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Efficient Data Collection in IoT Networks Using
Trajectory Encoded With Geometric Shapes

Xiaofei Cao and Sanjay K Madria , Senior Member, IEEE

Abstract—Themobile edge computing (MEC) paradigm changes the role of edge devices fromdata producers and requesters to data

consumers and processors. MECmitigates the bandwidth limitation between the edge server and the remote cloud by directly processing

the large amount of data locally generated by the network of the internet of things (IoT) at the edge. An efficient data-gathering scheme is

crucial for providing quality of service (QoS) withinMEC. To reduce redundant data transmission, this paper proposes a data collection

scheme that only gathers the necessary data from IoT devices (like wireless sensors) along a trajectory. Instead of using and transmitting

location information (whichmay leak the location anonymity), a virtual coordinate system called “distance vector of hops to anchors”

(DV-Hop) is used. The proposed trajectory encoding algorithm uses ellipse and hyperbola constraints to encode the position of interest

(POI) and the trajectory route to the POI. Sensorsmake routing decisions only based on the geometric constraints and the DV-Hop

information, both of which are stored in their memory. Also, the proposed scheme canwork in heterogeneous networks (with different radio

ranges) where each sensor can calculate the average one-hop distance within the POI dynamically. The proposedDV-Hop updating

algorithm enables the users to collect data in an IoT network withmobile nodes. The experiments show that in heterogeneous IoT networks,

the proposed data collection scheme outperforms two other state-of-the-art topology-based routing protocols, called ring routing, and

nested ring. The results also show that the proposed scheme has better latency, reliability, coverage, energy usage, and provide location

privacy compared to state-of-the-art schemes.

Index Terms—Trajectory, routing, DV-Hop, GPS-free, hyperbola, ellipse, IoT, edge computing, sensor, encoding

Ç

1 INTRODUCTION

THE Internet of Things (IoT) facilitates fast access, process,
and utilization of the big data created by the ‘things’ sur-

rounding many applications such as disaster management,
battlefield monitoring, and moving object tracking. How-
ever, for some IoT devices like wireless sensors, the limited
energy, and high recharging cost require them to save energy
asmuch as possible during their duty cycles. Bandwidth lim-
itation is another challenge for IoT networks. In recent years,
the number of IoT devices, the data rate, and the enormous
data produced by these large numbers of things are increas-
ing faster than the growth of wireless bandwidth. Also, for
heterogeneous IoT networks with mobile nodes, there is a
need of maintaining the correct and stable data collection
routes without leaking the users’ locations information. Last
but not the least, different applications should be able to
share the same IoT network efficiently. Therefore, the users
of different applications can fetch data from sensors regard-
less of their types, precise locations, and identities.

In recent years, researchers have turned their focus on
edge computing [1] and fog computing [2] to support IoT
networks. The edge/fog networks interacting with local

wireless sensor networks (WSNs) provide services with
higher reliability in collecting, caching, and exploiting sensing
data locally. Also, the latency of data collection inmobile edge
networks (MEN) is reduced because edge nodes can collect
and process data faster than the remote cloud. However, with
the participation of third party mobile edge devices, the loca-
tion anonymity problem draws some researchers’ attention
again. For example, consider a celebrity athlete who may try
to get pollution levels along his/her running trajectory from
crowd-sourcing and/or existing environmental sensor net-
works. An adversary could easily infer the user’s locations
like the hiking trail and home address, and predict the mobil-
ity based on the history of using the location-aware services
[3]. Therefore, as such this individual user would like to keep
the location anonymity against the potential security risks.

In MEN, sensors and other IoT devices contribute to the
most volume of sensing data. Inmost of theWSNapplications,
sensors report their sensing data periodically. However, peri-
odically sensing has a long delay which is not desirable for
applications requiring real-time low-distorted data. In recent
works like [4], data sensing only happens when the sensor or
mobile user receives a data request packet. Therefore, unneces-
sary data sensing and reporting outside of the position of inter-
est are reduced. Another way to reduce the data delay is
broadcasting, which is widely used as the fastest way to dis-
seminate real-time data to the whole network. The drawback
of broadcasting is its high energy consumption due tomassive
rebroadcasting. Therefore, the counter-based broadcasting
scheme [5] and their adaptive versions [6], [7], [8] are proposed
to minimize the redundant rebroadcasting to save energy and
mitigate the broadcast storm effects [5]. However, even the
state-of-the-art adaptions of counter-based broadcasting
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cannot reduce more than 60 percent rebroadcasting. Also, the
broadcast can not control the data flow precisely which is not
acceptable for some military applications like tracking enemy
objects, while not being detected by the targets.

Some trajectory-based routing protocols, which route
packets through wireless sensor nodes that reside more or
less on the designed trajectory, have the potential to fetch the
data from specific areas with the minimum overhead of
redundant forwarding. However, most of the trajectory rout-
ing protocols like [9] and [10] require all the sensor nodes to
have the GPS to decode the encoded routing trajectory,
which is not practical for low-costWSNs. Although the cubic
Bezier curve used in [9] provides a good compression ratio
for the position of interest (POI), it still cannot be adapted in
WSNs without GPS modules. A virtual coordinate system is
an option for IoT consisting of WSNs without GPS. It can use
local connectivity information such as the number of neigh-
bors of each node and the perimeter nodes’ locations as in
[11]. It can also use the anchor nodes and the vector of mini-
mum hop distance (DV-Hop) to the anchor nodes to estimate
the distance between nodes. However, the state-of-the-art
DV-Hop based location estimation [12] requires lots of mem-
ory resources and computational power, therefore, is not
suitable for low powerwireless sensor networks.

To address the shortcomings of the existing works, this
paper proposes a spatial data collection scheme that has both
low latency and less overhead of redundant broadcasting.
Instead of using the exact nodes’ location information from
GPS as in [9], [10], [13], The proposed algorithm uses a vector
of the minimal distance of hops (DV-Hops) to all the anchor
nodes selected by the secure fog server as a dictionary or vir-
tual coordinate. The area of the position of interest can be
represented as a list of hop constraints to the anchor nodes.
The routing message only contains two basic geometric
shapes; hyperbola and ellipse segments in the proposed
scheme. Each shape is encoded with simple hop constraints
(e.g., size of the ellipse and the hyperbola and the start and
end of the segment). The sensor nodes could avoid complex
geometric computing, whichmakes it suitable forWSNs that
have low-power and low-computing resources. In addition,
the proposed scheme provides location anonymity by avoid-
ing using and transmission of the GPS location information.
To decode the POI of the client, the adversary has to have the
encoded message as well as the location of the anchor nodes,
which are stored in the secure fog server. The broadcast
storm issue is addressed by integrating the counter-based
broadcasting mechanism. The performance evaluation
shows that the proposed scheme reduces the redundant
rebroadcast in a small real-worldWSN. In simulation experi-
ments, it compresses the data about eight times and reduces
more than half of the latency in the data requesting and col-
lection process compared to directly broadcasting the list of
node identifications that residewithin the POI.

The reliability of the proposed scheme also beats the
state-of-the-art geospatial routing protocols like ring routing
and nested routing [14], [15], which route messages in a cir-
cular trajectory. The energy consumption of data requests
within our scheme is also reduced compared to the state-of-
the-art counter-based broadcasting schemes [7], [8].

