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Abstract

A mixed graph can be seen as a type of digraph containing some
edges (or two opposite arcs). Here we introduce the concept of se-
quence mixed graphs, which is a generalization of both sequence graphs
and iterated line digraphs. These structures are proven to be useful in
the problem of constructing dense graphs or digraphs, and this is re-
lated to the degree/diameter problem. Thus, our generalized approach
gives rise to graphs that have also good ratio order/diameter. More-
over, we propose a general method for obtaining a sequence mixed
digraph by identifying some vertices of a certain iterated line digraph.
As a consequence, some results about distance-related parameters
(mainly, the diameter and the average distance) of sequence mixed
graphs are presented.
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1 Introduction

Two techniques that have proved very useful to obtain large graphs and
digraphs are, respectively, sequence graph and line digraph approaches. Se-
quence graphs were first proposed by Fiol, Yebra, and Fàbrega [4], whereas,
within this context, line digraphs were studied by Fiol, Yebra, and Alegre
[5, 6]. Mixed graphs can be seen as a generalization of both, undirected and
directed graphs, see for instance the works by Nguyen and Miller [11] and
Buset, El Amiri, Erskine, Miller and Pérez-Rosés [3]. Here we introduce the
concept of sequence mixed graphs, which is a generalization of both sequence
graphs and iterated line digraphs. In particular, we show that a sequence
mixed graph can be obtained by identifying some vertices of a certain iter-
ated line digraph. This allows to apply known results of the latter to study
some basic distance-related properties in the introduced structures. First,
we begin with some standard definitions.

A mixed (or partially directed) graph G with vertex set V may contain
(undirected) edges as well as directed edges (also known as arcs). From this
point of view, a graph [resp. directed graph or digraph] has all its edges
undirected [resp. directed]. In fact, we can identify the mixed graph G with
its associated digraph G∗ obtained by replacing all the edges by digons (two
opposite arcs or a directed 2-cycle). The undirected degree of a vertex v,
denoted by d(v) is the number of edges incident to v. The out-degree [resp.
in-degree] of vertex v, denoted by d+(v) [resp. d−(v)], is the number of arcs
emanating from [resp. to] v. If d+(v) = d−(v) = z and d(v) = r, for all v ∈ V ,
then G is said to be totally regular of degree (r, z) (or simply (r, z)-regular).
Note that, in this case, the corresponding digraph G∗ is (r + z)-regular. A
walk of length ` ≥ 0 from u to v is a sequence of `+1 vertices, u0u1 . . . u`−1u`,
such that u = u0, v = u` and each pair ui−1ui, for i = 1, . . . , `, is either an
edge or an arc of G. A directed walk is a walk containing only arcs. An
undirected walk is a walk containing only edges. A walk whose vertices are
all different is called a path. The length of a shortest path from u to v is
the distance from u to v, and it is denoted by dist(u, v). Note that dist(u, v)
may be different from dist(v, u), when shortest paths between u and v involve
arcs. The maximum distance between any pair of vertices is the diameter k
of G, while the average distance between vertices of G is defined as

k =
1

|V |2
∑
u,v∈V

dist(u, v).
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A directed cycle [resp. undirected cycle] of length ` is a walk of length ` from
u to v involving only arcs [resp. edges] whose vertices are all different except
u = v. Finally, notice that the adjacency matrix A = (auv) of a mixed graph
G coincides with the adjacency matrix of its associated digraph G∗, where
auv = 1 if there is an arc from u to v, and auv = 0 otherwise.

The following concepts, sequence graphs, line digraphs, and related results
were studied in the works by Alegre, Fàbrega, Fiol, and Yebra [4, 5, 6].

Definition 1.1. Given a digraph G, each vertex of its `-iterated line digraph
L`(G) represents a walk u0u1 . . . u`−1u` of length ` in G, and vertex u =
u0u1 . . . u`−1u` is adjacent to the vertices of the form v = u1u2 . . . u`u`+1 with
(u`, u`+1) being an arc of G.

By way of example, in Figure 1(b) we represent the (symmetric) digraph
G∗ and its 3-iterated line digraph L3(G∗). The following result shows that
the line digraph technique is useful to obtain dense digraphs.

