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Abstract—Computational vision and biomedical image have
made tremendous progress of the past decade. This is mostly
due the development of efficient learning and inference algo-
rithms which allow better, faster and richer modeling of visual
perception tasks. Graph-based representations are among the
most prominent tools to address such perception through the
casting of perception as a graph optimization problem. In this
paper, we briefly introduce the interest of such representations,
discuss their strength and limitations and present their applica-
tion to address a variety of problems in computer vision and
biomedical image analysis.

I. INTRODUCTION

Computational vision is one of the most challenging re-
search domains in engineering sciences. The aim is to repro-
duce human visual perception through intelligent processing
of visual data. The application domains span from computer
aided diagnosis to industrial automation & robotics. The most
common mathematical formulation to address such a challenge
is through mathematical modeling. In such a context, first the
solution of the desired vision task is expressed in the form of
a parameterized mathematical model. Given such a model, the
next task consists of associating the model parameters with the
available observations, which is often called the model-to-data
association. The aim of this task is to determine the impact
of a parameter choice to the observations and eventually
maximize/minimize the adequacy of these parameters with the
visual observations. In simple words, the better the solution
is, the better it will be able to express and fit the data.
This is often achieved through the definition of an objective
function on the parametric space of the model. Last, but not
least given the definition of the objective function, visual
perception is addressed through its optimization with respect
to the model parameters. To summarize, computation visual
perception involves three aspects, a task-specific definition of
a parametric model, a data-specific association of this model
with the available observations and last the optimization of the
model parameters given the objective and the observations.

Such a chain processing inherits important shortcomings.
The curse of dimensionality is often used to express the
importance of the model complexity. In simple words, the
higher the complexity of the model is, the better its expressive
power will be with counter effect the increase of the difficulty
of the inference process. Non-linearity is another issue to be
addressed which simply states that the association between
the model and the data is a (highly) non-linear function and
therefore direct inference is almost infeasible. The impact of
this aspect is enforced from the curse of non-convexity that
characterizes the objective function. Often it lives in high-
dimensional spaces and is ill posed making exact inference
problematic (in many cases not possible) and computationally
expensive. Last, but not least modularity and scalability is
another important concern to be addressed in the context
of computational vision. The use of task-specific modeling

and algorithmic solutions make their portability infeasible and
therefore transfer of knowledge from one task to another is not
straightforward while the methods do not always scale well
with respect either to the dimensionality of the representation
or the data.

To address the above challenges, one can resort to discrete
optimization formulations, which apply to a wide variety of
tasks in medical image analysis. In very simple terms, a
discrete optimization problem can be stated as follows: we are
given a discrete set of variables V , all of which are vertices in
a graph G. The edges of this graph (denoted by E) encode the
variables’ relationships. We are also given as input a discrete
set of labels L. We must then assign one label from L to
each variable in V . However, each time we choose to assign
a label, say, xp1

to a variable p1, we are forced to pay a price
according to the so-called singleton potential function gp(xp),
while each time we choose to assign a pair of labels, say, xp1

and xp2
to two interrelated variables p1 and p2 (i.e., two nodes

that are connected by an edge in the graph G), we are also
forced to pay another price, which is now determined by the
so called pairwise potential function fp1p2

(xp1
, xp2

). Both the
singleton and pairwise potential functions are problem specific
and are thus assumed to be provided as input. Our goal is then
to choose a labeling which will allow us to pay the smallest
total price. In other words, based on what we have mentioned
above, we want to choose a labeling that minimizes the sum
of all the MRF potentials, or equivalently the MRF energy.
This amounts to solving the following optimization problem:

argmin
{xp}

P({xp}; g, f) =
∑

p∈V

gp(xp)+
∑

(p1,p2)∈E

fp1p2
(xp1

, xp2
).