The paper is organized as follows: Section 2 discusses
related works about routing, broadcasting, and virtual

coordinate. Section 3 first describes the system overview and
assumptions. Then it elaborates the method of encoding tra-
jectorywith hyperbola and ellipse. Last, it shows some exam-
ples of encoding and routing with the encoded trajectory
message. Section 4 gives an adapted data collection protocol
for low-powerWSN inwhere sensors sleep periodically. Sec-
tion 5 explains the experiment setup and demonstrates the
performance improvement with detailed elaborations. Sec-
tion 6 concludes the paper with futurework ideas.

2 RELATED WORKS

2.1 Counter Based Broadcasting

Broadcasting is the fastest way to flood a message to cover
the whole WSN. However, limited bandwidth causes a
delay in broadcasting a sequence of messages into the net-
work. After a node receives a given packet, the counter-
based broadcasting schemes [5], [6], [7], [8] require a node
to wait for a short period to listen to its neighbors and count
how many times the given packet has been rebroadcast. If
the broadcast count of the given packet reaches the prede-
fined threshold, it will drop the packet. Thus, only a few of
the nodes in the network will rebroadcast the given packet
which saves bandwidth and thus, alleviates the congestion.

2.2 Grid-Based Routing

Hierarchical grid-based routing is an energy-efficient
method for routing of data packets [16]. With the mobile
sink and predefined virtual grid, packets could bypass the
congestion area of the grid and route to the mobile sink by
fetching the updated mobile sink’s location from the cell-
center. The grid-based routing protocol can be classified
into two categories, the query-based protocol (i.e., PANEL
[17], Grid-Based Coordinated Routing GMCAR [18], etc.)
and the event-based protocol EAGER [19]. For the query-
based routing protocol, sensor nodes only sending the sens-
ing data on request, while event-based protocol sensors will
report events based on the pre-configuration of the event
definition. Comparing to the event-based routing protocol
where each sensor report sensing data periodically, the
query-based routing protocol greatly reduces the overhead
of unnecessary sensing and routing, which saves both
energy and bandwidth. However, efficiently disseminating
the data request packets in a WSN without GPS is a chal-
lenge for the query-based routing protocol. Some works like
[16] switch alternately grid-head states to overcome the
energy and bandwidth overhead of flooding control pack-
ets. The work [20] uses the location information of the cell-
header and their neighbors to forward the query towards
the target cell and flood message only in the target cell.
Though these works reduce the broadcast overhead, the
grid-based routing still needs the GPS information and extra
energy to maintain the grid topology.

2.3 Ring Routing and Nested Routing

Ring routing and nested routing [14], [15] are proposed to
solve the problem of routing packets to a mobile sink. The
idea behind ring routing and nested routing is to store
the current mobile sink’s location in a ring or nested ring
structure. The data source needs to query the nodes in the
ring/nested ring structure to fetch the updated location of
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the mobile sink before routing the packets. Then the data
source routes the packets to themobile sink using the updated
sink location. Ring routing and nested routing achieve good
delay and energy performance because searching the ring
structure is easier than searching thewhole network.

2.4 Trajectory Based Routing
and Virtual Coordinate

Trajectory based routing [9], [10] is a paradigm that only the
nodes near the given routing trajectory will forward the pack-
ets. It includes trajectory generating and encoding and the
routing decision rules for each sensor node. It has the follow-
ing challenges: First, the trajectory encoding algorithm should
able to compress the trajectory as the encoded message will
be included in the routing packets. Second, each compressed
message should be able to route through the trajectory to the
sink reliably. Third, the overhead of routing caused by redun-
dant rebroadcast should be minimized. However, for a WSN,
the additional challenge is to route through a trajectory with-
out using anyGPS-based location information.

To route through a trajectory with virtual coordinates
using DV-Hop rather than GPS, the virtual coordinates
should be able to reflect the sensors’ real location precisely.
Intuitively, increasing the number of anchor nodes will
improve the precision of the virtual coordinates. This has
also been proven by DV-Hop based localization algorithms
such as in [21], [22], and [23]. Some previous works like [24]
and [23] use the non-dominated sorting (NSGA-II) algorithm
to improve positioning accuracy for complex network topol-
ogies with many anchor nodes. Their results demonstrate
DV-Hop based localization algorithm could achieve good
localization accuracy. The challenge in this work, however,
is to reduce computation and memory usage which are lim-
ited in sensor nodes. The naive combination of greedily
checking the distance to the routing trajectory and the use of
the virtual coordinate system with many anchor nodes
requires computational resources and is also error-prone
due to the use of the estimated location. According to the
DV-Hop based localization algorithms, in the worst case, the
error rate can be as large as 45 percent of the range of the
radio [12], [24] and [23]. which could lead to routing failure.

2.5 Location Privacy in WSN

WSNs are vulnerable to be attacked by an eavesdropper. To
oppose the eavesdropper and protect the location informa-
tion of the source, sink, and gateways, different approaches
are proposed. To protect the source’s location privacy, the
paper [25] proposed a dynamic clustering algorithm and
dynamic shortest path scheme that change the network
topology dynamically. Thus, the adversary won’t be able to
locate the routing path and can’t find the source by back-
tracking. However, the dynamic clustering algorithm con-
sumes excessive energy which is a drawback for many real-
world applications. A more energy-efficient approach [26]
proposed a hybrid source location privacy protection
scheme that combined phantom source node strategy and
ring routing. The phantom source node could mislead the
adversary to the wrong location and the ring routing saves
energy while has a good routing performance.

To protect the sink nodes’ location privacy, the work [27]
proposed a routing scheme that preserves the sink’s location

anonymity and guarantees to route within a delay threshold.
The data packets route to the sink’s location through several
ray routes. Only one ray route is the true that goes through
the sink location. The sink collects the data from random
nearby intermediate nodes which store the data from the
sender. However, the proposed ray routing requires the sen-
sor nodes to maintain a table of their nearby neighbor nodes
and their location information.

3 PROPOSED DATA COLLECTION SCHEME

The proposed data collection scheme enables the fog server
to directly collect only the necessary data for the edge cli-
ents from nearby IoT networks by sending a data request
message. The data request packet from mobile edge devices
like cellphones that are near the client’s position of interest
should be able to reach the targeted IoT devices (usually
the wireless sensor motes) with minimum overhead and
latency. In heterogeneous IoT networks, different wireless
devices with different radio standards cannot directly com-
municate with each other.

3.1 System Overview

The proposed data collection scheme is based on an edge-
computing paradigm where the edge devices consume data
within the geometric constraints specified by the client. It
uses mobile edge devices as the gateway that coordinate
with the wireless sensor network and downstream fog serv-
ers. The data collection tasks are offloaded to the local edge
nodes near the POI, and thus reduces the latency. The data
processing tasks are offloaded to the local fog server.

The system overview is shown in Fig. 1. The cloud data
centers only collect, process, and store the time-insensitive
data. The fog servers collect, process, and generate the com-
pressed geospatial constraints of user requests which will
be discussed in the next section. Then, the data collection
task is offloaded to the mobile edge devices near the POI.
With the help of the serial port listening and writing app
[28], the edge device becomes a gateway to the IoT sensor
network by connecting a sensor mote to its serial port.