Theorem 1.2. [5, 6] Let G be a regular digraph different from a directed
cycle, with diameter k and average distance between vertices k. Then, the
diameter k` and average distance k` of L`(G) satisfy

k` = k + `, (1)

k` < k + `. (2)

Moreover, if G is nonregular, then (1) also holds.

Definition 1.3. Given a graph G, the vertices of the sequence graph S`(G)
of G (also known as `-sequence graph) are all the walks u0u1 . . . u`−1u` of
length ` of G. The edges are defined as follows: vertex u0u1 . . . u`−1u` is
adjacent to vu0u1 . . . u`−1 and u0u1 . . . u`−1w with (v, u0) and (u`−1, w) being
edges of G.

Within this definition, we consider a walk u0u1 . . . u`−1u` and its conjugate
u`u`−1 . . . u1u0 as the same sequence (or walk). Moreover, as we only consider
simple graphs, self-adjacencies (or loops) are not taken into consideration. As
an example, Figure 1(a) shows the graph G = K2,2 and its 3-sequence graph
S3(G). In our context of construction of dense graphs, the main property of
sequence graphs is the following:

Theorem 1.4. [4] Let G be a graph of diameter k. Then, the diameter k` of
S`(G) satisfies

k` ≤ k + `.
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Figure 1: (a) A graph G and its 3-sequence graph S3(G); (b) The symmetric
digraph G∗ and its 3-iterated line digraph L3(G∗).

2 The Degree/diameter problem for mixed

graphs

The degree/diameter problem for mixed graphs asks for the largest possible
number of vertices n(r, z, k) in a mixed graph with maximum undirected
degree r, maximum directed out-degree z, and diameter k. Most of the main
results regarding this problem for undirected and directed graphs can be
found in the comprehensive survey of Miller and Širáň [10]. Nevertheless,
little is known about this extremal problem on mixed graphs. A natural
upper bound for n(r, z, k) is derived just by counting the number of vertices at
every distance from any given vertex v in a mixed graph with given maximum
undirected degree r, maximum directed out-degree z, and diameter k. This
bound is known as the Moore bound for mixed graphs (see Buset, El Amiri,
Erskine, Miller, and Pérez-Rosés [3]):

M(r, z, k) = A
uk+1
1 − 1

u1 − 1
+B

uk+1
2 − 1

u2 − 1
, (3)
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where

v = (z + r)2 + 2(z − r) + 1, (4)

u1 =
1

2
(z + r − 1−

√
v), u2 =

1

2
(z + r − 1 +

√
v), (5)

A =

√
v − (z + r + 1)

2
√
v

, B =

√
v + (z + r + 1)

2
√
v

.

Another way to compute the Moore bound for mixed graphs is as follows.
Let G be a (r, z)-regular mixed graph with d = r + z. Given a vertex v and
for i = 0, 1, . . . , k, let Ni be the maximum number of vertices at distance i
from v. Let Ni = Ri + Zi, where Ri is the number of vertices that, in the
corresponding tree rooted at v, have an edge with their parents; and Zi is
the number of vertices that has an arc from their parents. Then,

Ni = Ri + Zi = ((r − 1) + z)Ri−1 + (r + z)Zi−1.

That is, Ri = (r − 1)Ri−1 + rZi−1, and Zi = zRi−1 + zZi−1 or, in matrix
form,(

Ri

Zi

)
=

(
r − 1 r
z z

)(
Ri−1
Zi−1

)
= · · · = M i

(
R0

Z0

)
= M i

(
0
1

)
,

where M =

(
r − 1 r
z z

)
, and by convenience R0 = 0 and Z0 = 1. There-

fore,

Ni = Ri + Zi =
(

1 1
)
M i

(
0
1

)
.

