research

Towards on-line Ohba's conjecture

Abstract

The on-line choice number of a graph is a variation of the choice number defined through a two person game. It is at least as large as the choice number for all graphs and is strictly larger for some graphs. In particular, there are graphs GG with V(G)=2χ(G)+1|V(G)| = 2 \chi(G)+1 whose on-line choice numbers are larger than their chromatic numbers, in contrast to a recently confirmed conjecture of Ohba that every graph GG with V(G)2χ(G)+1|V(G)| \le 2 \chi(G)+1 has its choice number equal its chromatic number. Nevertheless, an on-line version of Ohba conjecture was proposed in [P. Huang, T. Wong and X. Zhu, Application of polynomial method to on-line colouring of graphs, European J. Combin., 2011]: Every graph GG with V(G)2χ(G)|V(G)| \le 2 \chi(G) has its on-line choice number equal its chromatic number. This paper confirms the on-line version of Ohba conjecture for graphs GG with independence number at most 3. We also study list colouring of complete multipartite graphs K3kK_{3\star k} with all parts of size 3. We prove that the on-line choice number of K3kK_{3 \star k} is at most 3/2k3/2k, and present an alternate proof of Kierstead's result that its choice number is (4k1)/3\lceil (4k-1)/3 \rceil. For general graphs GG, we prove that if V(G)χ(G)+χ(G)|V(G)| \le \chi(G)+\sqrt{\chi(G)} then its on-line choice number equals chromatic number.Comment: new abstract and introductio

    Similar works

    Full text

    thumbnail-image

    Available Versions