80,942 research outputs found

    Structural properties and labeling of graphs

    Get PDF
    The complexity in building massive scale parallel processing systems has re- sulted in a growing interest in the study of interconnection networks design. Network design affects the performance, cost, scalability, and availability of parallel computers. Therefore, discovering a good structure of the network is one of the basic issues. From modeling point of view, the structure of networks can be naturally stud- ied in terms of graph theory. Several common desirable features of networks, such as large number of processing elements, good throughput, short data com- munication delay, modularity, good fault tolerance and diameter vulnerability correspond to properties of the underlying graphs of networks, including large number of vertices, small diameter, high connectivity and overall balance (or regularity) of the graph or digraph. The first part of this thesis deals with the issue of interconnection networks ad- dressing system. From graph theory point of view, this issue is mainly related to a graph labeling. We investigate a special family of graph labeling, namely antimagic labeling of a class of disconnected graphs. We present new results in super (a; d)-edge antimagic total labeling for disjoint union of multiple copies of special families of graphs. The second part of this thesis deals with the issue of regularity of digraphs with the number of vertices close to the upper bound, called the Moore bound, which is unobtainable for most values of out-degree and diameter. Regularity of the underlying graph of a network is often considered to be essential since the flow of messages and exchange of data between processing elements will be on average faster if there is a similar number of interconnections coming in and going out of each processing element. This means that the in-degree and out-degree of each processing element must be the same or almost the same. Our new results show that digraphs of order two less than Moore bound are either diregular or almost diregular.Doctor of Philosoph

    Large butterfly Cayley graphs and digraphs

    Get PDF
    We present families of large undirected and directed Cayley graphs whose construction is related to butterfly networks. One approach yields, for every large kk and for values of dd taken from a large interval, the largest known Cayley graphs and digraphs of diameter kk and degree dd. Another method yields, for sufficiently large kk and infinitely many values of dd, Cayley graphs and digraphs of diameter kk and degree dd whose order is exponentially larger in kk than any previously constructed. In the directed case, these are within a linear factor in kk of the Moore bound.Comment: 7 page

    Sequence mixed graphs

    Get PDF
    A mixed graph can be seen as a type of digraph containing some edges (or two opposite arcs). Here we introduce the concept of sequence mixed graphs, which is a generalization of both sequence graphs and literated line digraphs. These structures are proven to be useful in the problem of constructing dense graphs or digraphs, and this is related to the degree/diameter problem. Thus, our generalized approach gives rise to graphs that have also good ratio order/diameter. Moreover, we propose a general method for obtaining a sequence mixed diagraph by identifying some vertices of certain iterated line digraph. As a consequence, some results about distance-related parameters (mainly, the diameter and the average distance) of sequence mixed graphs are presented.Postprint (author's final draft
    • …
    corecore