138 research outputs found

    Ergebnisse der Umfrage

    Get PDF
    Welche Methoden und Werkzeuge werden aktuell in Unternehmen eingesetzt, um die Prozessleistung zu überwachen und die Entscheidungs- und Reaktionsfähigkeit in den Geschäftsprozessen zu erhöhen? Und vor welchem Hintergrund geschieht dies? Diese Fragen standen im Mittelpunkt einer Online-Befragung, die im Rahmen dieser Studie im Frühjahr 2015 durchgeführt wurde

    Anforderungen an ein System zur Dokumentanalyse im Unternehmenskontext : Integration von Datenbeständen, Aufbau- und Ablauforganisation

    Get PDF
    Workflowmanagementsysteme werden im Bürobereich verstärkt zur effizienten Geschäftsprozeßabwicklung eingesetzt. Das bereits Mitte der 70er Jahre propagierte papierlose Büro bleibt jedoch gegenwärtig immer noch Utopie, da auch durch den allgegenwärtigen Einsatz von Computern im Bürobereich der Durchsatz an Schriftstücken nicht gesenkt wird. Insbesondere die Handhabung von papierintensiven Vorgängen ist in hohem Maße abhängig von einer Identifikation und Aufbereitung der in den Dokumenten enthaltenen Informationen. Allerdings müssen solche Daten z. B. bei eingehender Post immer noch von Hand eingegeben werden. In diesem Dokument werden Anforderungen an ein System aufgestellt, das diesen Medienbruch überwinden solI. Techniken aus dem Gebiet der Dokumentanalyse und des Dokumentverstehens werden in den Workflowkontext integriert und nutzen das dort verfügbare Wissen zur Steigerung der Erkennungsqualität. Durch Einschränkung des aktuellen Kontextes - etwa in Form offener Vorgänge - soll eine Erhöhung der Erkennungspräzision erreicht werden. Bei der Beschreibung der Systemanforderungen wurde nach den Richtlinien des V-Modells vorgegangen

