277 research outputs found

    A Multi-Modal Sensing Glove for Human Manual-Interaction Studies

    Get PDF
    We present an integrated sensing glove that combines two of the most visionary wearable sensing technologies to provide both hand posture sensing and tactile pressure sensing in a unique, lightweight, and stretchable device. Namely, hand posture reconstruction employs Knitted Piezoresistive Fabrics that allows us to measure bending. From only five of these sensors (one for each finger) the full hand pose of a 19 degrees of freedom (DOF) hand model is reconstructed leveraging optimal sensor placement and estimation techniques. To this end, we exploit a-priori information of synergistic coordination patterns in grasping tasks. Tactile sensing employs a piezoresistive fabric allowing us to measure normal forces in more than 50 taxels spread over the palmar surface of the glove. We describe both sensing technologies, report on the software integration of both modalities, and describe a preliminary evaluation experiment analyzing hand postures and force patterns during grasping. Results of the reconstruction are promising and encourage us to push further our approach with potential applications in neuroscience, virtual reality, robotics and tele-operation

    A Review of Non-Invasive Haptic Feedback stimulation Techniques for Upper Extremity Prostheses

    Get PDF
    A sense of touch is essential for amputees to reintegrate into their social and work life. The design of the next generation of the prostheses will have the ability to effectively convey the tactile information between the amputee and the artificial limbs. This work reviews non-invasive haptic feedback stimulation techniques to convey the tactile information from the prosthetic hand to the amputee’s brain. Various types of actuators that been used to stimulate the patient’s residual limb for different types of artificial prostheses in previous studies have been reviewed in terms of functionality, effectiveness, wearability and comfort. The non-invasive hybrid feedback stimulation system was found to be better in terms of the stimulus identification rate of the haptic prostheses’ users. It can be conclude that integrating hybrid haptic feedback stimulation system with the upper limb prostheses leads to improving its acceptance among users

    Gloved Human-Machine Interface

    Get PDF
    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human

    Enriching passive touch sensation on flat surfaces using visual feedback

    Get PDF
    While human computer interaction has evolved around touch interaction a lot in recent years, it's been lacking any haptic feedback from the very beginning. Nowadays, devices using touch interaction all to do on a flat surface, using either a projection of digital contents or a touch screen. Since haptic feedback is an important factor in human surface perception, people have tried various ways to simulate haptic feedback even on completely flat surfaces. One of these ways is electrotacile feedback, which has mostly been used to simulate surface properties on active touch where the user has to move their finger over the surface in order to feel the haptic sensation. Previous research shows that vision is also a very important factor in surface perception and proprioception in general. We conducted a user study to investigate the influence of visual feedback on passive touch using electrotactile feedback. We concentrated on simulating depth instead of roughness which doesn't word particularly well for passive touch. We found that even though both electrotactile and visual feedback work well for depth or softness if applied individually, as soon as we presented our study subjects a condition with both feedback types, they did not repond to it anymore.Während sich die Mensch-Computer-Interaktion in den letzten Jahren stark um Touch-Interaktion entwickelt hat, hat dieser Interaktion von Anfang an jegliche Form des haptischen Feedbacks gefehlt. Heutzutage nuten alle touchfähigen Gerate flache Displays oder Projektionen von digitalen Inhalten auf flache Oberflächen. Da haptisches Feedback ein wichtiger Faktor der menschlichen Oberflächenwahrnehmung ist wurden schon viele Wege erforscht um haptisches Feedback auf komplett flachen Oberflächen zu simulieren. Eine dieser Wege ist elektrotaktiles Feedback was bisher hauptsächlich benutzt wurde um Oberflächeneigenschaften bei aktiver Berührung zu simulieren, also bei einem sich bewegenden Finger auf der Oberfläche. Vorige Studien zeigen auch, dass Visuelle Reize ein wichtiger Faktor bei der Oberflächenwahrnehmung sind und sogar die Wahrnehmung im Generellen dominieren. Wir haben eine Benutzerstudie durchgeführt um den Einfluss von visuellem Feedback auf passive Berührungen mit elektrotaktilem Feedback zu bestimmen. Wir haben und auf die Simulaton von Tiefe statt Rauhheit konzentriert, was schlecht mit passiven Berührungen funktioniert. Unsere Studie hat gezeigt dass obwohl das elektrotaktile und das visuelle Feedback alleine gut funktionieren um Weichheit oder Tiefe zu simulieren, beide Feedbackarten zusammen keine signifikanten Unterschiede erzielen

    Design, Modeling, Fabrication and Testing of a Piezoresistive-Based Tactile Sensor for Minimally Invasive Surgery Applications

    Get PDF
    Minimally invasive surgery (MIS) has become a preferred method for surgeons for the last two decades, thanks to its crucial advantages over classical open surgeries. Although MIS has some advantages, it has a few drawbacks. Since MIS technology includes performing surgery through small incisions using long slender tools, one of the main drawbacks of MIS becomes the loss of direct contact with the patient’s body in the site of operation. Therefore, the surgeon loses the sense of touch during the operation which is one of the important tools for safe manipulation of tissue and also to determine the hardness of contact tissue in order to investigate its health condition. This Thesis presents a novel piezoresistive-based multifunctional tactile sensor that is able to measure the contact force and the relative hardness of the contact object or tissue at the same time. A prototype of the designed sensor has been simulated, analyzed, fabricated, and tested both numerically and experimentally. The experiments have been performed on hyperelastic materials, which are silicone rubber samples with different hardness values that resemble different biological tissues. The ability of the sensor to measure the contact force and relative hardness of the contact objects is tested with several experiments. A finite element (FE) model has been built in COMSOL Multiphysics (v3.4) environment to simulate both the mechanical behavior of the silicone rubber samples, and the interaction between the sensor and the silicone rubbers. Both numerical and experimental analysis proved the capability of the sensor to measure the applied force and distinguish among different silicone-rubber samples. The sensor has the potential for integration with commercially available endoscopic grasper

    Tactile Sensing for Assistive Robotics

    Get PDF
    • …
    corecore