34,375 research outputs found

    Emotional Strategies as Catalysts for Cooperation in Signed Networks

    Get PDF
    The evolution of unconditional cooperation is one of the fundamental problems in science. A new solution is proposed to solve this puzzle. We treat this issue with an evolutionary model in which agents play the Prisoner's Dilemma on signed networks. The topology is allowed to co-evolve with relational signs as well as with agent strategies. We introduce a strategy that is conditional on the emotional content embedded in network signs. We show that this strategy acts as a catalyst and creates favorable conditions for the spread of unconditional cooperation. In line with the literature, we found evidence that the evolution of cooperation most likely occurs in networks with relatively high chances of rewiring and with low likelihood of strategy adoption. While a low likelihood of rewiring enhances cooperation, a very high likelihood seems to limit its diffusion. Furthermore, unlike in non-signed networks, cooperation becomes more prevalent in denser topologies.Comment: 24 pages, Accepted for publication in Advances in Complex System

    Undermining and Strengthening Social Networks through Network Modification

    Full text link
    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention

    Degree Variance and Emotional Strategies Catalyze Cooperation in Dynamic Signed Networks

    Get PDF
    We study the problem of the emergence of cooperation in dynamic signed networks where agent strategies coevolve with relational signs and network topology. Running simulations based on an agent-based model, we compare results obtained in a regular lattice initialization with those obtained on a comparable random network initialization. We show that the increased degree heterogeneity at the outset enlarges the parametric conditions in which cooperation survives in the long run. Furthermore, we show how the presence of sign-dependent emotional strategies catalyze the evolution of cooperation with both network topology initializations.Comment: 16 Pages, Proceeding of the European Conference on Modelling and Simumatio

    Twitter’s big hitters

    Get PDF
    We describe the results of a new computational experiment on Twitter data. By listening to Tweets on a selected topic, we generate a dynamic social interaction network. We then apply a recently proposed dynamic network analysis algorithm that ranks Tweeters according to their ability to broadcast information. In particular, we study the evolution of importance rankings over time. Our presentation will also describe the outcome of an experiment where results from automated ranking algorithms are compared with the views of social media experts

    A model for dynamic communicators

    Get PDF
    We develop and test an intuitively simple dynamic network model to describe the type of time-varying connectivity structure present in many technological settings. The model assumes that nodes have an inherent hierarchy governing the emergence of new connections. This idea draws on newly established concepts in online human behaviour concerning the existence of discussion catalysts, who initiate long threads, and online leaders, who trigger feedback. We show that the model captures an important property found in e-mail and voice call data – ‘dynamic communicators’ with sufficient foresight or impact to generate effective links and having an influence that is grossly underestimated by static measures based on snaphots or aggregated data

    Conducting a Scan of Your College Access and Success System

    Get PDF
    Explains how to design and implement an assessment of local systems' ability to improve college attainment, including needs, assets, and challenges; and how to leverage findings for stakeholder engagement, benchmarking, and strategy development

    Raising awareness for water polution based on game activities using internet of things

    Get PDF
    Awareness among young people regarding the environment and its resources and comprehension of the various factors that interplay, is key to changing human behaviour towards achieving a sustainable planet. In this paper IoT equipment, utilizing sensors for measuring various parameters of water quality, is used in an educational context targeting at a deeper understanding of the use of natural resources towards the adoption of environmentally friendly behaviours. We here note that the use of water sensors in STEM gameful learning is an area which has not received a lot of attention in the previous years. The IoT water sensing and related scenaria and practices, addressing children via discovery, gamification, and educational activities, are discussed in detail
    corecore