    Wissensbasierte Überprüfung mikrotechnologischer Fertigungsabläufe

    Get PDF
    Die vorliegende Arbeit beschreibt ein wissensbasiertes System zur Konsistenzprüfung von mikrotechnischen Fertigungsabläufen. Die Inhalte führen von einer allgemeinen Betrachtung des Entwurfs in der Mikrotechnik und der noch benötigten Unterstützung im fertigungsgerechten Entwurf hin zur Vorstellung und Implementierung eines geeigneten Lösungskonzepts. Des Weiteren sind die Einbindung in eine bestehende Konstruktionsumgebung sowie die Verdeutlichung des Entwurfsvorgehens durch Beispiele Gegenstand der Ausarbeitung. Der Entwurfsprozess in der Mikrotechnik verlangt im Gegensatz zu den verwandten Domänen der Mikroelektronik und Mechatronik eine wesentlich stärkere Betonung der Fertigungsgerechtheit. Dies ist bedingt durch die Vielfalt einsetzbarer Fertigungsmethoden, die in der Regel nur sehr eingeschränkt zueinander kompatibel sind und zudem meist nur begrenzte Möglichkeiten zur Materialbearbeitung bieten. Aufgrund mangelnder Entwurfsunterstützung ist der Entwickler auf fundierte technologische Erfahrung angewiesen. Eine zeit- und kostenaufwändige iterative Optimierung des Bauteildesigns in Entwurf und Fertigung ist daher häufig die Regel. Entwurfswerkzeuge müssen diesen besonderen Anforderungen der Mikrotechnik gerecht werden. Bei den bisherigen Bemühungen, diesen Aspekt des Entwurfs mikrotechnischer Bauteile stärker zu berücksichtigen, lag der Schwerpunkt auf der Untersuchung der Herstellbarkeit konkreter Mikrostrukturen mit einzelnen Fertigungstechnologien. Hinsichtlich der technologischen Wechselwirkungen innerhalb der Fertigung wird in Analogie zur Mikroelektronik versucht, diese Probleme durch die Standardisierung von Fertigungsprozessen, kompatiblen Prozessfolgen und Komponenten zu umgehen. Die hierbei notwendige Festlegung auf bestimmte Technologien und deren Einstellungen führt jedoch zu einer Einschränkung der Lösungsmöglichkeiten. Der Entwurf domänenübergreifender Anwendungen, die z.B. elektromechanische, fluidische, optische oder andere Funktionselemente beinhalten, ist auf diese Weise bislang nicht möglich. Nur wenige Werkzeuge versuchen dagegen, eine Untersuchung der Wechselwirkungen von Technologien direkt in den Entwurf einzubeziehen, indem Inkonsistenzen in Fertigungsabläufen automatisiert erkannt werden. Die derzeit bestehende Unterstützung auf diesem Gebiet ist allerdings noch sehr elementar. Das in dieser Arbeit entwickelte Werkzeug RUMTOPF nutzt den aus dem Bereich der künstlichen Intelligenz stammenden Ansatz der regelbasierten Systeme, um diese Problemstellung des mikrotechnischen Entwurfs zu adressieren. Die Philosophie des Gesamtsystems liegt darin, seitens des Anwenders möglichst wenig technologisches Expertenwissen vorauszusetzen. Das zur Definition und Prüfung einer Fertigungsprozessfolge benötigte Wissen kann in im Netzwerk verfügbaren Wissensbasen bereitgestellt werden. Da die Strukturierung dieser Basen entscheidenden Einfluss auf die Flexibilität und Erweiterbarkeit des Gesamtsystems hat, wurden angepasste objektorientierte Datenmodelle zur Wissensrepräsentation von Technologien, Fertigungsabläufen und Kompatibilitätsbeziehungen entwickelt und implementiert. Den gleichen Stellenwert haben geeignete Anwenderschnittstellen, die zum einen zum Erwerb zusätzlichen Wissens und zur Information des Anwenders dienen, zum anderen die Nutzung dieses Wissens zur Konsistenzprüfung von Fertigungsabläufen ermöglichen. Dem Anwender wird daher u.a. eine graphische Oberfläche geboten, mit der Prozessfolgen einfach aus dem vorhandenen Technologiewissen konfigurierbar sind. Die schrittweisen Änderungen des zu fertigenden Mikrobauteils werden für jeden Fertigungsschritt in einer schematischen Darstellung visualisiert. Mit technologie-orientierten Regeln kann die definierte Prozessfolge auf mögliche Wechselwirkungen der eingesetzten Prozessierung geprüft werden. Hierzu wird die Diagnosekomponente des Werkzeugs genutzt, welche mit dem Anwender zur Meldung und Erklärung gefundener Mängel kommuniziert. Besonderes Augenmerk wurde auf die Möglichkeiten zur Formulierung von komplexen, möglichst allgemeingültigen Zusammenhängen gelegt, um die Inkompatibilitäten der Fertigung flexibel und kontextbezogen beschreiben zu können. Eine entsprechende Regelbeschreibungssprache wurde entwickelt. Für die Verwendung der erstellten und geprüften Prozessplänen in der Praxis wird die Möglichkeit zum Ausdruck gegeben. Ein generelles Defizit der Entwurfsunterstützung in der Mikrotechnik ist die mangelnde Integration der vorhandenen Werkzeuge. Sie stellen in sich Insellösungen dar, die lediglich einen konkreten Bereich des fertigungsgerechten Entwurfs abdecken können. Zusätzlich zur Prüfung der technologischen Wechselwirkungen ist die Fertigbarkeit der geometrischen Zielvorgaben durch den jeweiligen Fertigungsprozess zu untersuchen. In diesem Bereich ist bereits umfangreiche Entwurfsunterstützung vorhanden, sodass eine Integration der vorgestellten Anwendung mit technologiebezogenen Werkzeugen vollzogen werden kann. Das Vorgehen wurde am Beispiel des am Institut für Mikrotechnik entwickelten Ätzsimulationsprogramms SUZANA aufgezeigt. Abschließende Beispiele zur Herstellung einer planaren Mikrospule und eines 3D-Beschleunigungssensors zeigen die Möglichkeiten und eine generelle Vorgehensweise bei der Nutzung des Werkzeuges. In der Praxis wird ein paralleler Entwurf von Mikrobauteil und Fertigungsablauf angestrebt. Funktionale und somit geometrische Aspekte müssen bezüglich ihrer Herstellbarkeit mit einzelnen Technologien sowie im Rahmen der Gesamtfertigung untersucht werden. Dieses iterative Vorgehen, das bislang häufig erst in der Herstellung stattgefunden hat, kann somit in den eigentlichen Entwurfsprozess eingebunden und somit der fertigungsgerechte Entwurf in der Mikrotechnik umfassend unterstützt werden

    Implementierungsmöglichkeiten der integrativen Wissensakquisitionsmethode des ARC-TEC-Projektes