The use of such a model can describe a number of chal-
lenging problems in medical image analysis. However these
simplistic models can only account for simple interactions
between variables, a rather constrained scenario for high-level
medical imaging perception tasks. One can augment the ex-
pression power of this model through higher order interactions
between variables, or a number of cliques {Ci}i∈[1,n] with
Ci = {pi1 , · · · , pi|Ci|}

argmin
{xp}

P({xp}; g, f) =
∑

p∈V

gp(xp) +
∑

(p1,p2)∈E

fp1p2
(xp1

, xp2
)

+

n∑

i=1

fCi
(xCi

) ,

here xCi
= {xp|p ∈ Ci} and fCi

is the price to pay for
associating the labels xCi

to the nodes in Ci. Parameter
inference, addressed by minimizing the problem above, is the
most critical aspect in computational medicine and efficient
optimization algorithms are to be evaluated both in terms
of computational complexity as well as of inference perfor-
mance. State of the art methods include deterministic and non-
deterministic annealing, genetic algorithms, max-flow/min-cut



techniques and convex relaxations. These methods offer certain
strengths while exhibiting certain limitations, mostly related
to the amount of interactions which can be tolerated among
neighborhood nodes. In the area of medical imaging where
domain knowledge is quite strong, one would expect that such
interactions should be enforced at the largest scale possible.

The reminder of this paper reviews briefly our contributions
in the field. Section 2 presents the work done in the area of
inference algorithms while section 3 is dedicated to computer
vision applications of such methods. Biomedical image anal-
ysis is discussed in section 4, while the last section concludes
the paper and presents perspectives, future directions of our
work.

II. DISCRETE OPTIMIZATION OF PAIR-WISE &
HIGHER-ORDER MRFS

Discrete optimization has been an research topic in the
vision community for the past decade [1].

In [2] we have introduced a novel linear-programming for
efficient optimization of arbitrary pair-wise MRFs. The central
idea was instead of solving the original problem to cast it as
a linear programming one (using an LP relaxation) and then
seek the solution that minimizes the primal-dual gap. Such
a method exhibits computational efficiency and can handle
arbitrary graphs and interactions between their elements (both
in terms of connectivity as well as in terms of potentials)1.

The quality of MRF-MAP inference from LP-optimization
methods heavily depends on the associated relaxation. In [3]
we have introduced a novel dynamic optimization method that
updates the LP relaxation on the fly towards increasing its
tightness and potentially achieving a globally optimal solution
upon convergence. To this end, pair-wise terms of the graphical
model become also inference variables under global constraints
driven from the original objective function. The proposed
formulation has led to state of the art results.

Despite the enormous speed up over conventional meth-
ods, the aforementioned solution is sequential and therefore
couldn’t benefit from recent progress on parallel architectures.
In [4], a novel efficient method was introduced for exchanging
messages in the context of belief propagation through the jump
flooding algorithm, an approach that was able to handle a
significant number of labels while outperforming in terms of
speed - assuming a basic GPU implementation - for at least
one order of magnitude all existing optimization methods.

In [5] we have re-visited belief propagation through dual
decomposition, an approach that provides a common theoret-
ical framework for message passing while at the same time
introduces a novel, scalable, modular and flexible framework
for the minimization of graphical models. Such a method
allows the decomposition of your problem into a number
of sub-problems over shared variables that can be solved
efficiently, and a principled way of coordinating the sub-
problem solutions is employed such that at the end all of them
converge to a unique common optimal solution. Interesting
results in the context of blind deconvolution were obtained
using such a framework [6]. This framework has been further
extended to deal with optimization of higher order MRFs [7]
where efficient decomposition methods were proposed leading
to state of the art results.

1FastPD is an optimization platform in C++ for the computer vision and
medical imaging community (publicly available at http://cvn.ecp.fr) developed
at Ecole Centrale and University of Crete. This is the most efficient publicly
available platform in terms of a compromise of computational efficiency and
ability to converge to a good minimum for the optimization of generic MRFs.

