160 research outputs found

    Current sensing feedback for humanoid stability

    Get PDF
    For humanoid robots to function in changing environments, they must be able to maintain balance similar to human beings. At present, humanoids recover from pushes by the use of either the ankles or hips and a rigid body. This method has been proven to work, but causes excessive strain on the joints of the robot and does not maximize on the capabilities of a humanlike body. The focus of this paper is to enable advanced dynamic balancing through torque classification and balance improving positional changes. For the robot to be able to balance dynamically, external torques must be determined accurately. The proposed method of this paper uses current sensing feedback at the humanoids power source to classify external torques. Through understanding the current draw of each joint, an external torque can be modeled. After being modeled, the external torque can be nullified with balancing techniques. Current sensing has the advantage that it adds detailed feedback while requiring small adjustments to the robot. Also, current sensing minimizes additional sensors, cost, and weight to the robot. Current sensing technology lies between the power supply and drive motors, thus can be implement without altering the robot. After an external torque has been modeled, the robot will undertake balancing positions to reduce the instability. The specialized positions increase the robot\u27s balance while reducing the workload of each joint. The balancing positions incorporate the humanlike body of the robot and torque from each of the leg servos. The best balancing positions were generated with a genetic algorithm and simulated in Webots. The simulation environment provided an accurate physical model and physics engine. The genetic algorithm reduced the workload of searching the workspace of a robot with ten degrees of freedom below the waist. The current sensing theory was experimentally tested on the TigerBot, a humanoid produced by the Rochester Institute of Technology (RIT). The TigerBot has twenty three degrees of freedom that fully simulate human motion. The robot stands at thirty-one inches tall and weighs close to nine pounds. The legs of the robot have six degrees of freedom per leg, which fully mimics the human leg. The robot was awarded first place in the 2012 IEEE design competition for innovation in New York

    Combined Controllers that Follow Imperfect Input Motions for Humanoid Robots

    Get PDF
    Humanoid robots have the potential to become a part of everyday life as their hardware and software challenges are being solved. In this paper we present a system that gets as input a motion trajectory in the form of motion capture data, and produces a controller that controls a humanoid robot in real-time to achieve a motion trajectory that is similar to the input motion data. The controller expects the input motion data not to be dynamically feasible for the robot and employs a combined controller with corrective components to keep the robot balanced while following the motion. Since the system can run in real-time, it can be thought of a candidate for teleoperation of humanoid robots using motion capture hardware

    Visual servo control on a humanoid robot

    Get PDF
    Includes bibliographical referencesThis thesis deals with the control of a humanoid robot based on visual servoing. It seeks to confer a degree of autonomy to the robot in the achievement of tasks such as reaching a desired position, tracking or/and grasping an object. The autonomy of humanoid robots is considered as crucial for the success of the numerous services that this kind of robots can render with their ability to associate dexterity and mobility in structured, unstructured or even hazardous environments. To achieve this objective, a humanoid robot is fully modeled and the control of its locomotion, conditioned by postural balance and gait stability, is studied. The presented approach is formulated to account for all the joints of the biped robot. As a way to conform the reference commands from visual servoing to the discrete locomotion mode of the robot, this study exploits a reactive omnidirectional walking pattern generator and a visual task Jacobian redefined with respect to a floating base on the humanoid robot, instead of the stance foot. The redundancy problem stemming from the high number of degrees of freedom coupled with the omnidirectional mobility of the robot is handled within the task priority framework, allowing thus to achieve con- figuration dependent sub-objectives such as improving the reachability, the manipulability and avoiding joint limits. Beyond a kinematic formulation of visual servoing, this thesis explores a dynamic visual approach and proposes two new visual servoing laws. Lyapunov theory is used first to prove the stability and convergence of the visual closed loop, then to derive a robust adaptive controller for the combined robot-vision dynamics, yielding thus an ultimate uniform bounded solution. Finally, all proposed schemes are validated in simulation and experimentally on the humanoid robot NAO