Consequently, the Moore bound for mixed graphs is

M(r, z, k) =
k∑

i=0

Ni =
(

1 1
) k∑

i=0

M i

(
0
1

)
=
(

1 1
)

(M k+1 − I)(M − I)−1
(

0
1

)
=

1

r + 2z − 2

(
1 1

)
(M k+1 − I)

(
r

2− r

)
, (6)

where we used that

(M − I)−1 =
1

r + 2z − 2

(
1− z r
z 2− r

)
,
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with r + 2z 6= 2. Notice that this condition implies that there are two
forbidden cases: r = 0 and z = 1 that corresponds to a directed cycle, and
r = 2 and z = 0 that corresponds to an undirected cycle. Of course, (6) can
be shown equivalent to (3) since the eigenvalues of M are precisely u1 and
u2 given in (5). Then, M k+1 = V Dk+1V −1, where D = diag(u1, u2), and

V =

(
r−z−1+

√
v

2z
r−z−1−

√
v

2z

1 1

)
,

where v is given by (4).
Mixed Moore graphs are those with order attaining (3), which means that

between any pair of vertices there is a unique shortest path of length not
greater than the diameter. As a consequence, mixed Moore graphs must be
totally regular of degree (r, z) (see Bosák [1]). Nguyen, Miller, and Gimbert
[12] showed that mixed Moore graphs only exist for diameter k = 2. Although
Moore graphs and digraphs are unique when their existence is known, this
fact is no longer true for the mixed case. For instance, there exists a unique
mixed Moore graph of parameters r = 3 and z = 1, known as Bosák graph
(see again [1]), but there are at least two nonisomorphic mixed Moore graphs
with r = 3 and z = 7 (see Jørgensen [7]). Recently, López, Miret and
Fernández [8] proved the nonexistence of mixed Moore graphs of orders 40,
54 and 84, corresponding to the (r, z) pairs (3, 3), (3, 4) and (7, 2). Besides,
there are many pairs (r, z) for which the existence of a mixed Moore graph
remains as an open problem. Mixed graphs of diameter k with maximum
undirected degree r, maximum directed out-degree z and order just one less
than the mixed Moore bound are known as mixed almost Moore graphs. They
have been studied only for diameter k = 2 (see López and Miret [9]).

3 Sequence mixed graphs

One can consider the extension of the definition of sequence graphs for mixed
graphs. Since walks may contain arcs, the definition should be slightly mod-
ified in the following way.

Definition 3.1. Given a mixed graph G, the vertices of the sequence mixed
graph S`(G) of G are all the walks u0u1 . . . u`−1u` of length ` of G. The
walk u0u1 . . . u`−1u` and its conjugate u`u`−1 . . . u1u0 are the same sequence
(or walk) if and only if this walk is undirected. Moreover, in S`(G), vertex
u = u0u1 . . . u`−1u` has the following adjacencies:
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• If the walk u0u1 . . . u`−1u` is undirected, vertex u is adjacent, through
edges, with the vertices v = u1u2 . . . u`u`+1 when (u`, u`+1) are edges
of G and/or the vertices v′ = u0u1 . . . u`−1, when (u0, u1) are edges of
G. Here, we assume that v and v′ are distinct from u (loops are not
considered).

• Otherwise, vertex u is adjacent, through arcs, to the vertices w =
u1u2 . . . u`u`+1, where (u`, u`+1) is either an arc or an edge of G.

Intuitively speaking, notice that one walk is adjacent to another one if
there exists a ‘walk-displacement’ of length one into the mixed graph that
overlaps the first sequence onto the second one. Moreover, (u,v), but not
(v,u), is an arc of S`(G) if (ui, ui+1) is an arc of G for some i = 0, . . . , `,
whereas (u,v) is an edge (or digon) of S`(G) otherwise.

In the case when G is totally regular, the following lemma gives informa-
tion about the degrees and order of its `-sequence mixed graph.

Proposition 3.2. Let G be an (r, z)-regular mixed graph on n vertices. Let
A be the adjacency matrix of the undirected subgraph of G. Let V1 be the
subset of `-walks of G (or vertices of S`(G)) containing only edges, and let
V2 be the subset of `-walks of G containing at least one arc. Let S`(G) have
N`(G) vertices, maximum undirected degree ∆, and maximum directed in-
degree and out-degree ∆∗ of S`(G). Then,

(a) The number of vertices in V1 is

|V1| =

{
1
2
nr` if ` is odd,

n
2
(r` + r`/2) if ` is even,

and, for any v ∈ V1,

1. d(v) = 1, and d+(v) = d−(v) = z, if r = 1 and ` is even,

2. d(v) = 2r − 2, and d+(v) = d−(v) = 2z, if ` = 1,

3. d(v) ≤ 2r, and d+(v) = d−(v) ≤ 2z, otherwise.

