11,535 research outputs found

    Towards on-line Ohba's conjecture

    Full text link
    The on-line choice number of a graph is a variation of the choice number defined through a two person game. It is at least as large as the choice number for all graphs and is strictly larger for some graphs. In particular, there are graphs GG with ∣V(G)∣=2χ(G)+1|V(G)| = 2 \chi(G)+1 whose on-line choice numbers are larger than their chromatic numbers, in contrast to a recently confirmed conjecture of Ohba that every graph GG with ∣V(G)∣≤2χ(G)+1|V(G)| \le 2 \chi(G)+1 has its choice number equal its chromatic number. Nevertheless, an on-line version of Ohba conjecture was proposed in [P. Huang, T. Wong and X. Zhu, Application of polynomial method to on-line colouring of graphs, European J. Combin., 2011]: Every graph GG with ∣V(G)∣≤2χ(G)|V(G)| \le 2 \chi(G) has its on-line choice number equal its chromatic number. This paper confirms the on-line version of Ohba conjecture for graphs GG with independence number at most 3. We also study list colouring of complete multipartite graphs K3⋆kK_{3\star k} with all parts of size 3. We prove that the on-line choice number of K3⋆kK_{3 \star k} is at most 3/2k3/2k, and present an alternate proof of Kierstead's result that its choice number is ⌈(4k−1)/3⌉\lceil (4k-1)/3 \rceil. For general graphs GG, we prove that if ∣V(G)∣≤χ(G)+χ(G)|V(G)| \le \chi(G)+\sqrt{\chi(G)} then its on-line choice number equals chromatic number.Comment: new abstract and introductio

    The chromatic polynomial of fatgraphs and its categorification

    Get PDF
    Motivated by Khovanov homology and relations between the Jones polynomial and graph polynomials, we construct a homology theory for embedded graphs from which the chromatic polynomial can be recovered as the Euler characteristic. For plane graphs, we show that our chromatic homology can be recovered from the Khovanov homology of an associated link. We apply this connection with Khovanov homology to show that the torsion-free part of our chromatic homology is independent of the choice of planar embedding of a graph. We extend our construction and categorify the Bollobas-Riordan polynomial (a generalisation of the Tutte polynomial to embedded graphs). We prove that both our chromatic homology and the Khovanov homology of an associated link can be recovered from this categorification.Comment: A substantial revision. To appear in Advances in Mathematic

    Fractional total colourings of graphs of high girth

    Get PDF
    Reed conjectured that for every epsilon>0 and Delta there exists g such that the fractional total chromatic number of a graph with maximum degree Delta and girth at least g is at most Delta+1+epsilon. We prove the conjecture for Delta=3 and for even Delta>=4 in the following stronger form: For each of these values of Delta, there exists g such that the fractional total chromatic number of any graph with maximum degree Delta and girth at least g is equal to Delta+1

    Approximate Graph Coloring by Semidefinite Programming

    Full text link
    We consider the problem of coloring k-colorable graphs with the fewest possible colors. We present a randomized polynomial time algorithm that colors a 3-colorable graph on nn vertices with min O(Delta^{1/3} log^{1/2} Delta log n), O(n^{1/4} log^{1/2} n) colors where Delta is the maximum degree of any vertex. Besides giving the best known approximation ratio in terms of n, this marks the first non-trivial approximation result as a function of the maximum degree Delta. This result can be generalized to k-colorable graphs to obtain a coloring using min O(Delta^{1-2/k} log^{1/2} Delta log n), O(n^{1-3/(k+1)} log^{1/2} n) colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2-SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovasz theta-function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the theta-function
    • …
    corecore