    Get PDF
    Die Implementation der Wissensakquisitionsmethode des ARC-TEC-Projektes als Software-System soll einerseits ihre VerifIkation durch den Einsatz als rechnergestütztes Tool ermöglichen. Sie muß andererseits dem experimentellen Charakter der Anwendung durch hohe Flexibilität und Änderungs-/Erweiterungsfreudigkeit Rechnung tragen. Um beide Anforderungen zu erfüllen, werden hier verschiedenener Möglichkeiten zur Implementation der ARC-TEC-Methode unter Berücksichtigung vorhandener Hard- und Software-Resourcen untersucht. Ziel dabei ist es nicht, völlig unterschiedliche, inkompatible Implementationsmöglichkeiten zu vergleichen. Vielmehr wird ein portables Basissystem postuliert, das in aufeinander aufbauenden Varianten an Kapazität und Effizienz, aber auch an Entwicklungsaufwand zunimmt

    Prüfplanung - Ein neues Prozessmanagement für Fahrzeugprüfungen

    Get PDF
    Für komplexe und sicherheitsrelevante Produkte wie Personenkraftwagen sind Prüfungen zur Qualitätsabsicherung im Produktionsprozess aus vielfachen Gründen erforderlich. Insbesondere sind gesetzliche und normative Vorgaben zu beachten. Das neue Prozessmanagement umfasst die Prüfplanung und die Organisation. Der Prüfplanungsprozess beinhaltet einen neu entwickelten Priorisierungsalgorithmus. Es wird ein numerisches Verfahren für die Auswahl der wichtigsten Prüfungen beschrieben

    Innovationspotentiale in der rechnerintegrierten Produktion durch wissensbasierte Systeme

