494 research outputs found

    Representation Independent Analytics Over Structured Data

    Full text link
    Database analytics algorithms leverage quantifiable structural properties of the data to predict interesting concepts and relationships. The same information, however, can be represented using many different structures and the structural properties observed over particular representations do not necessarily hold for alternative structures. Thus, there is no guarantee that current database analytics algorithms will still provide the correct insights, no matter what structures are chosen to organize the database. Because these algorithms tend to be highly effective over some choices of structure, such as that of the databases used to validate them, but not so effective with others, database analytics has largely remained the province of experts who can find the desired forms for these algorithms. We argue that in order to make database analytics usable, we should use or develop algorithms that are effective over a wide range of choices of structural organizations. We introduce the notion of representation independence, study its fundamental properties for a wide range of data analytics algorithms, and empirically analyze the amount of representation independence of some popular database analytics algorithms. Our results indicate that most algorithms are not generally representation independent and find the characteristics of more representation independent heuristics under certain representational shifts

    Worst-case Optimal Query Answering for Greedy Sets of Existential Rules and Their Subclasses

    Full text link
    The need for an ontological layer on top of data, associated with advanced reasoning mechanisms able to exploit the semantics encoded in ontologies, has been acknowledged both in the database and knowledge representation communities. We focus in this paper on the ontological query answering problem, which consists of querying data while taking ontological knowledge into account. More specifically, we establish complexities of the conjunctive query entailment problem for classes of existential rules (also called tuple-generating dependencies, Datalog+/- rules, or forall-exists-rules. Our contribution is twofold. First, we introduce the class of greedy bounded-treewidth sets (gbts) of rules, which covers guarded rules, and their most well-known generalizations. We provide a generic algorithm for query entailment under gbts, which is worst-case optimal for combined complexity with or without bounded predicate arity, as well as for data complexity and query complexity. Secondly, we classify several gbts classes, whose complexity was unknown, with respect to combined complexity (with both unbounded and bounded predicate arity) and data complexity to obtain a comprehensive picture of the complexity of existential rule fragments that are based on diverse guardedness notions. Upper bounds are provided by showing that the proposed algorithm is optimal for all of them

    Schema Independent Relational Learning

    Full text link
    Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions

    CREOLE: a Universal Language for Creating, Requesting, Updating and Deleting Resources

    Get PDF
    In the context of Service-Oriented Computing, applications can be developed following the REST (Representation State Transfer) architectural style. This style corresponds to a resource-oriented model, where resources are manipulated via CRUD (Create, Request, Update, Delete) interfaces. The diversity of CRUD languages due to the absence of a standard leads to composition problems related to adaptation, integration and coordination of services. To overcome these problems, we propose a pivot architecture built around a universal language to manipulate resources, called CREOLE, a CRUD Language for Resource Edition. In this architecture, scripts written in existing CRUD languages, like SQL, are compiled into Creole and then executed over different CRUD interfaces. After stating the requirements for a universal language for manipulating resources, we formally describe the language and informally motivate its definition with respect to the requirements. We then concretely show how the architecture solves adaptation, integration and coordination problems in the case of photo management in Flickr and Picasa, two well-known service-oriented applications. Finally, we propose a roadmap for future work.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Datalog± Ontology Consolidation

    Get PDF
    Knowledge bases in the form of ontologies are receiving increasing attention as they allow to clearly represent both the available knowledge, which includes the knowledge in itself and the constraints imposed to it by the domain or the users. In particular, Datalog ± ontologies are attractive because of their property of decidability and the possibility of dealing with the massive amounts of data in real world environments; however, as it is the case with many other ontological languages, their application in collaborative environments often lead to inconsistency related issues. In this paper we introduce the notion of incoherence regarding Datalog± ontologies, in terms of satisfiability of sets of constraints, and show how under specific conditions incoherence leads to inconsistent Datalog ± ontologies. The main contribution of this work is a novel approach to restore both consistency and coherence in Datalog± ontologies. The proposed approach is based on kernel contraction and restoration is performed by the application of incision functions that select formulas to delete. Nevertheless, instead of working over minimal incoherent/inconsistent sets encountered in the ontologies, our operators produce incisions over non-minimal structures called clusters. We present a construction for consolidation operators, along with the properties expected to be satisfied by them. Finally, we establish the relation between the construction and the properties by means of a representation theorem. Although this proposal is presented for Datalog± ontologies consolidation, these operators can be applied to other types of ontological languages, such as Description Logics, making them apt to be used in collaborative environments like the Semantic Web.Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Teaching an RDBMS about ontological constraints

    Get PDF
    International audienceIn the presence of an ontology, query answers must reflect not only data explicitly present in the database, but also implicit data, which holds due to the ontology, even though it is not present in the database. A large and useful set of ontology languages enjoys FOL reducibility of query answering: answering a query can be reduced to evaluating a certain first-order logic (FOL) formula (obtained from the query and ontology) against only the explicit facts. We present a novel query optimization framework for ontology-based data access settings enjoying FOL reducibility. Our framework is based on searching within a set of alternative equivalent FOL queries, i.e., FOL reformulations, one with minimal evaluation cost when evaluated through a relational database system. We apply this framework to the DL-LiteR Description Logic underpinning the W3C's OWL2 QL ontology language, and demonstrate through experiments its performance benefits when two leading SQL systems, one open-source and one commercial, are used for evaluating the FOL query reformulations
    • …
    corecore