    Dynamic Bat-Control of a Redundant Ball Playing Robot

    Get PDF
    This thesis shows a control algorithm for coping with a ball batting task for an entertainment robot. The robot is a three jointed robot with a redundant degree of freedom and its name is Doggy . Doggy because of its dog-like costume. Design, mechanics and electronics were developed by us. DC-motors control the tooth belt driven joints, resulting in elasticities between the motor and link. Redundancy and elasticity have to be taken into account by our developed controller and are demanding control tasks. In this thesis we show the structure of the ball playing robot and how this structure can be described as a model. We distinguish two models: One model that includes a flexible bearing, the other does not. Both models are calibrated using the toolkit Sparse Least Squares on Manifolds (SLOM) - i.e. the parameters for the model are determined. Both calibrated models are compared to measurements of the real system. The model with the flexible bearing is used to implement a state estimator - based on a Kalman filter - on a microcontroller. This ensures real time estimation of the robot states. The estimated states are also compared with the measurements and are assessed. The estimated states represent the measurements well. In the core of this work we develop a Task Level Optimal Controller (TLOC), a model-predictive optimal controller based on the principles of a Linear Quadratic Regulator (LQR). We aim to play a ball back to an opponent precisely. We show how this task of playing a ball at a desired time with a desired velocity at a desired position can be embedded into the LQR principle. We use cost functions for the task description. In simulations, we show the functionality of the control concept, which consists of a linear part (on a microcontroller) and a nonlinear part (PC software). The linear part uses feedback gains which are calculated by the nonlinear part. The concept of the ball batting controller with precalculated feedback gains is evaluated on the robot. This shows successful batting motions. The entertainment aspect has been tested on the Open Campus Day at the University of Bremen and is summarized here shortly. Likewise, a jointly developed audience interaction by recognition of distinctive sounds is summarized herein. In this thesis we answer the question, if it is possible to define a rebound task for our robot within a controller and show the necessary steps for this

    Compliant aerial manipulation.