III. IMAGE PROCESSING & COMPUTER VISION

A. Graph Matching & Image Representations

The problem of graph matching [8] was initially studied
in [9]. A Higher Order MRF formulation that is invariant to
linear geometric transformations was proposed, which was
seeking hierarchically a sparse to dense matching through
a many-to-many formulation [9]. Such a formulation was
extended in [10] to track evolving/deforming surfaces and was
endowed with a powerful local shape similarity metric that
was the Mobius transform. This idea was further extended
in [11] towards handling non-rigid shapes through a discrete
minimum distortion principle that was modular under various
classes of deformations. More recently, such a higher order
model was seamlessly integrated with a generic deformation
model, called Canonical Distortion Coefficients (CDCs), that
characterizes the deformation of every point on a surface using
the distortions along its two principle directions leading to an
efficient inference paradigm that can easily handle different
types of geometry/texture similarity metrics. A different ap-
proach exploring shape maps [12] was studied in [13] for the
problem of multiple graphs being registered together towards
understanding the motion dynamics of the different object
parts.

Contextual representation of images using either local
representations [14] or graphs [15] is a well studied problem in
the field. In [16] we introduced a new image representation en-
coding the general layout of groups of quantized local invariant
descriptors as well as their relative frequency. This is achieved
by embedding the image into a graph where nodes correspond
to interest point clusters and links to commute times between
the different clusters, and subsequently mapping this graph
to lower dimension by exploiting its spectral properties. The
proposed representation can be used for indexing [17] and
classification using simple nearest neighbor methods [18] or
complex classifiers. In [19] a method for image matching
was proposed that exploits hierarchical image representations
through higher order graphs. The matching was achieved
through a graph-based theoretical framework where the sim-
ilarity and spatial consistency of the image semantic objects
is encoded in a graph of commute times that is also endowed
with singleton terms through shape descriptors. These ideas
were further explored in the context of co-segmentation [20]
where a method to determine a consistent partition of multiple
images was introduced through a multi-scale multiple-image
generative model based on region matching that exploits inter-
image information and establishes correspondences between
the common objects that appear in the scene.

B. Image-driven Procedural Modeling of Architectures

Given the deluge of satellite imagery and urban photo
collections, an emerging application is computer vision tech-
niques that can produce scalable representations of 3D models
of urban environments. Our team has pursued the development
of algorithms for inverse procedural modeling, namely the
inference of a set of architectural rules that can explain
observed building images. Initially, we have investigated the
use of graphical models [21] towards inferring the optimal
grammar instance and the associated parameters through local
self-similarities of the graphical model (structure repetition).
Complexity was the main limitation of the method since
the optimization problem involves discrete and continuous
variables with an unknown number in advances.



C. Pose Estimation, Articulated Models & Illumina-
tion/Reflectance

Inferring 3D geometry from 2D images in particular in the
context of articulated objects is a highly interesting problem
in computer vision. However at the same time it remains a
great challenge due to the dimensionality of the model, and
the ill-posedeness.

In [22] we have introduced a novel approach to 3D
pose estimation of deformable objects from 2D images that
simultaneously recovers the optimal model instance and the
corresponding image projections. The main innovation of
the method was the implicit handling of the camera pose
parameters thanks to the use of a higher order graph where
the order of cliques (depending on the projection model)
allowed to determine a cost that could simultaneously cope
with the unknown model deformation, projection matrix and
image correspondences. A different approach was used in the
context of articulated models (hand-pose estimation) where
we first studied part-based representations [23] in which case
geometric elements were used to determine the global shape of
the object. The inference was then performed by seeking the
optimal model projection to the image through a segmentation
function that was aiming to separate skin-like properties from
the background through an energy that was minimized using
the divergence theorem. The simplicity of the representation
made the approach sensitive to the initial conditions, as well
as to occlusions and self-occlusions.

