235 research outputs found

    Prior-based Coregistration and Cosegmentation

    Get PDF
    We propose a modular and scalable framework for dense coregistration and cosegmentation with two key characteristics: first, we substitute ground truth data with the semantic map output of a classifier; second, we combine this output with population deformable registration to improve both alignment and segmentation. Our approach deforms all volumes towards consensus, taking into account image similarities and label consistency. Our pipeline can incorporate any classifier and similarity metric. Results on two datasets, containing annotations of challenging brain structures, demonstrate the potential of our method.Comment: The first two authors contributed equall

    MRF-based Diffeomorphic Population Deformable Registration & Segmentation

    Get PDF
    In this report, we present a novel framework to deform mutually a population of n-examples based on an optimality criterion. The optimality criterion comprises three terms, one that aims to impose local smoothness, a second that aims to minimize the individual distances between all possible pairs of images, while the last one is a global statistical measurement based on "compactness" criteria. The problem is reformulated using a discrete MRF, where the above constraints are encoded in singleton (global) and pair-wise potentials (smoothness (intra-layer costs) and pair-alignments (inter-layer costs)). Furthermore, we propose a novel grid-based deformation scheme, that guarantees the diffeomorphism of the deformation while being computationally favorable compared to standard deformation methods. Towards addressing important deformations we propose a compositional approach where the deformations are recovered through the sub-optimal solutions of successive discrete MRFs. The resulting paradigm is optimized using efficient linear programming. The proposed framework for the mutual deformation of the images is applied to the group-wise registration problem as well as to an atlas-based population segmentation problem. Both articially generated data with known deformations and real data of medical studies were used for the validation of the method. Promising results demonstrate the potential of our method

    Doctor of Philosophy in Computing

    Get PDF
    dissertationAn important area of medical imaging research is studying anatomical diffeomorphic shape changes and detecting their relationship to disease processes. For example, neurodegenerative disorders change the shape of the brain, thus identifying differences between the healthy control subjects and patients affected by these diseases can help with understanding the disease processes. Previous research proposed a variety of mathematical approaches for statistical analysis of geometrical brain structure in three-dimensional (3D) medical imaging, including atlas building, brain variability quantification, regression, etc. The critical component in these statistical models is that the geometrical structure is represented by transformations rather than the actual image data. Despite the fact that such statistical models effectively provide a way for analyzing shape variation, none of them have a truly probabilistic interpretation. This dissertation contributes a novel Bayesian framework of statistical shape analysis for generic manifold data and its application to shape variability and brain magnetic resonance imaging (MRI). After we carefully define the distributions on manifolds, we then build Bayesian models for analyzing the intrinsic variability of manifold data, involving the mean point, principal modes, and parameter estimation. Because there is no closed-form solution for Bayesian inference of these models on manifolds, we develop a Markov Chain Monte Carlo method to sample the hidden variables from the distribution. The main advantages of these Bayesian approaches are that they provide parameter estimation and automatic dimensionality reduction for analyzing generic manifold-valued data, such as diffeomorphisms. Modeling the mean point of a group of images in a Bayesian manner allows for learning the regularity parameter from data directly rather than having to set it manually, which eliminates the effort of cross validation for parameter selection. In population studies, our Bayesian model of principal modes analysis (1) automatically extracts a low-dimensional, second-order statistics of manifold data variability and (2) gives a better geometric data fit than nonprobabilistic models. To make this Bayesian framework computationally more efficient for high-dimensional diffeomorphisms, this dissertation presents an algorithm, FLASH (finite-dimensional Lie algebras for shooting), that hugely speeds up the diffeomorphic image registration. Instead of formulating diffeomorphisms in a continuous variational problem, Flash defines a completely new discrete reparameterization of diffeomorphisms in a low-dimensional bandlimited velocity space, which results in the Bayesian inference via sampling on the space of diffeomorphisms being more feasible in time. Our entire Bayesian framework in this dissertation is used for statistical analysis of shape data and brain MRIs. It has the potential to improve hypothesis testing, classification, and mixture models

    Discrete Visual Perception

    Get PDF
    International audienceComputational vision and biomedical image have made tremendous progress of the past decade. This is mostly due the development of efficient learning and inference algorithms which allow better, faster and richer modeling of visual perception tasks. Graph-based representations are among the most prominent tools to address such perception through the casting of perception as a graph optimization problem. In this paper, we briefly introduce the interest of such representations, discuss their strength and limitations and present their application to address a variety of problems in computer vision and biomedical image analysis

    Deep learning in medical image registration: introduction and survey

    Full text link
    Image registration (IR) is a process that deforms images to align them with respect to a reference space, making it easier for medical practitioners to examine various medical images in a standardized reference frame, such as having the same rotation and scale. This document introduces image registration using a simple numeric example. It provides a definition of image registration along with a space-oriented symbolic representation. This review covers various aspects of image transformations, including affine, deformable, invertible, and bidirectional transformations, as well as medical image registration algorithms such as Voxelmorph, Demons, SyN, Iterative Closest Point, and SynthMorph. It also explores atlas-based registration and multistage image registration techniques, including coarse-fine and pyramid approaches. Furthermore, this survey paper discusses medical image registration taxonomies, datasets, evaluation measures, such as correlation-based metrics, segmentation-based metrics, processing time, and model size. It also explores applications in image-guided surgery, motion tracking, and tumor diagnosis. Finally, the document addresses future research directions, including the further development of transformers

    Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability

    Get PDF
    International audienceComputational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the successful rst edition of this workshop in 20061 and second edition in New-York in 20082, the third edition was held in Toronto on September 22 20113. Contributions were solicited in Riemannian and group theoretical methods, geometric measurements of the anatomy, advanced statistics on deformations and shapes, metrics for computational anatomy, statistics of surfaces, modeling of growth and longitudinal shape changes. 22 submissions were reviewed by three members of the program committee. To guaranty a high level program, 11 papers only were selected for oral presentation in 4 sessions. Two of these sessions regroups classical themes of the workshop: statistics on manifolds and diff eomorphisms for surface or longitudinal registration. One session gathers papers exploring new mathematical structures beyond Riemannian geometry while the last oral session deals with the emerging theme of statistics on graphs and trees. Finally, a poster session of 5 papers addresses more application oriented works on computational anatomy

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome
    • …
    corecore