3.2 Assumptions

In IoT networks, many applications prefer to have the geo-
spatial information tagged with the sensing data. For exam-
ple, firefighters want to know the chemical leak status

Fig. 1. Data collection in local edge network.
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based on the temperature and infrared sensors’ data tagged
with the location information. Due to their low cost and
energy limitation, most of the sensor motes do not contain
GPS modules themselves. To enable these sensors to pro-
vide geospatial information without GPS, the proposed
algorithm uses a vector of the minimal distance of hops to
the anchor nodes (DV-Hop) as the virtual coordinates.

The proposed data collection scheme has the following
assumptions:

First, the anchor nodes, which are selected by the fog
server, know their locations. They have a one-byte long ID
number, which is enough for a local fog network. Also, the
mobile edge devices, which different from anchor nodes,
collect data from aWSN directly. Nodes in the WSN (maybe
mobile also) may have different radio ranges and different
sensing preferences.

Second, the fog server, which encodes the geospatial data
request, has the location information of the local anchor
nodes and has enough computing resources. In the WSN,
near each sensor node, there are at least three randomly
deployed anchor nodes that will flood their identification to
the others in the area within a limited number of hops
(Hmax) from them. While flooding, all the sensor nodes will
create and update a vector of the minimal distance of hop
(DV-Hop) to their nearby (withinHmax hops) anchor nodes.

Third, the anchor nodes also have the DV-Hop of their
nearby (within Hmax hops) anchor nodes and will eventu-
ally transmit this information to the fog server. After the
network has been initialized, if any nodes move, they need
to update their DV-Hop by querying all their new
neighbors’ DV-Hop. For the new DV-Hop of the moving
nodes, the new DV-Hop entry is set to be one plus the mini-
mum hop count entry of all the new neighbors’ DV-Hops.

Fourth, this work assumes the user only wants to collect
the necessary data where the definition of necessary data
can vary based on the applications. For example, in the bat-
tlefield monitoring application, we have mentioned in the
introduction, unnecessary radio broadcasting not only has
the risk of being eavesdropped on but also exposes to the
tactical intent. For an environmental monitoring applica-
tion, we may want to monitor different locations with differ-
ent frequencies. For this paper, in short, the sensor data
reside in the trajectory that the user requests as the neces-
sary data. We haven’t restricted how the users should
define their personalized trajectory.

Fifth, the trajectory, which includes the routing path and
POI, can have the shape of any type of continuous curve. It
may have different widths in different segments and can
overlap with itself. The trajectory is unidirectional. So the
overlapping trajectory is seen as one curve and the intersect-
ing trajectory is seen as a branch. To avoid looping, it is
assumed that every node in the trajectory re-broadcast the
same routing packet only once. A routing packet size should
be fewer than 127 bytes (the limit of IEEE 802.15.4 packet size).

3.3 DV-Hop Based Geospatial Encoding Algorithm

The topology of the IoT network is dynamically changing,
as the network is heterogeneous and some nodes are
mobile. So, the fixed routing table, which proactive routing
protocol uses, is not suitable for routing and collecting data
in IoT networks. Also, the reactive or cluster-based routing

protocols are not efficient due to the overhead of updating
the routing table or maintaining the cluster topology. They
also need to be tuned for each specific application. Thus, it
is hard to mix the use of different applications. The pro-
posed trajectory encoding algorithm uses a similar idea in a
software-defined network (SDN), which is to decouple the
data plane (network layer) and the control plane of the IoT
network. In the proposed work, the routing controllers are
the fog servers shown in Fig. 3.1. The routing rules are
encapsulated in each routing packet. Here, the routing
rules are encoded by the controller application which
resides in the control plane. Each sensor in a data plane is
also seen as a mini router that decides the routing action
(i.e., re-broadcast or drop packets) based on the matching
rules in the routing packets.

To route without using the GPS data, the proposed algo-
rithm uses DV-Hop as the virtual coordinate and store the
DV-Hop table in each IoT device in the network. The con-
trolling information in the routing packets is the geometric
shape constraints discussed in the following paragraphs.

The idea of the proposed encoding algorithm is to use a
set of geometric shapes to represent the position of interest
and the trajectory from a gateway to the POI. With the
assumption as in Section 3.2, the trajectory and POI drawn
by the clients can be seen as a set of discrete pixels in a 2d
euclidean space. Each pixel has two parameters: the x- and
y-coordinates from the predefined origin point. The unit of
the coordinate, m, is chosen based on the application
requirement. So each 1 m by 1 m area in this WSN is a pixel
that can be represented by a tuple ðxcoor; ycoorÞ which is
called the Trajectory Area Set (TAS).

Intuitively, a line can be used to connect two nodes with
the shortest path length and an arc can be used to connect
two lines with different directions. Then, any trajectory can
be seen as the assembly of these two shapes or their more
generalized form: the Hyperbola segment and an arc
segment.

For example, in Fig. 2a, the shortest path from node S1 to
node S2 is a straight line. Using anchor nodes A1 and A2, a
hyperbola can be defined as: h1 � h2 ¼ 0 which is a line
passing through S1 and S2. Then, a third anchor node A3

with hop h3 is required to cover both S1 and S2. Finally, it
gives a segment of the line that starts and ends from S1 and
S2. Here, the anchor nodes A1; A2 determine the line’s direc-
tion, and A3’s location and hop constraints determine the
line’s starting and ending points. As a straight line is a spe-
cial case of a hyperbola, a hyperbola can be used to approxi-
mate the line. The left arc of a hyperbola shown in Fig. 2b
can be represented with constraints h1 � h2 ¼ 2� a; ða 2
IntegerÞ . Then, with the anchor node A3 and its hop count
h3, it generates a segment of the hyperbola. When a ¼ 0, the
segment is a straight line.

Another example in Fig. 3 shows how to use the arc of a
circle to connect two lines with different directions [29]. As
a circle is a special case of an ellipse with overlapped foci,
the ellipse segment could replace the circle segment.

The objective now is to use the virtual coordinate to rep-
resent these two shapes: the hyperbola segment and the
ellipse arc. As the fog server knows the location and the
DV-Hop of each anchor node, the average hop distance davg
in m unit between each pair of anchor nodes can be
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calculated. Each pair of the anchor nodes can be seen as the
foci of a set of hyperbolas and a set of ellipses. The desired
hyperbola and an ellipse can be chosen by setting the a
value (in hop counts) of the Cartesian equation of the hyper-
bola and an ellipse shown in Equations (1) and (2) where
xo; yo are the coordinate of the center of the ellipse and the
hyperbola. At last, keep the hyperbola and ellipse segments
which overlap most of the trajectory for data collection. The
segment is the intersection of the hyperbola and an ellipse
with a control circle that uses an anchor node as its center
and given hops count as its radius which is shown in Equa-
tion (3) where xc; yc are the coordinate of the center of the
circle. Then, the two following simple shapes: the hyperbola
segment and the ellipse segment can be encoded with the
hop constraints.