Understanding the position of light sources is also critical
to a number of applications like hand pose estimation. In [24]
a graphical model to estimate the illumination environment
and detect the shadows of a scene with textured surfaces
from a single image and only coarse 3D information was
proposed. The central idea was to represent pixel-wise shadow
observations as a mixture model of contributions coming from
different illumination sources and then alternate between shad-
ows detection and illumination sources parameter estimation.
The same concept was further studied in [25], [26] where a
higher-order Markov Random Field (MRF) illumination model
was employed, which combines low-level shadow evidence
with high-level prior knowledge for the joint estimation of cast
shadows and the illumination environment. In such a context,
a higher order approach is considered where illumination
sources are coupled with the observed image and the latent
variables corresponding to the shadow detection. Last, but not
least approximate geometry estimation of the scene was also
incorporated into this framework in [27].

IV. BIOMEDICAL IMAGE ANALYSIS

A. Medical Model-free and Model-based Segmentation

In [28] the problem of introducing sparse prior knowl-
edge from small training sets was studied in the context of
brain tumor segmentations. The idea was to decompose the
population of training examples into small sets with locally
consistent behavior, and then build individual statistics for
each population locally. This was achieved through a graphical
model formulation where the prior model decomposition was
expressed as an unsupervised clustering problem involving the
number of populations, their most representative elements and
the assignments of the training set. Given such a prior model,
then inference was expressed through a coupled formulation
seeking the optimal class for the prior model and assigning
labels to the image [29] according to it (given the class likeli-
hoods [30]). Such an approach was tested on the segmentation
of brain tumors (Glioma II). In [31], [32], [33], [34] grouping

was used for the segmentation of curvilinear structures in
low signal to noise ratio images through an ordering of these
segments using the elastica model in a linear programming
framework. The problem was also considered in its temporal
aspect [35], [36], [37] through a combined iconic-geometric
approach [37] seeking to determine the optimal deformation
along with correspondences for a subset of interest points
along this structure. In the context of multi-label segmentation
[38] studied two distinct cases of introducing prior knowledge
to the random walker graphical model. The first was aiming to
position automatically the seeds with respect to the different
classes [39] through the optimization of a graph-based objec-
tive function. Later the idea of introducing prior knowledge
[38], [40] in this context was studied using statistical models
of varying complexity, like mono-modal distributions or linear
sub-spaces per class. Multi-class segmentation of striated Mus-
cles in NMR Images was the clinical case being investigated
in this context where the problem of optimal parameter setting
was also investigated through machine learning methods [41].
Continuous methods have certain strengths but also exhibit
a number of limitations in particular during the inference
process like for example their strong dependency from the
initial conditions. This was an issue that was addressed in
[42], [43], [15], [44]. The central idea was to represent prior
knowledge through a point distribution representation mapped
to a pair-wise probabilistic graphical model. In such a context
global shape priors could be built through the concatenation
of local constraints resulting on a powerful and flexible model
both in terms of learning as well as in terms of inference. The
proposed formulation was translation and rotation invariant
and was endowed with boundary and regional support (through
approximation of the region probabilities based on a Voronoi
decomposition of the image domain[42]). The method was
able to handle missing correspondences and was tested in the
context of lungs segmentation since in that case one has to
handle an important number of miss-detections [44].

This idea has been further expanded in [45], [46] where in-
variance to linear transformations has been introduced through
the use of higher order interactions between the nodes of the
probabilistic graphical model. This approach was extended
to handle the case of 3D objects projected to multiple 2D
images in [47], [45], [46]. In order to determine the exact
region probabilities, [48], [49] re-expressed the exact integral
using third order cliques through the use of Stokes/divergence
theorem resulting on a novel local shape model that is invariant
to global transformations while being able to determine exactly
the associated image support. The model complexity was
reduced through sparsity constraints [50]. Last but not least the
idea of decoupling image and model-based segmentation was
also considered in [51], where the latent variables correspond
both to the model deformation towards the image as well as
to the individual labels of pixels (that are jointly optimized).
Cardiac segmentation both in 2D (MR Tagged images) as well
as in 3D (Computed Tomography) of the myocardium was
the clinical example considered to demonstrate the interest of
such a method. Introducing more complex geometric proper-
ties in the context of articulations [52], [53] was a further
development in the same direction targeting spine/vertebra
segmentation. The idea was to represent the spine through
a probabilistic graphical model endowed with higher order
interactions encoding the relative geometric positions of suc-
cessive vertebras. In order to cope with the gap between
the dimensionality of the considered representation and the
number of examples within the training set, non-linear mani-
fold embedding methods were also introduced [54], [55]. An
alternative to point distribution models that has gained recently



