6,731 research outputs found

    A Penrose polynomial for embedded graphs

    Get PDF
    We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which can not be realized within the class of plane graphs. In particular, by exploiting connections with the transition polynomial and the ribbon group action, we find a deletion-contraction-type relation for the Penrose polynomial. We relate the Penrose polynomial of an orientable checkerboard colourable graph to the circuit partition polynomial of its medial graph and use this to find new combinatorial interpretations of the Penrose polynomial. We also show that the Penrose polynomial of a plane graph G can be expressed as a sum of chromatic polynomials of twisted duals of G. This allows us to obtain a new reformulation of the Four Colour Theorem

    An elementary chromatic reduction for gain graphs and special hyperplane arrangements

    Full text link
    A gain graph is a graph whose edges are labelled invertibly by "gains" from a group. "Switching" is a transformation of gain graphs that generalizes conjugation in a group. A "weak chromatic function" of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws lead to the "weak chromatic group" of gain graphs, which is the universal domain for weak chromatic functions. We find expressions, valid in that group, for a gain graph in terms of minors without neutral-gain edges, or with added complete neutral-gain subgraphs, that generalize the expression of an ordinary chromatic polynomial in terms of monomials or falling factorials. These expressions imply relations for chromatic functions of gain graphs. We apply our relations to some special integral gain graphs including those that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining new evaluations of and new ways to calculate the zero-free chromatic polynomial and the integral and modular chromatic functions of these gain graphs, hence the characteristic polynomials and hypercubical lattice-point counting functions of the arrangements. We also calculate the total chromatic polynomial of any gain graph and especially of the Catalan, Shi, and Linial gain graphs.Comment: 31 page

    The chromatic polynomial of fatgraphs and its categorification

    Get PDF
    Motivated by Khovanov homology and relations between the Jones polynomial and graph polynomials, we construct a homology theory for embedded graphs from which the chromatic polynomial can be recovered as the Euler characteristic. For plane graphs, we show that our chromatic homology can be recovered from the Khovanov homology of an associated link. We apply this connection with Khovanov homology to show that the torsion-free part of our chromatic homology is independent of the choice of planar embedding of a graph. We extend our construction and categorify the Bollobas-Riordan polynomial (a generalisation of the Tutte polynomial to embedded graphs). We prove that both our chromatic homology and the Khovanov homology of an associated link can be recovered from this categorification.Comment: A substantial revision. To appear in Advances in Mathematic
    • …
    corecore