72 research outputs found

    Design and development of new tactile softness displays for minimally invasive surgery

    Get PDF
    Despite an influential shortcoming of minimally invasive sugary (MIS), which is the lack of tactile feedback to the surgeon, MIS has increasingly been used in various types of surgeries. Restoring the missing tactile feedback, especially information which can be obtained by the palpation of tissue, such as detection of embedded lump and softness characterization is important in MIS. The present study aims to develop tactile feedback systems both graphically and physically. In graphical rendering approach, the proposed system receives signals from the previously fabricated piezoelectric softness sensors which are integrated with an MIS grasper. After processing the signals, the tactile information is displayed by means of a color coding method. Using the graphical images, the softness of the grasped objects can visually be differentiated. A physical tactile display system is also designed and fabricated. This system simulates non-linear material properties of different soft objects. The system consists of a linear actuator, force and position sensors and processing software. A PID controller is used to control the motion of a linear actuator according to the properties of the simulated material and applied force. Graphical method was also examined to render the tactile information of embedded lumps within a soft tissue/object. The necessary information on the size and location of the hidden features are collected using sensorized MIS graspers. The information is then processed and graphically rendered to the surgeon. Using the proposed system surgeons can identify presence, location and approximate size of hidden lumps by grasping the target object with a reasonable accuracy. Finally, in order to determine the softness of the grasped object, another novel approach is taken by the design and fabrication of a smart endoscopic tool equipped with sensors for measuring the applied force and the angle of the grasper jaws. Using this method, the softness/compliance of the grasped object can be estimated and presented to the surgeo

    Development of Piezoresistive Tactile Sensors and a Graphical Display System for Minimally Invasive Surgery and Robotics

    Get PDF
    Development of Piezoresistive Tactile Sensors and a Graphical Display System for Minimally Invasive Surgery and Robotics Masoud Kalantari, PhD Concordia University, 2013 This PhD work presents a new tactile and feedback systems for minimally invasive surgery (MIS)and robotics. The thesis is divided into two major sections: the tactile sensing system, and the graphical display system. In the tactile sensing system, piezoresistive materials are used as measuring elements. The first part of the thesis is focused on the theoretical modeling of piezoresistive sensing elements, which are semiconductive polymer composites. The model predicts the piezoresistive behavior in semiconductive polymer composites, including their creep effect and contact resistance. A single force sensing resistor (FSR) is, then, developed by using the semiconductive polymer composite materials. The developed FSR is used in the structure of a novel tactile sensor as the transduction element. The developed tactile sensor is designed to measure the difference in the hardness degree of soft tissues. This capability of the sensor helps surgeons to distinguish different types of tissues involved in the surgery. The tactile sensor is integrated on the extremity of a surgical tool to provide tactile feedback from the interaction between surgical instruments and the tissue during MIS. Mitral valve annuloplasty repair by MIS is of our particular interest to be considered as a potential target for the use of the developed tactile sensor. In the next step, the contact interaction of the tactile sensor with soft tissues is modelled, parametrically. Viscoelastic interaction is considered between the tactile sensor and atrial tissue in annuloplasty mitral valve repair; and a parametric solution for the viscoelastic contact is achieved. In addition to the developed sensor, a novel idea regarding measuring the indentation rate, in addition to measuring force and displacement is implemented in a new design of an array tactile sensor. It is shown that the indentation-rate measurement is an important factor in distinguishing the hardness degree of tissues with viscoelastic behaviour. The second part of the thesis is focused on the development of a three-dimensional graphical display that provides visual palpation display to any surgeon performing robotic assisted MIS. Two matrices of the developed piezoresistive force sensor are used to palpate the tissue and collect the tactile information. The collected data are processed with a new algorithm and graphically rendered in three dimensions. Consequently, the surgeon can determine the presence, location, and the size of any hidden superficial tumor/artery by grasping the target tissue in a quasi-dynamic way

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Association of Architecture Schools in Australasia

    Get PDF
    "Techniques and Technologies: Transfer and Transformation", proceedings of the 2007 AASA Conference held September 27-29, 2007, at the School of Architecture, UTS

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems

    Commons in Design

    Get PDF
    The scarcity of resources, climate change, and the digitalization of everyday life are fuelling the economy of swapping, sharing, and lending—all of which are in some way linked to a culture of commoning. In this context, we understand commons as community-based processes that use, collectively manage, and organize generally accessible resources—referring to both goods and knowledge. Commons in Design explores the meaning and impact of commons—especially knowledge-based peer commons—and acts of commoning in design. It discusses networked, participatory, and open procedures based on the commons and commoning, testing models that negotiate the use of commons within design processes. In doing so, it critically engages with questions regarding designers’ positionings, everyday practices, self-understandings, ways of working, and approaches to education

    Cultural Heritage on line

    Get PDF
    The 2nd International Conference "Cultural Heritage online – Empowering users: an active role for user communities" was held in Florence on 15-16 December 2009. It was organised by the Fondazione Rinascimento Digitale, the Italian Ministry for Cultural Heritage and Activities and the Library of Congress, through the National Digital Information Infrastructure and Preservation Program - NDIIP partners. The conference topics were related to digital libraries, digital preservation and the changing paradigms, focussing on user needs and expectations, analysing how to involve users and the cultural heritage community in creating and sharing digital resources. The sessions investigated also new organisational issues and roles, and cultural and economic limits from an international perspective
    • …
    corecore