3 research outputs found

    A modified grey wolf optimizer for improving wind plant energy production

    Get PDF
    The main problem of existing wind plant nowadays is that the optimum controller of single turbine degrades the total energy production of wind farm when it is located in a large wind plant. This is owing to its greedy control policy that can not cope with turbulence effect between turbines. This paper proposes a Modified Grey Wolf Optimizer (M-GWO) to improvise the controller parameter of an array of turbines such that the total energy production of wind plant is increased. The modification employed to the original GWO is in terms of the updated mechanism. This modification is expected to improve the variation of exploration and exploitation rates while avoiding the premature convergence condition. The effectiveness of the M-GWO is applied to maximize energy production of a row of ten turbines. The model of the wind plant is derived based on the real Horns Rev wind plant in Denmark. The statistical performance analysis shows that the M-GWO provides the highest total energy production as compared to the standard GWO, Particle Swarm Optimization (PSO) and Safe Experimentation Dynamics (SED) methods

    A Modified Grey Wolf Optimizer For Improving Wind Plant Energy Production

    Get PDF
    The main problem of existing wind plant nowadays is that the optimum controller of single turbine degrades the total energy production of wind farm when it is located in a large wind plant. This is owing to its greedy control policy that can not cope with turbulence effect between turbines. This paper proposes a Modified Grey Wolf Optimizer (M-GWO) to improvise the controller parameter of an array of turbines such that the total energy production of wind plant is increased. The modification employed to the original GWO is in terms of the updated mechanism. This modification is expected to improve the variation of exploration and exploitation rates while avoiding the premature convergence condition. The effectiveness of the M-GWO is applied to maximize energy production of a row of ten turbines. The model of the wind plant is derived based on the real Horns Rev wind plant in Denmark. The statistical performance analysis shows that the M-GWO provides the highest total energy production as compared to the standard GWO, Particle Swarm Optimization (PSO) and Safe Experimentation Dynamics (SED) methods

    An empirical study on the various stock market prediction methods

    Get PDF
    Investment in the stock market is one of the much-admired investment actions. However, prediction of the stock market has remained a hard task because of the non-linearity exhibited. The non-linearity is due to multiple affecting factors such as global economy, political situations, sector performance, economic numbers, foreign institution investment, domestic institution investment, and so on. A proper set of such representative factors must be analyzed to make an efficient prediction model. Marginal improvement of prediction accuracy can be gainful for investors. This review provides a detailed analysis of research papers presenting stock market prediction techniques. These techniques are assessed in the time series analysis and sentiment analysis section. A detailed discussion on research gaps and issues is presented. The reviewed articles are analyzed based on the use of prediction techniques, optimization algorithms, feature selection methods, datasets, toolset, evaluation matrices, and input parameters. The techniques are further investigated to analyze relations of prediction methods with feature selection algorithm, datasets, feature selection methods, and input parameters. In addition, major problems raised in the present techniques are also discussed. This survey will provide researchers with deeper insight into various aspects of current stock market prediction methods
    corecore