com/wiki/SteamCMD
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://minecraft.net/en/download/server
https://minecraft.net/en/download/server
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://doi.org/10.1109/QoMEX55416.2022.9900915
https://doi.org/10.1109/LCN.2013.6761245

129

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

© 2023 Jakob Bernhardt Danielsen, Endre Lund and Mats Husberg

130

	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Motivation
	Problem Definition
	Research Questions

	Objectives
	Outline

	Background
	Satellite Broadband Service
	Satellite types
	GEO satellites
	LEO satellites
	MEO satellites

	Starlink
	Starlink Performance
	Satellite Handovers

	Online Gaming
	Online Gaming Architecture
	Peer-to-Peer
	The Client-Server Model

	Online Gaming Genres
	Massively Multiplayer Online Games
	First Person Shooter

	Minecraft
	Transport Protocol
	Metrics

	Counter Strike: Global Offensive
	Transport Protocol
	Metrics

	Summary of Related Works
	Satellite Broadband
	Performance demands of Online Gaming

	Methodology
	Game Selection
	Testbed overview
	Hardware Equipment
	Server
	Client
	Raspberry Pi
	Starlink Setup

	Software
	Traffic Generators
	iPerf3
	Ping
	TCP ping
	LinuxGSM
	CS:GO
	Minecraft

	Loggers
	Tshark
	iPerf3 Logs
	Yr Weather API
	Available Satellites

	Experiment Automation
	Python Scripts
	Libraries
	File structure

	Post Processing
	Game Capture
	Text files
	Synthetic Packet Pairs
	Visualization

	Other Setup Configurations
	Security
	Difficulties

	Experiments and Results
	Scenario 1 - Baseline measurements
	Ping Starlink Gateway
	Overview over available satellites
	Constant Bit Rate
	Variable Bit Rate

	Scenario 2 - Gaming measurements
	CS:GO Single Run
	CS:GO All Runs
	Minecraft Single Run
	Minecraft All Runs

	Results
	Ping Starlink Gateway Results
	Overview over available satellites results
	Constant Bit Rate Results
	Variable Bit Rate Results
	CS:GO Single Run Results
	CS:GO All Runs Results

	Minecraft Single Run Results
	Minecraft All Runs Results

	Discussion
	Scenario 1 - Baseline measurements
	Ping Starlink Gateway
	Overview over available satellites
	Constant Bit Rate
	Variable Bit Rate

	Scenario 2 - Gaming measurements
	CS:GO
	Minecraft
	Criteria

	Conclusions
	Answering the Research Questions
	Future directions

	Instructions to Compile and Run System
	Server config files
	CS:GO
	Minecraft

	Code
	Experiments
	Post processing
	PCAP files
	Plot
	Satellite distance calculation

	Setup