ðx� xoÞ2
a2

� ðy� yoÞ2
b2

¼ 1 (1)

ðx� xoÞ2
a2

þ ðy� yoÞ2
b2

¼ 1 (2)

ðx� xcÞ2
r2

þ ðy� ycÞ2
r2

¼ 1: (3)

The computation complexity is another challenge in
encoding a geospatial area using shapes. As discussed, a
hyperbola or an ellipse segment is determined with three dif-
ferent anchor nodes (two as foci and one as the center of the
control circle) and two constraints of hop-distance (one as the
a value, and the other as the radius of the control circle). For a
WSN with anchor nodes NAnchor and hops limitation Hmax

for each anchor node, the shapes (hyperbola and ellipse)
which constitute the trajectory are chosen from Nshapes ¼
N3

AnchorH
2
max different possible shape constraints. Testing of

all the combinations of the shapes has OðNshapes!Þ time com-
plexity, which is not practical. Thus, this paper proposes a
greedy algorithm that considers both the number of newly
covered pixels and the effective coverage ratio (ECR). ECR,
defined in Equation (4), is the ratio of the overlapping area of
TAS and a shape over themathematical area of the shape.

ECR ¼ Areacovered
Areashape

: (4)

The trajectory encoding algorithm is divided into the three
steps discussed next.

3.3.1 Find all Possible Shapes From Nshapes and Their

Area Areashape

The possible shapes are defined as the shapes that could
constitute a portion of the trajectory. In other words, the
possible shapes must overlap with a portion of the data col-
lection trajectory. The objective of this step is to generate
Nshapes shape constraints where Nshapes ¼ N3

AnchorH
2
max. Each

possible shape constraint can be represented as follows:

Cshape ¼ ½A1; A2; A3; a; h3�: (5)

Here,A1; A2 are the foci of the shape hyperbola or the ellipse,
A3 is the center of the control circle, a is the parameter in the
Cartesian Equations (1) and (2), and h3 is the radius of the
control circle. The average one-hop distance davg is used to
estimate the overlapping area of each shape as shown in the
Appendix, which can be found on the Computer Society Dig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/
TSUSC.2020.3044292. Then the algorithm uses the following
filtering criteria to filter each shape constraint (hyperbola
and ellipse segments) and discard shapes that don’t overlap
with the TAS.

First, check if the control circle overlaps with the TAS. As
the control circle will intercept the shape segment and final-
ize the shape, it is the most important criteria to determine
if a shape overlaps with the TAS. The proposed algorithm
only keeps the constraints that overlap with the TAS by
comparing the distance of the center of the control circle
and the convex hull of the TAS which is constructed using
Chan’s algorithm [30].

The second is to check if the hyperbola or an ellipse over-
laps with the TAS using a filter algorithm and discard any
constraint that does not overlap with the convex hull of the
TAS. For the hyperbola, it uses the rectangle which is per-
pendicular with the line between the foci with length equal
to 2Hmax, width equal to Hmax, and the start point is the
midpoint between the foci, to approximate the hyperbola.
For an ellipse, it uses circles with radius a and the foci as the
center to approximate the ellipses constraints where a is
half of the long axis length of the ellipse.

Third, check if the hyperbola or ellipse overlaps with the
control circle. In this step, the filter algorithm not only needs
to discard the shape constraints with zero or trivial area but
also needs to store the area of the shape for each constraint
and send them to the GPU along with all the possible shape
constraints and the TAS for further calculation.

Fig. 2. Example of a segment of line, and a hyperbola trajectory repre-
sented with hop constraints.

Fig. 3. Example of a segment of circle, and a ellipse segment.
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3.3.2 Calculating the Area of the Shape Segments

To ensure the accuracy of the effective coverage ratio (ECR) as
shown in Equation (4), the concise computation of the shape
segments’ area is essential. This paper defines the area of an
ellipse segment AreaSegment (in Eq. (6)) as the difference of the
area of the outer ellipse overlapping with the control circle
Areaouteroverlap and the area of the inner ellipse overlapping
with the control circle AreainnerOverlap(the shaded area shown
in Fig. 4) where the control circle has the center A3 and the
radius h3. The outer ellipse and inner ellipse share the same
fociA1 andA2. Also, for any point on the outer ellipse, the dis-
tance from it to the foci (h1 and h2) meets h1 þ h2 ¼ 2� a
where a is a predefined value. The distance from any point on
the inner ellipse to the foci (h0

1 and h0
2) meets h0

1 þ h0
2 ¼ 2� a0.

AreaSegment ¼ AreaouterOverlap �AreainnerOverlap: (6)

The objective now is to calculate the overlapping area of
the inner ellipse and the control circle, and the overlapping
area of the outer ellipse and the circle. To do that, the first
step is to transfer the ellipse to standard Cartesian format as
in Equation (2) by rotating the foci to be horizontally aligned
and shift the center of the ellipse to the origin point of the
predefined coordinate.

The second step is to find the intersection point of the
ellipse and the circle by solving the simultaneous equations of
the Cartesian equation of the ellipse (Eq. (2)) and theCartesian
equation of the circle (Eq. (3) where xc and yc are the x and y
coordinate of the circle center). The simultaneous equations
can be transformed to be a quadratic equation (Eq. (7)) which
has zero to four real number solutions for y. Each real solution
indicates one intersection point of the ellipse and the circle.

x ¼ a
ffiffiffiffiffiffiffiffiffiffi
b2�y2

p
b

y4 þ S1y
3 þ S2y

2 þ S3yþ S4 ¼ 0

m ¼ b2 � a2

n ¼ a2b2 þ b2c2x þ b2c2y � b2r2

S1 ¼ �4b2cy=m

S2 ¼ ð2mnþ 4b4c2y þ 4b2a2c2xÞ=m2

S3 ¼ �4b2cyn=m
2

S4 ¼ ðn2 � 4b2c2xa
2b2Þ=m2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

: (7)

The third step is to simplify and adapt the algorithm in [31]
for computing the overlapping area of an ellipse and the cir-
cle. The detailed procedures and algorithms are described in
theAppendix, available in the online supplementalmaterial.

A hyperbola’s segment constraints are defined as the over-
lapping area of a hyperbola with one hop width and a control
circle with a given radius. The hyperbola is defined with two
anchor nodes which are its foci. The control circle is defined
with one anchor node which is its center. To find all possible
hyperbola segments, The proposed algorithm uses three
layers nested for-loop to iterate through the anchor nodes
A1; A2; A3 as shown in Equation (5). For each shape, it iterates
hops from hstart to hend. It also calculates the average one-hop
distance between the foci of the hyperbola as dfocus and the
average one-hop distance between all three anchor nodes as
davg which is used to estimate the overlapping area of the
hyperbola segment and the control circle discussed in Fig. 5.

For example, in Fig. 5, assume that the x-coordinate of
the anchor nodes is XID where “ID” is the anchor node’s
identification number and the y-coordinate of the anchor
nodes is YID. Assume that the euclidean distance between
A1 and A2 is 2� c. The overlapping area of the hyperbola of
A1 and A2 and the control circle of A3 is defined as
Areahyper ¼ AreainnerHyper �Areahyperbola. The inner hyper-
bola meets DisA1 �DisA2 ¼ 2� a� dfocus. Here DisAID

is
the distance between any point in the hyperbola to the focus
with given ’ID’; ’a’ is a positive integer less than Hmax. The
overlapping area of a hyperbola and the control circle can
be calculated as follows:

Areahyper ¼ Areapie þAreatriangle �Areacurve:

As shown in Fig. 5, the Areacurve is the area between the line
connected to the two intersection points and the hyperbola
curve between the two intersection points. This area is the
result of the definite integral of the hyperbola functionminus
the line function. The detailed algorithms are given in the
Appendix, available in the online supplemental material.