    Get PDF
    Die Realisierung einer Rechnergeführten Fabrik unter dem Schlagwort CIM ist eine der größten Herausforderungen für die industrielle Produktionstechnik. Komplexe Informations- und Automatisierungssysteme steuern und überwachen die Fabrik der Zukunft. Doch die konventionelle Informations- und Datenverarbeitung erreicht ihre Grenzen dort, wo Wissen und Erfahrung zur Problemlösung im Vordergrund steht, und wo komplexe, unstrukturierte und nicht algorithmierbare Zusammenhänge angetroffen werden. Hier eröffnen die Methoden der Künstlichen Intelligenz und Wissensverarbeitung vielfältig neue Möglichkeiten. Unter diesen Randbedingungen will die vorliegende Arbeit Innovationspotentiale in der Rechnerintegrierten Produktion durch den Einsatz wissensbasierter Systeme erschließen. Dazu werden eingangs die grundsätzlichen Methoden und Hilfsmittel der Wissensverarbeitung erläutert. Diese Ausführungen erstrecken sich auf den Wissensbegriff selbst, auf die Methoden zur Wissensrepräsentation, Manipulation und auch Akquisition. Eine grobe Klassifizierung der Softwarehilfsmittel in Programmiersprachen und Werkzeugsysteme schließt sich an. Das nächste Kapitel beschäftigt sich mit dem Einsatz wissensbasierter Systeme in der Produktion allgemein. Erfolgreiche Systeme und interessante Prototypen aus den Anwendungsgebieten Diagnose, Arbeitsplanung, Konstruktion und Simulation werden vorgestellt. Die Wissensverarbeitung erfordert eine neue Qualifikation an Engineeringleistung. Die Aufgaben eines Wissensingenieurs werden im Zusammenhang mit dem Entwicklungsprozeß von wissensbasierten Systemen erläutert. Im anschließenden Kapitel wird ein wissensbasiertes Rahmensystem (WWS) für die Lösung von Planungs- und Konfigurationsaufgaben vorgestellt. Es besteht aus Komponenten für den Dialog, für die Wissensrepräsentation, für die Problemlösung und für den Wissenserwerb. Ein ereignisorientiertes Simulationssystem ist in die Problemlösungskomponente voll integriert. Mit Hilfe dieser logischen und programmtechnischen Integration von Konfigurations- und Simulationswerkzeugen ist es erstmals gelungen, völlig neue Möglichkeiten der Optimierung von Planungstätigkeiten in einem ganzheitlichen und wissensbasierten Ansatz zu erschließen. Innerhalb der industriellen Produktion gilt die Montagetechnik als weitgehend unerschlossenes Rationalisierungspotential. Als exemplarische Anwendung des wissensbasierten Werkzeugsystems (WWS) wurde das Expertensystem MOPLAN zur Planung von Montageanlagen implementiert. Als einziges System seiner Art ist es hardware- und softwareseitig voll in ein CIM-Konzept für die Montage integriert und kommuniziert mit einem dreidimensionalen Modellierer (ROMULUS). Damit steht der Montageplanung erstmals ein rechnergestütztes Werkzeug zur Verfügung, das für einen Großteil der Aufgaben bei der Grobplanung eingesetzt werden kann. Das letzte Kapitel beschäftigt sich mit alternativen Einsatzmöglichkeiten für das wissensbasierte Werkzeugsystem WWS. Hier ist in erster Linie die Planung von produktionstechnischen Anlagen im allgemeinen und die Planung von Flexiblen Fertigungssystemen im speziellen zu nennen. Aber auch zur Planung von Fertigungsabläufen und Fertigungsaufträgen kann das Werkzeug eingesetzt werden. Für die implizite offline-Programmierung von Industrierobotern wird hierzu ein Beispiel gegeben. Die vorliegende Arbeit zeigt das Spektrum der Einsatzmöglichkeiten wissensbasierter Systeme in einer Rechnerintegrierten Produktion auf. Angefangen bei der Konstruktion, über die Fertigungsplanung und -steuerung, bis hin zur Diagnose können mit Hilfe von wissensbasierten Konzepten vielfältige Innovationspotentiale erschlossen werden. Es wird deutlich, daß die Wissensverarbeitung eine wesentliche Komponente in der Fabrik der Zukunft darstellt. Mit dem Rahmensystem WWS und dem Expertensystem MOPLAN ist es gelungen, breit einsetzbare Werkzeuge als Basis für viele weiterführende Arbeiten im Bereich der Planung und Konfiguration zu schaffen. Damit wird auch ein Beitrag dazu geleistet, die Wissensverarbeitung in Forschung und Lehre zu etablieren.The realization of a computer-controlled factory under the catchphrase CIM is one of the greatest challenges for industrial production technology. Complex information and automation systems control and monitor the factory of the future. But conventional information and data processing reaches its limits where knowledge and experience are the focus of problem-solving and where complex, unstructured and non-algorithmic relationships are encountered. The methods of artificial intelligence and knowledge processing open up a variety of new possibilities here. Under these boundary conditions, the present work aims to develop innovation potential in computer-integrated production through the use of knowledge-based systems. To this end, the basic methods and tools of knowledge processing are explained. These explanations extend to the concept of knowledge itself, to the methods for representing knowledge, manipulation and also acquisition. This is followed by a rough classification of software tools in programming languages and tool systems. The next chapter deals with the use of knowledge-based systems in production in general. Successful systems and interesting prototypes from the fields of diagnosis, work planning, construction and simulation are presented. Knowledge processing requires a new qualification in engineering performance. The tasks of a knowledge engineer are explained in connection with the development process of knowledge-based systems. In the following chapter, a knowledge-based framework system (WWS) for the solution of planning and configuration tasks is presented. It consists of components for dialogue, for representing knowledge, for solving problems and for acquiring knowledge. An event-oriented simulation system is fully integrated in the problem-solving component. With the help of this logical and technical integration of configuration and simulation tools, it was possible for the first time to open up completely new possibilities for optimizing planning activities in a holistic and knowledge-based approach. In industrial production, assembly technology is considered a largely untapped rationalization potential. The MOPLAN expert system for planning assembly systems was implemented as an exemplary application of the knowledge-based tool system (WWS). As the only system of its kind, it is fully integrated in terms of hardware and software into a CIM concept for assembly and communicates with a three-dimensional modeller (ROMULUS). For the first time, assembly planning now has a computer-aided tool that can be used for a large part of the rough planning tasks. The last chapter deals with alternative uses for the knowledge-based tool system WWS. The planning of production engineering systems in general and the planning of flexible manufacturing systems in particular should be mentioned here. The tool can also be used to plan production processes and production orders. An example is given for the implicit offline programming of industrial robots. The present work shows the spectrum of possible uses of knowledge-based systems in computer-integrated production. Starting with the construction, through the production planning and control, up to the diagnosis, knowledge-based concepts can be used to open up a wide range of innovation potential. It becomes clear that knowledge processing is an essential component in the factory of the future. With the WWS frame system and the MOPLAN expert system, it has been possible to create widely applicable tools as the basis for many further work in the area of planning and configuration. This also makes a contribution to establishing knowledge processing in research and teaching

    Prüfplanung : ein neues Prozessmanagement für Fahrzeugprüfungen

    Get PDF
    Die Arbeit analysiert die Potentiale der Risikoanalyse für die Planung von Prüfungen, Tests und Wartungsmaßnahmen an technischen Systemen. Der Autor beschreibt ein Prozessmanagement zur Prüfplanung, welches die Definition von komponenten- und funktionsbezogenen Qualitätsmerkmalen, die Risikobewertung der Qualitätsmerkmale, sowie einen neuartigen numerischen Priorisierungsalgorithmus umfasst. Die Methode ist generisch formuliert, die Anwendung ist für Personenkraftwagen erläutert

    Visualisierung in komplexen Systemen und deren Anwendung im Umweltschutz

    Get PDF
    corecore