important attention refers to atlas-based methods [56]. The
idea is to deform an annotated atlas to a new image and then
use the deformation to determine the anatomical structures in
the new image. Spine segmentation was investigated in [57]
while brain segmentation in the presence of tumors [58], [59]
was considered as well where the aim was to use a healthy
anatomical atlas as a prior and relax the constraint of image-
to-atlas registration in the tumorous area. This concept was
explored in [60] through a population registration framework
[61] seeking to simultaneously deform n-images towards the
target image and determine the optimal segmentation map
in the new image through the combination of the deformed
atlases labels.

B. Deformable Registration & Longitudinal Modeling

Global or linear registration is a preliminary step of almost
all medical image analysis tools either for longitudinal mod-
eling or for population studies. In [62] we introduced the first
method able to guarantee the globally optimal solution in the
mono-modal case. This was achieved through a re-expression
of the objective function as a difference of convex functions
and the use of cutting planes algorithms to reach the optimal
solution. Such a re-expression was based on a dictionary driven
representation using a pre-defined base where both images
were expressed as a linear combination of the dictionary
elements. In order to deal with the multi-modal case, more
recently we have investigated the use of graphical models [63]
and discrete optimization on the parameters acting directly on
the linear transformation [64] that was also considered for 3D-
to-2D registration in [65]. Concerning deformable registration
[66], which is the pillar of medical image analysis, in [67]2

we have introduced a low graphical model formulation coupled
with efficient linear programming to efficiently and precisely
address mono and multi-modal iconic registration [68]. The
proposed approach was endowed with modularity, scalability
and computational efficiency.

Furthermore, inspired from [67] the problem of co-
registration of multiple volumes exhibiting partial overlap was
addressed using graphical models leading to an efficient de-
formable stitching algorithm for whole body acquisitions [69].
Improving computational efficiency and bringing the method
closer to real clinical settings was investigated in [4] where
a novel fully parallelizable approach for the optimization of
graphical models in graphics processing units was adopted
leading to two orders of magnitude acceleration.

In [70], [71] this framework has been extended to cope
with multi-dimensional feature spaces while at the same time
the idea of mutual saliency (on invariant Gabor features) [70]
was introduced that changes fundamentally the way image
similarity costs are taken into account in a qualitative manner.
Such a novel qualitative metric is able to handle missing
correspondences and drive the registration to the optimal
solution even from a very bad initial configuration. In the
same direction but through a different concept that relies
on objective function residuals with respect to the different
labels in [72] we have introduced the notion of uncertainties
of the registration solution through the approximation of the
solution covariance matrix using the min-marginal energies.
This has led to an adaptive discrete sampling of the label space
improving substantially the quality of the obtained results (due

2DROP is a deformable registration platform in C++ for the medical
imaging community (publicly available at http://www.mrf-registration.net )
developed at Ecole Centrale de Paris, Technical University of Munich and
University of Crete. This is the first publicly available platform which contains
most of the existing metrics to perform registration under the same concept.

to the efficient handling of the search space) while providing
novel means to appropriately quantify/qualify the physical
solution.

Given that deformable registration is an ill-posed problem,
it is often handled through the convexification of the objective
function using the regularization term. An alternative, clinical
context specific approach was introduced [73] where we have
proposed a novel learning method that was invariant to linear
transformations to capture the relative displacements of organs
with a deformable registration framework and consider them
as priors subsequently.