3.3.3 Compute the Effective Coverage Ratio (ECR)

and Elect the Best Shapes

To calculate the Areacovered, a brute force method is used by
testing hop constraints pixel by pixel. Different from the

Fig. 4. A ellipse segment’s area estimation example.
Fig. 5. A hyperbola segment’s area estimation example.
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first step which uses a lot of condition branches, the second
step has few branches. Thus, GPU can accelerate its comput-
ing. The NVIDIA CUDA kernel that calculates the ECR is
designed as follows:

For the ellipse arc, if the distance from any pixel in the
TAS to A1 (DisA1

) and A2ðDisA2
) obeys DisA1

þDisA2
�

2� davg � a and any pixel in TAS to A3ðDisA3
) obeys

DisA3
� davg � h3, then that pixel is covered by the arc

shape. For the hyperbola, if the distance from any pixel in
the TAS to A1 (DisA1

) and to A2 (DisA2
) obeys DisA1

�
DisA2 ¼ 2� a� dfocus and the distance from any pixel in
the TAS to A3ðDisA3

) obeys DisA3
� h3 � davg, then that

pixel is covered by the hyperbola shape (note that here all
the notations used are the same as in Equation (5) and
Fig. 5). The GPU algorithm considers both the total number
of pixels in TAS covered by the element shapes and the
Effective Coverage Ratio (ECR). In each iteration, the pro-
posed greedy algorithm only selects the shape which pro-
vides the maximum value of the Greedy Factor (GF) which
is the number of pixels multiplied by cubic ECR as shown
in Equation (8)

GF ¼ Areacovered � ECR3: (8)

So each iteration will eliminate some pixels of TAS,
which also exists in the best shape in Section 3.3.3. Then, the
newly covered pixels is calculated for each possible shape
with the updated TAS. Also, instead of calculating a new
ECR for each shape, the algorithm reuses the ECR calcu-
lated in the first iteration. The shape with the maximum GF
is chosen as the best shape. This procedure is repeated until
the size of the updated TAS is less than 1� Th of the origi-
nal size, where Th is the predefined coverage threshold.
This procedure is discussed in Fig. 22, which generates the
final sequence of shapes that cover most of the TAS. If the
trajectory encoding message exceeds the packet size limita-
tion, shown in Table 1, the POI needs to be divided into
two, and create two separate trajectories with two different
gateway nodes and encode them separately. It is shown in
Fig. 1.

3.4 Routing Decision for Wireless Sensors

The message structure of TinyOS has an 11-byte header that
includes the sender’s address, the type, and the group data.
The payload structure, defined in Table 1, is used for the
implementation of DV-TE-R and adapted DV-TE-BR dis-
cussed in Section 4.

The counter-based routing decision is also used to miti-
gate the broadcast storm effect [5]. In the proposed counter-
based routing decision, each wireless sensor uses two kinds

of criteria to decide if it should forward the routing packet
or not. The first is to check if it meets any constraint of the
encoded trajectory (flagC). The second is to check if the
counter used to count the number of the nearby redundant
re-broadcasting for the same packet reaches the threshold
(flagT ).

As discussed in Section 3.3, the ellipse constraint has a
size of four bytes: A1, A2, A3, a, h3. For any sensor node, set-
ting flagC to be true means its DV-Hop entry of A1, A2, A3

obeys Equation (9). The hyperbola constraint has a size of
five bytes: A1, A2, A3, a, h3. For the same sensor node, flagC
should be true if its DV-Hop entry of A1, A2, A3 satisfies
Equation (10). To distinguish the ellipse constrains from the
hyperbola constraints, the ellipse constraint sets the a value
to be negative while the hyperbola constraint uses positive
a value.

floorðDVHop½A1� þDVHop½A2�Þ=2 ¼¼ jaj
DVHop½A3� � h3

�
(9)

floorðDVHop½A1� �DVHop½A2�Þ=2 ¼¼ jaj
DVHop½A3� � h3

�
: (10)

The counter-based routing decision is first proposed in
[5]. Once a sensor node broadcasts a packet to its neighbors,
the neighbors will be listening to the channel for a random
amount of time before it forwards the packet. During the lis-
tening period, the sensors will count the number of times
the same packet has been forwarded. If it exceeds the
counter threshold, it will set the flagT to be false so only the
sensors with flagC ¼¼ true and flagT ¼¼ true will forward
the routing packets.

Another case is for a low-power listening WSN where
sensors hibernate for most of their lifetime. The sensors will
rebroadcast immediately if they find they satisfy Equa-
tions (9) and (10) (flagC ¼¼ true ) and initialize a counter
with value 0. Then, they will stop broadcasting when there
is a timeout or when their rebroadcasting neighbors’ num-
ber reaches the counter threshold (flagT ¼¼ true).

3.5 Sample Routing Result and Analysis

The proposed geospatial area encoding algorithm works for
any shape and trajectory. Fig. 6 shows the encoding algo-
rithm on some sample trajectories. For each of the routing
trajectories, assume anchor node ID is one byte long and the
number of hops is one byte long. As shown in Table 2, the
length of the encoded trajectory is 23, 54, and 89 bytes when
encoding without the use of ellipse constraints, and the
length of the encoded trajectory is 21, 51, and 86 when
encoding with the ellipse constraints. The red shapes, which
represent the encoded trajectory, shown in Figs. 6a, 6b, and
6c are the cascaded circle arc and hyperbola shapes. Fig. 9
shows the encoding result of trajectory handwriting “A”
and hand drawing park boundary when encoding with
ellipse and hyperbola constraints. JPEG compression algo-
rithm is lossy for images. The above JPEG example has a
64� 64 resolution while has only about 800 bytes size.
Assume that there are “n” anchor nodes in the local edge
network, each anchor node floods at most “r” hops, and the
TAS has “m” entries. Then the time complexity of finding
the best ellipse arc and the best hyperbola segment is

TABLE 1
Payload Data Structure

Descriptions Starting Bytes Length in Bytes

Message ID 0 4
Parent Node address 4 2
Hop counts 6 1
relaxation parameter 7 1
constraints for relax 9 6
routing constraints 14 100
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Oðmn3r3Þ. Another experiment is conducted with anchor
nodes from 20 to 80, and the TAS is from 10,000 to 100,000.
Fig. 7 shows when the number of anchor nodes increases,
the CPU time of calculating the area of all possible shapes
has a polynomial growth. Fig. 8b shows that the GPU time
of finding the best shape also has polynomial growth when
the number of anchor nodes increases. However, Fig. 8a
indicates that the GPU time of finding the best shape has a
linear relationship with the size of TAS.

4 ADAPTED DV-HOP BASED DATA COLLECTION

SCHEME FOR LOW-POWER WSN

To ensure high QoS in a WSN, the DV-Hop based trajectory
encoding and routing protocol (DV-TE-R) has been proposed.
For low-powerWSN, which can be deployed in a harsh envi-
ronment, the density of the network topology can be heteroge-
neous. Somewhere in the region, the sensors may be sparsely
deployed, or the routing path could be obstructed by some
“holes” shown in Fig. 10. Now the user wants to forward a
packet from node Si to So through an arc with center A and
radius h hops with 1 hop width. Although the DV-hop of
both the nodes Si and So is h, these two nodes are not directly
connected because of an obstacle between them. If using local
broadcasting, for example in Fig. 10, to fix the routing path, at
least 4 hops extra broadcast is required which is a huge over-
head. Therefore, the routing protocol adopts a bridge on the

edge adaption (DV-TE-BR) that could connect a broken rout-
ing pathwithminimumoverhead.

