12 research outputs found

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Polynomial systems : graphical structure, geometry, and applications

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 199-208).Solving systems of polynomial equations is a foundational problem in computational mathematics, that has several applications in the sciences and engineering. A closely related problem, also prevalent in applications, is that of optimizing polynomial functions subject to polynomial constraints. In this thesis we propose novel methods for both of these tasks. By taking advantage of the graphical and geometrical structure of the problem, our methods can achieve higher efficiency, and we can also prove better guarantees. Various problems in areas such as robotics, power systems, computer vision, cryptography, and chemical reaction networks, can be modeled by systems of polynomial equations, and in many cases the resulting systems have a simple sparsity structure. In the first part of this thesis we represent this sparsity structure with a graph, and study the algorithmic and complexity consequences of this graphical abstraction. Our main contribution is the introduction of a novel data structure, chordal networks, that always preserves the underlying graphical structure of the system. Remarkably, many interesting families of polynomial systems admit compact chordal network representations (of size linear in the number of variables), even though the number of components is exponentially large. Our methods outperform existing techniques by orders of magnitude in applications from algebraic statistics and vector addition systems. We then turn our attention to the study of graphical structure in the computation of matrix permanents, a classical problem from computer science. We provide a novel algorithm that requires Õ(n 2[superscript w]) arithmetic operations, where [superscript w] is the treewidth of its bipartite adjacency graph. We also investigate the complexity of some related problems, including mixed discriminants, hyperdeterminants, and mixed volumes. Although seemingly unrelated to polynomial systems, our results have natural implications on the complexity of solving sparse systems. The second part of this thesis focuses on the problem of minimizing a polynomial function subject to polynomial equality constraints. This problem captures many important applications, including Max-Cut, tensor low rank approximation, the triangulation problem, and rotation synchronization. Although these problems are nonconvex, tractable semidefinite programming (SDP) relaxations have been proposed. We introduce a methodology to derive more efficient (smaller) relaxations, by leveraging the geometrical structure of the underlying variety. The main idea behind our method is to describe the variety with a generic set of samples, instead of relying on an algebraic description. Our methods are particularly appealing for varieties that are easy to sample from, such as SO(n), Grassmannians, or rank k tensors. For arbitrary varieties we can take advantage of the tools from numerical algebraic geometry. Optimization problems from applications usually involve parameters (e.g., the data), and there is often a natural value of the parameters for which SDP relaxations solve the (polynomial) problem exactly. The final contribution of this thesis is to establish sufficient conditions (and quantitative bounds) under which SDP relaxations will continue to be exact as the parameter moves in a neighborhood of the original one. Our results can be used to show that several statistical estimation problems are solved exactly by SDP relaxations in the low noise regime. In particular, we prove this for the triangulation problem, rotation synchronization, rank one tensor approximation, and weighted orthogonal Procrustes.by Diego Cifuentes.Ph. D

    Independence Models for Integer Points of Polytopes.

    Full text link
    The integer points of a high-dimensional polytope P are generally difficult to count or sample uniformly. We consider a class of low-complexity random models for these points which arise from an entropy maximization problem. From these models, by way of "anti-concentration" results for sums of independent random variables, we derive general, efficiently computable upper bounds on the number of integer points of P. We make a detailed study of contingency tables with bounded entries, which are the integer points of a transportation polytope truncated by a cuboid. We provide efficiently computable estimates for the logarithm of the number of m by n tables with specified row and column sums r_1, ..., r_m, c_1, ..., c_n and bounds on the entries. These estimates are asymptotic as m and n go to infinity simultaneously, given that no r_i (resp., c_j) is allowed to exceed a fixed multiple of the average row sum (resp., column sum). As an application, we consider a random, uniformly selected table with entries in {0, 1, ..., kappa} having a given sum. Responding to questions raised by Diaconis and Efron in the context of statistical significance testing, we show that the occurrence of row sums r_1, ..., r_m is positively correlated with the occurrence of column sums c_1, ..., c_n when kappa > 1 and r_1, ..., r_m, c_1, ..., c_n are sufficiently extreme. We give evidence that the opposite is true for near-average values of r_1, ..., r_m, c_1, ..., c_n.Ph.D.MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86295/1/auspex_1.pd

    Spectral Properties of Structured Kronecker Products and Their Applications

    Get PDF
    We study certain spectral properties of some fundamental matrix functions of pairs of symmetric matrices. Our study includes eigenvalue inequalities and various interlacing properties of eigenvalues. We also discuss the role of interlacing in inverse eigenvalue problems for structured matrices. Interlacing is the main ingredient of many fundamental eigenvalue inequalities. This thesis also recounts a historical development of the eigenvalue inequalities relating the sum of two matrices to its summands with some recent findings motivated by problems arising in compressed sensing. One of the fundamental matrix functions on pairs of matrices is the Kronecker product. It arises in many fields such as image processing, signal processing, quantum information theory, differential equations and semidefinite optimization. Kronecker products enjoy useful algebraic properties that have proven to be useful in applications. The less-studied symmetric Kronecker product and skew-symmetric Kronecker product (a contribution of this thesis) arise in semidefinite optimization. This thesis focuses on certain interlacing and eigenvalue inequalities of structured Kronecker products in the context of semidefinite optimization. A popular method used in semidefinite optimization is the primal-dual interior point path following algorithms. In this framework, the Jordan-Kronecker products arise naturally in the computation of Newton search direction. This product also appears in many linear matrix equations, especially in control theory. We study the properties of this product and present some nice algebraic relations. Then, we revisit the symmetric Kronecker product and present its counterpart the skew-symmetric Kronecker product with its basic properties. We settle the conjectures posed by Tunçel and Wolkowicz, in 2003, on interlacing properties of eigenvalues of the Jordan-Kronecker product and inequalities relating the extreme eigenvalues of the Jordan-Kronecker product. We disprove these conjectures in general, but we also identify large classes of matrices for which the interlacing properties hold. Furthermore, we present techniques to generate classes of matrices for which these conjectures fail. In addition, we present a generalization of the Jordan-Kronecker product (by replacing the transpose operator with an arbitrary symmetric involution operator). We study its spectral structure in terms of eigenvalues and eigenvectors and show that the generalization enjoys similar properties of the Jordan-Kronecker product. Lastly, we propose a related structure, namely Lie-Kronecker products and characterize their eigenvectors

    Annales Mathematicae et Informaticae (45.)

    Get PDF

    Chiral Random Matrix Theory: Generalizations and Applications

    Get PDF
    Kieburg M. Chiral Random Matrix Theory: Generalizations and Applications. Bielefeld: Fakultät für Physik; 2015
    corecore