25,058 research outputs found

    Generating multimedia presentations: from plain text to screenplay

    Get PDF
    In many Natural Language Generation (NLG) applications, the output is limited to plain text – i.e., a string of words with punctuation and paragraph breaks, but no indications for layout, or pictures, or dialogue. In several projects, we have begun to explore NLG applications in which these extra media are brought into play. This paper gives an informal account of what we have learned. For coherence, we focus on the domain of patient information leaflets, and follow an example in which the same content is expressed first in plain text, then in formatted text, then in text with pictures, and finally in a dialogue script that can be performed by two animated agents. We show how the same meaning can be mapped to realisation patterns in different media, and how the expanded options for expressing meaning are related to the perceived style and tone of the presentation. Throughout, we stress that the extra media are not simple added to plain text, but integrated with it: thus the use of formatting, or pictures, or dialogue, may require radical rewording of the text itself

    Free-standing mathematics units and the key skills : 1998-1999 : draft

    Get PDF

    Adaptive Layout for Interactive Documents

    Get PDF
    This thesis presents a novel approach to create automated layouts for rich illustrative material that could adapt according to the screen size and contextual requirements. The adaption not only considers global layout but also deals with the content and layout adaptation of individual illustrations in the layout. An unique solution has been developed that integrates constraint-based and force-directed techniques to create adaptive grid-based and non-grid layouts. A set of annotation layouts are developed which adapt the annotated illustrations to match the contextual requirements over time

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term
    corecore