After a forwarder node has forwarded the routing packet
and has not overheard any rebroadcast from its neighboring

Fig. 6. Example encoding with the circle and the hyperbola constraints
and the compressed trajectory using JPEG.

TABLE 2
Encoding Result for Sample Trajectories

Trajectory type A outline Circles

Number of circle arcs (without ellipse) 3 12 17
Number of hyperbolas (without ellipse) 2 1 4
Message length(byte) 23 54 89
Number of ellipse arcs (with ellipse) 2 6 12
Number of hyperbolas (with ellipse) 2 4 5
Message length(byte) 21 51 86
Compressed size with JPEG(byte) 867 887 934

Fig. 7. CPU time calculating area of all possible shapes.

Fig. 8. GPU time finding the best shape.
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nodes nor acknowledgment from the sinks, it will start iterat-
ing its valid constraints, relax those by one hop, note all the
changes, and rebroadcast the packets again. If it receives the
rebroadcast from its neighbors, it will stop iterating and go to
sleep immediately. If a node receives the relaxed-constraint
packet, it will tighten the constraint by one, and repeat the
previous procedure until recovering the original constraint.
Note that both h1 and h2 are relaxed for the arc constraint, and
both a and h3 are relaxed for hyperbola constraint.

For example, like Fig. 10, the nodes B1; B2; B3; B4 have an
increased DV-hop entry of A from hþ 1 to hþ 2. Thus, the
sensor node Si needs to relax the hop constraints by one.
Then, the node B1 needs to relax the hop constraint by one
more. For B2, it will hold the constraints as of B1. The con-
straint is tightened by one for B3, and so does B4. Finally,
the route is fixed after B4 forwards the packet to So.

5 EXPERIMENTS AND RESULTS

The experiments are conducted with a simulation tool TOS-
SIM and a real sensor network test-bed. The simulation uses
a randomly created large-scale wireless sensor network as
the working area which contains both heterogeneous and
homogeneous topology. It uses real-world trajectory data
(taxi-trajectory [32]) for sensor data collection. The experi-
ments also include the performance evaluation of the pro-
posed data collection algorithm in WSNwith mobile nodes.

The structure of our experiments is listed as follows: First,
an experiment to validate the effeteness of the proposed tra-
jectory-based routing protocol in a real wireless sensor net-
work with 28 nodes. Second, an experiment to evaluate the
proposed data collection scheme in a large staticWSNwith a
mobile sink using the TOSSIM simulator. The simulation
uses the real-world taxi trajectory dataset. Third, an experi-
ment to test routing in the shortest path to the mobile sink

and compared the delay and energy consumption compar-
ing to ring routing and nested routing. Fourth, a Python pro-
gram to evaluate the proposed data collection scheme in a
WSN with mobile sensor nodes. It shows the data collection
area scatters with themovement of sensors.

5.1 Performance Using a WSN Test-Bed

This real-world experiment contains a small wireless sensor
network, which is a mix of 16 TelosB sensors [33] and 12
MicaZ sensors [34], with minimal radio power configura-
tion, and hard-coded DV-Hop information of 10 virtual
anchor nodes. The experiments test the performance of
broadcasting the data collection requests toward the loca-
tion of interest through a given trajectory. The performance
metrics were mainly focused on the coverage ratio and
latency. The baseline comparison was with the counter-
based broadcasting scheme discussed earlier.

The 28 wireless sensors are coded with the proposed DV-
Hop based broadcasting protocol, and the counter based
broadcasting scheme. The sensors are labeled and hard-coded
with theDV-Hop of 10 virtual anchor nodes. The values of the
DV-Hops are generated with a simulation tool that simulates
a WSN with 500 nodes and 10 anchor nodes. It selects 28
nodes from the 500 nodes in the WSN. Three trajectories are
used in this experiment as shown in Fig. 11. The blue trajec-
tory (dot line) has a “G” shape and is located near the top left
corner of the WSN. The red trajectory (dash line) has a “ j”
shape and is located on the bottom right corner of the WSN.
The green trajectory (dash-dot line) has a shape that looks like
an “X” and is located in themiddle of theWSN.

Next, the wireless sensor network deployed follows the
same topology as in the simulation tool based on their
labels. Node 1 is the start node and node 28 is the sink node
for all three trajectories. In the center of the WSN, the green
trajectory is a multi-casting route that forwards packets
from node 1 to nodes 28, 25, and 12 at the same time.

Then, use the simulation tool to generate the routing
messages covering the colored trajectory, and sending the
routing messages through the gateway sensor (source node)
connecting the laptop near node 1.

Fig. 9. Example Encoding of ellipse and hyperbola.

Fig. 10. Example of the bridge on the edge adaption.

Fig. 11. Experimental WSN and routing trajectory.
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Once the sensors rebroadcast the received data request
messages, they will blink their LED light until enough
neighbors (larger than the counter threshold) rebroadcast or
when it timeouts. Also, the predefined destination nodes
(POI) will route the sensing data back to the gateway sen-
sors through its parent’s node. The time elapsed between
the time the source sending the data collection packets and
the time the source received back the sensing data is consid-
ered to be the latency.

The experiment shows that the proposed approach can
successfully disseminate messages to the desired path by
only modifying the constraints in the routing message. Only
the sensors on the trajectory that meets the constraints will
be activated to rebroadcast the message. In Fig. 12, the
multi-hop latency is similar to the broadcasting approach
for the green trajectory. The reason is that the routing deci-
sion of the proposed DV-Hop based data forwarding
approach is made by comparing the routing constraints and
the DV-Hop stored in the sensor, which is trivial. Most por-
tion of the delay is caused by the predefined random chan-
nel listening period which is similar to the counter-based
broadcasting approach (It is used to mitigate the broadcast-
ing storm effect). The proposed approach has better latency
when routing through the green trajectory. The reason is
that the green trajectory has fewer hops from the start node
to the sink node. The broadcasting approach has better
latency compared to the proposed data forwarding
approach because it can always route messages to the desti-
nation through the minimum hop counts. However, as a
trade-off, the broadcast approach can only flood through all

the nodes while the proposed DV-Hop based data forward-
ing approach not only can route on the trajectory but also
reduce the overhead caused by the redundant rebroadcast-
ing. Fig. 13 shows that the baseline(counter-based broad-
casting) approach will flood the whole network and will
cause all the nodes to rebroadcast even in the small wireless
sensor network.

Another experiment is executed with low power listen-
ing(LPL) [35] configured WSN. In LPL mode, the sensors
fell asleep frequently and only wake up for a small period
to listen to the channel. The proposed approach sets the
sleeping time as 600 ms and wake up time as 10 ms in one
cycle. It is challenging to do routing in an LPL WSN where
the network topology is unstable as most of the neighboring
sensors fell asleep. The adaption of the routing approach for
LPL WSN, discussed in Section 4, doesn’t need to rely on
the routing table. However, unlike the existing LPL broad-
casting scheme, the proposed approach lets the current
broadcasting nodes to keep broadcasting until the number
of rebroadcasting neighbors reaches the predefined counter
threshold or it times out. Fig. 14 shows that although the
counter based broadcasting has a lower delay due to flood-
ing, the proposed data forwarding protocol still has an
acceptable multi-hop routing delay.