Furthermore, integration of anatomical landmarks coupled
with iconic registration was another step forward. An inter-
connected layer approach was considered in [74], [75] where
we are seeking simultaneously to determine the optimal iconic
mapping and the optimal landmark association while imposing
consistency with respect to the associated transformations. The
parameters of the two graphical models were simultaneously
inferred providing dense deformation along with landmarks
correspondences. Symmetry was also a property that was nat-
urally imposed to the formulation through a deformation from
a common space to both modalities with inverse consistency
[76]. Furthermore, the same idea was explored in the context
of genetic imaging data either for registration [77] or for a
model-based segmentation/partition [78], [79].

The problem of image to volume registration, a more chal-
lenging component of fusion has been recently investigated
[80]. The objective is to determine an optimal plane and within
this plane the associated deformations that will map an intra-
operative low resolution image (like for example radiography
or ultrasound) to a high resolution anatomical data. Examples
of use of such an approach refer to image-based surgery guid-
ance and adaptive radiotherapy. The problem was formulated
as an over-parameterized pair-wise graphical model in [80]
where we seek both the optimal plane and the associated
deformation model. Over-parameterization was adopted to
impose unique plane consistency. An alternative higher order
approach was recently adopted that implicitly imposes unique
plane consistency and determines the optimal deformation
through third and fourth order potentials estimated on the 3D
deformable vectors.

V. CONCLUSION

Despite their tremendous use, graphical models have been
mostly employed to handle low rank interactions that suffer
from the ability to cope with rich models as well as encode
better priors. Furthermore, the dimensionality of the label set
space was a major issue.

In order to deal with a large number of labels, designing
hierarchical divide-and-conquer style algorithms is a promising
direction through multi-grid methods [81]. While divide-and-
conquer will increase the number of problems that will be
required to be solved, each problem will be defined on a
small set of similar labels, corresponding to a cluster within a
hierarchical clustering of labels. In order to allow for general
high-order potentials, we will design iterative algorithms that
approximate arbitrary potentials with their sparse, non-linear
envelope alternatives. The approximation will change dynam-
ically over the iterations to ensure accuracy. Specifically, the
parameters of the non-linear envelope will be determined by
both the original clique potential as well as the current estimate
of the solution. Finally, in order to handle a large number of
variables, we will build on the dual decomposition framework
which iteratively solves subproblems defined on a subgraph of



the given model. The subproblem definitions will be changed
dynamically in order to encourage faster convergence.

Learning task-specific graphical models is another promis-
ing direction. In the early years of graphical models, limited
effort was invested on determining the optimal combination
of such terms as they were mainly restricted to pair-wise
graphical models of very limited complexity involving a small
number of global parameters. Learning the optimal parameters
of a model given a set of annotated data can be expressed
as a problem of modeling dependencies between variables
that minimize a loss function between the model prediction
and the annotated solutions that in general is a non convex
problem. Solving the convex relaxation of the expected loss
through algorithms like the cutting plane, was a pioneering
step forward to address such a learning problem. In [82]
a framework for learning the optimal graph structure for
clustering problems was introduced while in [83] a generic
framework for learning the potentials of pair-wise as well
as high-order graphical models is presented combining the
dual decomposition and the max-margin concept resulting on
a fully distributed approach to parameter learning composed
of subproblems of limited complexity.

Bridging the gap between data-driven & physics-based
modeling is a promising step forward in artificial vision.
Modeling in biomedical imaging has been either physics-
based driven or data-driven. The former case suffers from
computational complexity and efficiency limitations, the later
from interpretability while being also heavily dependent on the
design of the objective function. The use of annotated data
along with the progress made in the field of dimensionality
reduction and in the optimization of higher order graphical
models do make possible the training and use of large scale
models. Consequently, reducing the gap between physical and
data-driven modeling could be of great interest and could have
tremendous impact on the efficient and automatic interpretation
of the data in the future.
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