(b) The number of vertices in V2 is

|V2| = n[(r + z)` − r`]

and, for any v ∈ V2,
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1. d(v) = 0, and d+(v) = d−(v) = r + z.

(c) The number of vertices of S`(G) is

N`(G) =

{
n
[
(r + z)` − 1

2
r`
]

if ` is odd,

n
[
(r + z)` + 1

2
(r`/2 − r`)

]
if ` is even,

and

1. ∆ = 1, and ∆∗ = z, if r = 1 and ` is even,

2. ∆ = 2r − 2, and ∆∗ = max{r + z, 2z}, if ` = 1,

3. ∆ = 2r, and ∆∗ = max{r + z, 2z}.

Proof. (a) The undirected subgraph of G is r-regular and, hence, the number
of walks rooted at a given vertex is r` for a total of nr` in the graph. These
will be double counting vertices in our graph if the walk is self-conjugate (that
is, the sequence of vertices defining the walk is palindromic), which is only
possible for even `. Then, the value of |V1| results by taking into account
that the total number of walks satisfying this condition is nr`/2. (Indeed,
each of such walks is constituted by two equal walks of length `/2 one going
forward and the other backward.) The values of the undirected and directed
degrees of every vertex v ∈ V1 is a simple consequence of Definition 3.1.

(b) Seen as a digraph, G is (r + z)-regular. Hence, its total number of
rooted `-walks is n(r+ z)`. But nr` of them consist only of edges (note that,
seen as directed walks, there is no double counting). Then, the result follows.
Again, the values of the degrees follow from Definition 3.1.

(c) Simply notice that N`(G) = |V1|+ |V2|.

Note that, in some cases, the degrees of v in (a)3 can be smaller than
the maximum values given there. This precisely happens when ` is even, say
` = 2l, and vertex v is self-conjugate, v = v0 . . . vl−1vlvl−1 . . . v0, in which
case d(v) = r and d+(v) = d−(v) = z.

In general, as shown in the following result, the `-sequence of any mixed
graph G can be obtained from the `-iterated line digraph of its associated
digraph G∗.

Theorem 3.3. Let G be a mixed graph and G∗ its associated digraph. Then,
the sequence mixed graph S`(G) can be obtained from the `-iterated line di-
graph L`(G∗) by identifying each vertex u = u0u1 . . . u`−1u` with its ‘conju-
gate’ u = u`u`−1 . . . u1u0, if any, and replacing the resulting digons by edges.
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Proof. First, notice that every vertex of L`(G∗) corresponds to an `-sequence
in G and, hence, to a vertex of S`(G). Moreover, the existence of a vertex
u = u0u1 . . . u`−1u` and its conjugate u (which can coincide with u) indicates
the presence of the undirected walk u0u1 . . . u`−1u` and, hence, u and u
correspond to the same `-sequence in G (or vertex in S`(G)). Finally, each
adjacency in L`(G∗) corresponds to an adjacency in S`(G), and digons turn
into edges.

In particular, if G is a graph, then each vertex u of L`(G∗) has one
conjugate u (not necessarily different from u) and S`(G) turns out to be the `-
sequence graph, as it was defined by Fiol, Yebra and Fàbrega [4]. Otherwise,
if G is a digraph, S`(G) coincides with the `-iterated line digraph L`(G)
studied in Fiol, Yebra and Alegre [5, 6].

An example of this situation is shown again in Figure 1. Note that, in fact,
the above theorem shows the existence of a homomorphism from iterated line
digraphs to sequence mixed graphs: L`(G∗)→ S`(G).

Another consequence of Theorem 3.3 is the following result.

Corollary 3.4. Let G be a mixed graph with maximum undirected degree
∆ = 1. Then, for even ` ≥ 2, the `-sequence mixed graph S`(G) is isomorphic
to the `-iterated line digraph L`(G) provided that the edges of the former are
mapped to the digons of the latter.