    Get PDF
    The aerial manipulation is a research field which proposes the integration of robotic manipulators in aerial platforms, typically multirotors – widely known as “drones” – or autonomous helicopters. The development of this technology is motivated by the convenience to reduce the time, cost and risk associated to the execution of certain operations or tasks in high altitude areas or difficult access workspaces. Some illustrative application examples are the detection and insulation of leaks in pipe structures in chemical plants, repairing the corrosion in the blades of wind turbines, the maintenance of power lines, or the installation and retrieval of sensor devices in polluted areas. Although nowadays it is possible to find a wide variety of commercial multirotor platforms with payloads from a few gramps up to several kilograms, and flight times around thirty minutes, the development of an aerial manipulator is still a technological challenge due to the strong requirements relative to the design of the manipulator in terms of very low weight, low inertia, dexterity, mechanical robustness and control. The main contribution of this thesis is the design, development and experimental validation of several prototypes of lightweight (<2 kg) and compliant manipulators to be integrated in multirotor platforms, including human-size dual arm systems, compliant joint arms equipped with human-like finger modules for grasping, and long reach aerial manipulators. Since it is expected that the aerial manipulator is capable to execute inspection and maintenance tasks in a similar way a human operator would do, this thesis proposes a bioinspired design approach, trying to replicate the human arm in terms of size, kinematics, mass distribution, and compliance. This last feature is actually one of the key concepts developed and exploited in this work. Introducing a flexible element such as springs or elastomers between the servos and the links extends the capabilities of the manipulator, allowing the estimation and control of the torque/force, the detection of impacts and overloads, or the localization of obstacles by contact. It also improves safety and efficiency of the manipulator, especially during the operation on flight or in grabbing situations, where the impacts and contact forces may damage the manipulator or destabilize the aerial platform. Unlike most industrial manipulators, where force-torque control is possible at control rates above 1 kHz, the servo actuators typically employed in the development of aerial manipulators present important technological limitations: no torque feedback nor control, only position (and in some models, speed) references, low update rates (<100 Hz), and communication delays. However, these devices are still the best solution due to their high torque to weight ratio, low cost, compact design, and easy assembly and integration. In order to cope with these limitations, the compliant joint arms presented here estimate and control the wrenches from the deflection of the spring-lever transmission mechanism introduced in the joints, measured at joint level with encoders or potentiometers, or in the Cartesian space employing vision sensors. Note that in the developed prototypes, the maximum joint deflection is around 25 degrees, which corresponds to a deviation in the position of the end effector around 20 cm for a human-size arm. The capabilities and functionalities of the manipulators have been evaluated in fixed base test-bench firstly, and then in outdoor flight tests, integrating the arms in different commercial hexarotor platforms. Frequency characterization, position/force/impedance control, bimanual grasping, arm teleoperation, payload mass estimation, or contact-based obstacle localization are some of the experiments presented in this thesis that validate the developed prototypes.La manipulación aérea es un campo de investigación que propone la integración de manipuladores robóticos in plataformas aéreas, típicamente multirotores – comúnmente conocidos como “drones” – o helicópteros autónomos. El desarrollo de esta tecnología está motivada por la conveniencia de reducir el tiempo, coste y riesgo asociado a la ejecución de ciertas operaciones o tareas en áreas de gran altura o espacios de trabajo de difícil acceso. Algunos ejemplos ilustrativos de aplicaciones son la detección y aislamiento de fugas en estructura de tuberías en plantas químicas, la reparación de la corrosión en las palas de aerogeneradores, el mantenimiento de líneas eléctricas, o la instalación y recuperación de sensores en zonas contaminadas. Aunque hoy en día es posible encontrar una amplia variedad de plataformas multirotor comerciales con cargas de pago desde unos pocos gramos hasta varios kilogramos, y tiempo de vuelo entorno a treinta minutos, el desarrollo de los manipuladores aéreos es todavía un desafío tecnológico debido a los exigentes requisitos relativos al diseño del manipulador en términos de muy bajo peso, baja inercia, destreza, robustez mecánica y control. La contribución principal de esta tesis es el diseño, desarrollo y validación experimental de varios prototipos de manipuladores de bajo peso (<2 kg) con capacidad de acomodación (“compliant”) para su integración en plataformas aéreas multirotor, incluyendo sistemas bi-brazo de tamaño humano, brazos robóticos de articulaciones flexibles con dedos antropomórficos para agarre, y manipuladores aéreos de largo alcance. Puesto que se prevé que el manipulador aéreo sea capaz de ejecutar tareas de inspección y mantenimiento de forma similar a como lo haría un operador humano, esta tesis propone un enfoque de diseño bio-inspirado, tratando de replicar el brazo humano en cuanto a tamaño, cinemática, distribución de masas y flexibilidad. Esta característica es de hecho uno de los conceptos clave desarrollados y utilizados en este trabajo. Al introducir un elemento elástico como los muelles o elastómeros entre el los actuadores y los enlaces se aumenta las capacidades del manipulador, permitiendo la estimación y control de las fuerzas y pares, la detección de impactos y sobrecargas, o la localización de obstáculos por contacto. Además mejora la seguridad y eficiencia del manipulador, especialmente durante las operaciones en vuelo, donde los impactos y fuerzas de contacto pueden dañar el manipulador o desestabilizar la plataforma aérea. A diferencia de la mayoría de manipuladores industriales, donde el control de fuerzas y pares es posible a tasas por encima de 1 kHz, los servo motores típicamente utilizados en el desarrollo de manipuladores aéreos presentan importantes limitaciones tecnológicas: no hay realimentación ni control de torque, sólo admiten referencias de posición (o bien de velocidad), y presentan retrasos de comunicación. Sin embargo, estos dispositivos son todavía la mejor solución debido al alto ratio de torque a peso, por su bajo peso, diseño compacto y facilidad de ensamblado e integración. Para suplir estas limitaciones, los brazos robóticos flexibles presentados aquí permiten estimar y controlar las fuerzas a partir de la deflexión del mecanismo de muelle-palanca introducido en las articulaciones, medida a nivel articular mediante potenciómetros o codificadores, o en espacio Cartesiano mediante sensores de visión. Tómese como referencia que en los prototipos desarrollados la máxima deflexión articular es de unos 25 grados, lo que corresponde a una desviación de posición en torno a 20 cm en el efector final para un brazo de tamaño humano. Las capacidades y funcionalidades de estos manipuladores se han evaluado en base fija primero, y luego en vuelos en exteriores, integrando los brazos en diferentes plataformas hexartor comerciales. Caracterización frecuencial, control de posición/fuerza/impedancia, agarre bimanual, teleoperación de brazos, estimación de carga, o la localización de obstáculos mediante contacto son algunos de los experimentos presentados en esta tesis para validar los prototipos desarrollados por el auto
    corecore