5.2 Simulation Results

The simulation experiment creates random heterogeneous
WSNs and routes data collection messages on the real-
world taxi trajectory [32]. Coverage performance is defined
as follows. The correct coverage ratio is the number of nodes
rebroadcasting while on the trajectory over the number of
the nodes supposed to rebroadcast (total nodes on the taxi
trajectory). It shows the effectiveness of the proposed proto-
col (higher ratio indicates high accuracy). The redundant
rebroadcast ratio is the number of the nodes not in the tra-
jectory while still rebroadcasting over the number of nodes
supposed to rebroadcast. A higher redundant rebroadcast
ratio indicates a higher overhead of bandwidth and energy
consumption.

The experimental parameters are defined in Table 3. The
trajectory and POI encoding are executed using a desktop,
which acts as a fog server, with a Xeon E5-1620 v2 and an
Nvidia RTX 2070 GPU. The POI is located within a WSN
distributed in a 2800m by 1700m area. The density of the
WSN is less than 0.5 percent where the density is defined as
the average number of neighbors over a total number of
sensor nodes. To save energy, all the wireless sensors work

Fig. 12. Latency of multi-hop routing when disseminating data collection
message with proposed data forwarding approach and counter-based
broadcast.

Fig. 13. Total number of nodes rebroadcasting when disseminating data
collection message with proposed data forwarding approach through tra-
jectory and counter-based broadcast.

Fig. 14. Latency of multi-hop routing when disseminating data collection
messages with proposed data forwarding approach and counter-based
broadcast in LPLWSN.
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under low power listening mode, where each sensor node
only wakes up for a few milliseconds to listen to the chan-
nel. The WSN is simulated using TOSSIM. The experiment
also uses powerTOSSIM-Z to estimate the energy consump-
tion of the activated sensor nodes. There are 30 local edge
nodes randomly deployed in the WSN field. The local edge
nodes act as the gateway that will broadcast the encoded
data requests’ packets and collect the data from the WSN.
The performance metric used includes the compression
ratio, reliability, average delay in data reporting, and energy
consumption.

Asmentioned above, the experiments use real-world taxi-
trajectory data [32] as the routing trajectory. Each line of the
trajectory data contains the trajectory of a taxi trip in the city
of Porto in Portugal. The trajectory is represented as a list of
8 bytes of GPS data (latitude and longitude) sampled every
15 seconds. The 2 GB data-set contains trajectories of differ-
ent shapes, lengths, starting, and ending locations. To use
these trajectories in the experiments, the first step is to pre-
process the data-set by removing the abnormal trajectory
and aligning the trajectories in the center of the WSN. To
remove the outliers, trajectories that contain abnormal itiner-
ary like where the taxi has abnormal speed, are discarded so
that the data-set only contains valid GPS data points for each
itinerary. The third step is to reconstruct the itinerary from
GPS data points and map it to a 2D trajectory which is
the area in the fixed WSN field (TAS). To determine the rect-
angle field of theWSN and alignwith the taxi trajectory on it,
the fourth step is to use Chan’s algorithm [30] to generate the

convex hull of the trajectory and then find the minimal rect-
angle that could wrap the trajectory as shown in Fig. 15. The
largest length andwidth of theminimal wrapping rectangles
of all the taxi trajectories are chosen as the outline parameter
of the rectangle field of theWSN. Then all the trajectories are
shifted and rotated to align to the center of the WSN field.
The last step is to set the thickness of the trajectory line to be
the average one-hop radio distance of the sensors. Fig. 15
shows two trajectory examples with 60 (left) and 189 GPS
data points.

The statistics of the dataset are shown in Fig. 16 where
the X-axis shows the number of GPS data points of the tra-
jectory, and Y -axis is the size of the set of node IDs that
reside on the trajectory. The figure shows that the trajectory
with more GPS data will cover more sensor nodes. In
Fig. 20 and Fig. 21, where the X-axis is the number of GPS
data in a trajectory and the Y -axis is the compression ratio,
500 trajectories were sampled, the number of GPS data
points ranging from [2, 20],[21, 40],[41, 60],[61, 80], and [81,
105] and the number of anchor nodes in the set [20, 40, 60,
80, 100] which is (0.4, 0.8, 1.2, 1.6, 2 percent) of the total
number of nodes in the network. The compression ratio
(CR) is defined as the uncompressed-data size over the
compressed data size using the proposed encoding algo-
rithm. Here the uncompressed data size is the size of a list
of sensor IDs that reside in the trajectory. The results show
that when the number of anchor nodes increases, the CR
also increases. It is more likely to find the closest ‘shapes’
when the number of anchor nodes is large, which costs
fewer iterations to cover the area. Note that when the num-
ber of GPS data points increases, the CR is not increased
when encoding with 20 or 40 anchor nodes. A possible rea-
son is that when there are fewer anchor nodes, redundant
shapes may be selected in the later iterations, which
increases the size of the encoded message. For example, in
Figs. 6b and 6c, more shapes that overlap with other shapes
than that in the case of Fig. 6a.

When the mobile nodes change location, they will update
the DV-Hop by querying the nearby sensor nodes. As dis-
cussed in Section 3.1, the new DV-Hop to anchors will be the
minimum hop count of all current neighbors plus one. How-
ever, when the neighbors contain the anchor nodes, the new
DV-Hop will use the anchor nodes’ minimal DV-Hop as the
only reference. A trajectory routing example for a sample tra-
jectory with 66 GPS data in Fig. 17 shows the coverage area
increases steadily when the network has 50 percent of the
mobile nodes. Fig. 18 shows the result of how the correct

TABLE 3
Parameters for the Experiments

Area of deployment 2800�1700 m
Number of sensor nodes 5000
Communication range 40-100 m
Number of edge devices 30
Broadcasting hop limitation 30 hops
LPL sleeping time 600ms
LPL wake time 10ms
Energy model MicaZ
Coverage threshold 90%
Number of anchor nodes (20 - 100)
Anchor cover range 20 hops

Fig. 15. Find convex hull and the minimal surrounding rectangle for taxi
trajectory with 60 GPS data points(left) and 189 GPS data points(right)
and the trajectories after pre-process.

Fig. 16. Property of taxi trajectory dataset.
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coverage ratio changes with 20, 50, and 80 percent mobile
nodes in a given period (0-100 epoch). In each epoch, the ran-
domly selected sensors will move 1.5 times of its radio dis-
tance. The correct coverage ratio will increase due to the
increase in the total coverage area. However, the trade-off is
the redundant rebroadcast ratio also increases as shown in
Fig. 19.