Proof. As ∆ = 1, the undirected subgraph of G consists of some complete
graphs K2 with two vertices and one edge. Then, the associated digraph G∗ of
G is obtained by replacing each of such edges by a digon and, since ` is even,
G∗ has no conjugate vertices. Besides, for every pair of vertices u, v of a digon,
L`(G), and also S`(G), has the vertices uvuv . . . uv and vuvu . . . vu forming
a digon in the former and an edge in the latter. All the other adjacencies of
L`(G) remain unchanged in S`(G). Then, the claimed isomorphism follows.

3.1 Distance-related parameters

As expected, the diameter and average distance of a sequence mixed graph
satisfy analogous results to those in Theorem 1.2.

Theorem 3.5. Let G be a mixed graph with diameter k and average distance
k. Then, the diameter k` and average distance k` of the `-sequence mixed
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graph S`(G) satisfy

k` ≤ k + `, (7)

k` < k + `. (8)

Proof. Clearly, the associated digraph G∗ has the same diameter k and av-
erage distance k as G. Moreover, by Theorem 1.2, the diameter and average
distance of the iterated line digraph L`(G∗) satisfy k∗` = k+ ` and k

∗
` < k+ `.

Consequently, the result follows since the procedure of Theorem 3.3 to obtain
S`(G) from L`(G∗) (by identifying vertices) clearly does not increase either
the diameter or the average distance. That is, k` ≤ k∗` and k` ≤ k

∗
` .

Note that, in particular, if G is a graph, then (8) provides a bound for
the average distance of its `-sequence graph, and this extends the result of
Theorem 1.4 given in Fiol, Yebra and Fàbrega [4].

A constructive proof of the result on the diameter, which also gives
a routing algorithm, is the following: Given two vertices of S`(G), u =
u0u1 . . . u`−1u` and v = v1v2 . . . v`v`+1, let us consider a shortest path from
u` to v1 in G, say u`, w1, . . . , wp−1, v1, of length p = dist(u`, v1) ≤ k. Then
from our adjacency rule in Definition 3.1, we can shift the first `-sequence
(defining u) in

u0, u1, . . . , u`−1, u`, w1, . . . , wp−1, v1, v2, . . . , v`, v`+1

to the last one (defining v), obtaining a path from u to v in S`(G) of length
p+ ` ≤ k + `.

For example, if G is the Kautz digraph K(2, 2) (seen as a mixed graph)
on 6 vertices with degree 2 and diameter 2, its sequence mixed graph S2(G)
has diameter 4. Both mixed graphs are shown in Figure 2.

3.2 Sequence mixed graph and the degree/diameter
problem

As it is implicit in the results of Proposition 3.2, in general the sequence graph
operator does not preserve the regularity of a mixed graph. However, in the
context of the degree/diameter problem, our results lead to the following
example of application. The Kautz digraphs G = K(δ, 2) are mixed Moore
graphs of diameter 2 for r = 1 and z = δ − 1. From (3) with k = 2,
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Figure 2: (a) The Kautz digraph K(2, 2) as a mixed graph; (b) Its 2-sequence
graph.

Proposition 3.2 with ` = 2, and Theorem 3.5, its 2-sequence mixed graph
has order

|S2(G)| = δ(δ + 1)

2
(2δ2 − 1) +

δ(δ + 1)

2
= δ3(δ + 1),

diameter 4, undirected degree at most r = 1 and directed degree at most
z = δ. Now, we can compare the order of S2(G) with the mixed Moore
bound M(1, δ, 4) which, according to (3), is

M(1, δ, 4) = δ4 + 5δ3 + 7δ2 + 4δ + 2.

Thus, asymptotically, with total degree d = 1 + δ, the mixed graph S2(G)
has order equal to the mixed Moore bound:

lim
d→∞

|S2(G)|
M(1, δ, 4)

= 1.

In fact, notice that, according to Corollary 3.4, S2(G) is isomorphic (up to
the equivalence between edges and digons) with the Kautz digraph K(δ, 4) =
L2(K(δ, 2)).

In general, although the sequence mixed graph asymptotically provides
good results in the context of the degree/diameter problem, it is far from
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giving large mixed graphs for small values of r, z and k. For instance, consider
G to be again the referred Bosák graph, with 18 vertices, r = 3, z = 1 and
k = 2. According to Proposition 3.2, S1(G) has maximum undirected degree
4, maximum directed out-degree 4 and diameter 3. Then, the corresponding
mixed Moore bound is M(4, 4, 3) = 521, although S1(G) has only 45 vertices.
In order to obtain better results, we give the following proposition.

Proposition 3.6. Let G be an (r, z)-regular mixed graph of order n, with
d = r + z, for r > 1, and consider its `-sequence mixed graph S`(G). Then,
for any given integer r′ ∈ {1, . . . , z} there exists a mixed graph S`

m(G) of order
N`(G) given in Proposition 3.2(c), diameter diam(S`

m(G)) ≤ diam(S`(G)),
and the following maximum degrees:

(a) For ` = 1, S1
m(G) has maximum undirected degree max{2r−2, 2r′} and

maximum directed out-degree max{d− r′, 2z}.

(b) For ` > 1, S`
m(G) has maximum undirected degree max{2r, 2r′} and

maximum directed out-degree max{d− r′, 2z}.

Proof. Let V2 be the set of vertices in S`(G) as in Proposition 3.2, that is,
corresponding to `-walks of G containing some arc.

(a) For ` = 1, any vertex v ∈ V2 has exactly z in-neighbors and z out-
neighbors in V2, so the induced subgraph of S1(G) generated by V2 is a
z-regular digraph. Then, if we turn all these arcs of S1(G) into edges, we
obtain the mixed graph S1

m(G) having the described properties for r′ = z.
When r′ ≤ z − 1, by Hall’s theorem (see, for example, Brualdi [2]), the
induced subgraph of S1(G) generated by V2 contains an r′-factor (that is,
a spanning r′-regular digraph). Then, the claimed mixed graph S1

m(G) is
obtained, as before, by changing all the arcs of this r′-factor by edges.

(b) The induced subgraph of S`(G) generated by V2 is no longer a reg-
ular digraph when ` > 1, but it contains a z-regular subdigraph. Indeed,
every vertex u0u1 . . . u`−1u` ∈ V2 is adjacent from (respectively, to) the z
vertices of the form vu0u1 . . . u`−1 (respectively, u1 . . . u`−1u`w) where (v, u0)
(respectively, (u`, w)) is an arc of G. Now we reason as in (a) to obtain the
result.

Proposition 3.6 is useful when z ≤ r. In this case, S`
m(G) preserves

the maximum undirected degree of S`(G), meanwhile the maximum directed
degree is reduced by r′, that is, from d to d− r′. This means that the order
of S`

m(G) has to be compared with the mixed Moore bound M(2r, d− r′, k′)
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instead of M(2r, d, k), for k′ ≤ k, which is an improvement. Going back to
the example of the Bosák graph G, now S1

m(G) has the same order, diameter
and undirected degree than S1(G), but the directed out-degree becomes now
3 instead of 4, so as the mixed Moore bound reduces from 521 to M(4, 3, 3) =
344. Hence, we improve the ratio between the order of the mixed graph and
the corresponding mixed Moore bound. Note that, in the above modification
of the sequence graph of the Bosák graph, we are not reducing the diameter.
Thus, an interesting research line would be to give different modifications
of S`(G) in order to get better results in the degree/diameter problem. For
instance, if one were able to lower the diameter of S1

m(G) from 3 to 2, just
by replacing some arcs by edges, or adding some arcs or edges, without
modifying the maximum undirected and directed degrees, then M(4, 3, 2) =
53 and, hence, the order of this new mixed graph would be very close to the
mixed Moore bound.

Note that the construction of case of Proposition 3.6(b) can be also applied
when G is a digraph (r = 0). Then, the resulting mixed graph has maximum
undirected degree 2r′ and maximum directed degree d− r′. For instance, we
know that, if G = K∗d+1 (the complete symmetric digraph on d+ 1 vertices),
S`(G) = L`(G) is the Kautz digraph K(d, `). Then, for 1 ≤ r′ ≤ d −
1, we obtain the mixed graph S`

m(G) with number of vertices d` + d`−1,
diameter `, and the above maximum degrees 2r′ and d− r′. Then, the ratio
M(2r′, d− r′, `)/|S`

m(G)| turns out to be of the order of (1 + r′/d)`, which is
asymptotically optimal for a fixed r′ and large d.
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