For the reliability experiment. Since the proposed trajec-
tory encoding algorithm uses basic shapes (ellipse arc and
hyperbola segments) to approximate the trajectory, there is
a possibility that the encoding will fail when no suitable
shape is found. Here, an encoding failure is defined as
when the encoding algorithm cannot find any combination
of shapes that will cover a certain threshold ratio of TAS,
which is defined as the predefined coverage ratio. For

example, when the threshold is set to 85 percent, the hops
constraints represented shapes must overlap with more
than 85 percent of the trajectory area. The lower the thresh-
old, the higher is the encoding successful rate. However, a
threshold lower than 85 percent is not recommended, as the
routing reliability (the rate of successfully routing the data
request message to the POI) will be affected due to the
uncovered gaps between the routing paths. This experiment
is to find the relationship between the number of anchor
nodes, success rate (the percentage of encoding that does
not fail), and coverage threshold. The result in Fig. 22 shows
that as the number of anchor nodes increasing, the success
rate of encoding will increase. However, increasing the cov-
erage threshold will decrease the success rate of encoding.
Note that When using ellipse constraints, the success rate is
higher than using naive circle constraints when the number
of anchor nodes is 20. The reason is the ellipse use three
anchor nodes which provide more combination than the cir-
cle constraints with two anchor nodes.

The next experiment compares the reliability of the pro-
posed encoding and routing protocol with the ring routing
[14] and the nested routing [15], which both enable data
routing to a moving sink (mobile edge device that can move
in some applications) by relaying the data to a circular area
where the nodes know the updated location of the mobile
edge device. The area of a nested ring is in the middle of the
sensing field, as shown in Fig. 6c. This experiment uses 50
anchor nodes for the proposed algorithm. The reliability of
ring routing is defined as the success rate of generating a
ring structure. The reliability of nested routing is the success
rate of generating any one of the ring structures within its

Fig. 17. With 50 percent mobile nodes for each epoch, the changing of
coverage for taxi trajectory of Fig. 15a.

Fig. 18. Average correct coverage ratio.

Fig. 19. Average redundant rebroadcast ratio.
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nested ring structure. The reliability of the proposed DV-
Hop based trajectory encoding and routing (DV-TE-R) and
its bridge on the edge (DV-TE-BR) adaption is the success
rate of generating the encoded message of the trajectory and
routing the data request packets to the nodes within POI.
The result is shown in Fig. 23. When the average number of
neighbors of each node is smaller than 8, which is 0.16 per-
cent of the total number of nodes, both protocols have low
reliability. The nested routing protocol has better reliability
performance than ring routing because it has redundant
rings. The bridge on the edge adaption improves the reli-
ability of DV-TE-R by relaxing the hop constraints. When
the average number of neighboring nodes is greater than 16,
which is 0.32 percent of the total number of nodes, the reli-
ability of DV-TE-BR is greater than 99 percent. It achieves
the best reliability performance compared to ring routing
and nested ring routing. In the rest of the experiments, by
default, the following experiments use DV-TE-BR.

The next experiment assumes that mobile edge devices
will move randomly with different speeds in the local IoT
network with the configuration, as shown in Table 3. The
average delay in data reporting is the time when the moving
mobile edge devices receive the data minus the time when
the source reports the data. The proposed DV-TE-BR fixes
the current routing path by letting the mobile edge devices
update their locations periodically. Thus, it cannot always
guarantee the shortest reporting path as the ring routing
and nested routing methods do. Although the ring routing
and nested routing provide the current location of the
mobile sink, fetching this information from the ring or
nested ring for the source node causes the delay overhead
of one round trip to the closest ring. Thus, the delays of ring

routing and nested ring routing are still higher than the
delay of DV-TE-BR. In addition, the counter-based routing
strategy of DV-TE-BR reduces the waiting delay for the
low-power listening WSN because the first awaked node
could start routing, while ring routing and nested routing
have to wait for specific routing nodes within its routing
table. Nested routing has a better delay performance than
ring routing because its average shortest distance from the
source to the rings is shorter than the ring routing. The
delay performance of data reporting is shown in Fig. 24.

The following latency and energy consumption experi-
ments compare the proposed scheme with the state-of-the-
art counter-based broadcasting algorithm. The experimental
set-up, which uses the taxi trajectory data, is shown in
Table 3. It uses TOSSIM to simulate the routing of data
request messages and data reporting packets and visualize
the results using Python. Fig. 26a shows a sample trajectory
being encoded using hops constraints represented shapes,
and Fig. 26b shows a sample output of the visualized rout-
ing result where the red dots are the sensors that forwarded
a message and the green dots are sensors that received
a message.

Fig. 22. Experiment of successful encoding rate with different number of
anchor nodes and coverage threshold.

Fig. 23. The reliability of DV-TE-R, DV-TE-BR, Ring routing, and Nested
routing with different number of neighbors.

Fig. 20. Compression ratio of the encoding without using an ellipse.

Fig. 21. The compression ratio of the proposed DV-Hop based trajectory
encoding algorithm (with ellipse) for different trajectory sizes.

Fig. 24. The average delay in data reporting compared with state-of-the-
art schemes.
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The latency in collecting the requested data is an impor-
tant factor in meeting the quality of service. Broadcasting is
the fastest way to flood the data request into the whole net-
work. The proposed data collection scheme also broadcasts
the data request to the POI. However, as opposed to flood-
ing approaches [7], only the nodes in a hop constraint
defined trajectory can rebroadcast. Thus, energy consump-
tion and bandwidth usage are minimized. Fig. 25 compares
the latency of the local edge devices receiving all the sensing
data of the POI from the local WSN, which are working
under low power listening mode with a 660 ms sleeping
and waking period. All local edge devices will broadcast
the data request messages. The sensor nodes that receive
the data request packets will be awake and send the data
back to the nearest edge devices if they are at the POI. The
experimental result shows that transmitting encoded data
request messages could reduce latency because broadcast-
ing a compressed message requires fewer packets than an
uncompressed message which includes IDs of all the sensor
nodes residing within the POI. The proposed scheme, which
encodes trajectories with ellipse-circle constraint, achieves
better latency performance than the trajectory encoding pro-
tocol with only circle-circle constraints due to its higher
compression ratio.

The energy consumption experiment is simulated with
powerTOSSIM-Z, which is an energy simulation tool for
wireless sensors. It uses the micaZ energy model and can
measure energy consumption at the packet level. The result
in Fig. 27 shows that the proposed data collection scheme
consumes less energy than the broadcasting approach. The
proposed scheme, which encodes trajectories with ellipse-
circle constraints, achieves better energy performance than
the trajectory encoding protocol with only circle-circle con-
straints due to the higher compression ratio. The last

experiment is to compare the average number of rebroad-
casting nodes of the proposed DV-hop based trajectory
encoding and routing scheme (DV-TE-BR) verses the state-
of-the-art counter-based broadcasting [7] for each single
data request packet. The result shows that the proposed
DV-TE-BR scheme reduces the number of redundant
rebroadcasting packets (142 versus 2491) by 94 percent and
thus, saves bandwidth usage in the WSN.

6 CONCLUSION AND FUTURE WORK

The proposed trajectory encoding and data collection algo-
rithms for IoT applications have improved energy effi-
ciency, reduced latency, and achieved reliable performance
when fetching data from the POI in the local fog network
without using GPS coordinates. In addition, with the use of
virtual coordinates, location anonymity is achieved for the
source, sink, and intermediate nodes in the routing path, as
only the secure server in the local fog knows the anchor
nodes’ locations. Besides, the use of ellipse and hyperbola
constraints increase the encoding accuracy and compression
ratio. In the future, the plan is to solve the real-time event
detection problem in multi-hop IoT network using the pro-
posed approach and the conditional random field [36]. The
plan is also explore to extend the proposed scheme for
under water WSN.
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