14 research outputs found

    Determining full conditional independence by low-order conditioning

    Full text link
    A concentration graph associated with a random vector is an undirected graph where each vertex corresponds to one random variable in the vector. The absence of an edge between any pair of vertices (or variables) is equivalent to full conditional independence between these two variables given all the other variables. In the multivariate Gaussian case, the absence of an edge corresponds to a zero coefficient in the precision matrix, which is the inverse of the covariance matrix. It is well known that this concentration graph represents some of the conditional independencies in the distribution of the associated random vector. These conditional independencies correspond to the "separations" or absence of edges in that graph. In this paper we assume that there are no other independencies present in the probability distribution than those represented by the graph. This property is called the perfect Markovianity of the probability distribution with respect to the associated concentration graph. We prove in this paper that this particular concentration graph, the one associated with a perfect Markov distribution, can be determined by only conditioning on a limited number of variables. We demonstrate that this number is equal to the maximum size of the minimal separators in the concentration graph.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ193 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    A Localization Approach to Improve Iterative Proportional Scaling in Gaussian Graphical Models

    Full text link
    We discuss an efficient implementation of the iterative proportional scaling procedure in the multivariate Gaussian graphical models. We show that the computational cost can be reduced by localization of the update procedure in each iterative step by using the structure of a decomposable model obtained by triangulation of the graph associated with the model. Some numerical experiments demonstrate the competitive performance of the proposed algorithm.Comment: 12 page

    On the causal interpretation of acyclic mixed graphs under multivariate normality

    Full text link
    In multivariate statistics, acyclic mixed graphs with directed and bidirected edges are widely used for compact representation of dependence structures that can arise in the presence of hidden (i.e., latent or unobserved) variables. Indeed, under multivariate normality, every mixed graph corresponds to a set of covariance matrices that contains as a full-dimensional subset the covariance matrices associated with a causally interpretable acyclic digraph. This digraph generally has some of its nodes corresponding to hidden variables. We seek to clarify for which mixed graphs there exists an acyclic digraph whose hidden variable model coincides with the mixed graph model. Restricting to the tractable setting of chain graphs and multivariate normality, we show that decomposability of the bidirected part of the chain graph is necessary and sufficient for equality between the mixed graph model and some hidden variable model given by an acyclic digraph

    A partial orthogonalization method for simulating covariance and concentration graph matrices

    Full text link
    Structure learning methods for covariance and concentration graphs are often validated on synthetic models, usually obtained by randomly generating: (i) an undirected graph, and (ii) a compatible symmetric positive definite (SPD) matrix. In order to ensure positive definiteness in (ii), a dominant diagonal is usually imposed. However, the link strengths in the resulting graphical model, determined by off-diagonal entries in the SPD matrix, are in many scenarios extremely weak. Recovering the structure of the undirected graph thus becomes a challenge, and algorithm validation is notably affected. In this paper, we propose an alternative method which overcomes such problem yet yielding a compatible SPD matrix. We generate a partially row-wise-orthogonal matrix factor, where pairwise orthogonal rows correspond to missing edges in the undirected graph. In numerical experiments ranging from moderately dense to sparse scenarios, we obtain that, as the dimension increases, the link strength we simulate is stable with respect to the structure sparsity. Importantly, we show in a real validation setting how structure recovery is greatly improved for all learning algorithms when using our proposed method, thereby producing a more realistic comparison framework.Comment: 12 pages, 5 figures, conferenc

    The Maximum Likelihood Threshold of a Path Diagram

    Full text link
    Linear structural equation models postulate noisy linear relationships between variables of interest. Each model corresponds to a path diagram, which is a mixed graph with directed edges that encode the domains of the linear functions and bidirected edges that indicate possible correlations among noise terms. Using this graphical representation, we determine the maximum likelihood threshold, that is, the minimum sample size at which the likelihood function of a Gaussian structural equation model is almost surely bounded. Our result allows the model to have feedback loops and is based on decomposing the path diagram with respect to the connected components of its bidirected part. We also prove that if the sample size is below the threshold, then the likelihood function is almost surely unbounded. Our work clarifies, in particular, that standard likelihood inference is applicable to sparse high-dimensional models even if they feature feedback loops

    Sparse Matrix Decompositions and Graph Characterizations

    Get PDF
    The question of when zeros (i.e., sparsity) in a positive definite matrix AA are preserved in its Cholesky decomposition, and vice versa, was addressed by Paulsen et al. in the Journal of Functional Analysis (85, pp151-178). In particular, they prove that for the pattern of zeros in AA to be retained in the Cholesky decomposition of AA, the pattern of zeros in AA has to necessarily correspond to a chordal (or decomposable) graph associated with a specific type of vertex ordering. This result therefore yields a characterization of chordal graphs in terms of sparse positive definite matrices. It has also proved to be extremely useful in probabilistic and statistical analysis of Markov random fields where zeros in positive definite correlation matrices are intimately related to the notion of stochastic independence. Now, consider a positive definite matrix AA and its Cholesky decomposition given by A=LDLTA = LDL^T, where LL is lower triangular with unit diagonal entries, and DD a diagonal matrix with positive entries. In this paper, we prove that a necessary and sufficient condition for zeros (i.e., sparsity) in a positive definite matrix AA to be preserved in its associated Cholesky matrix LL, \, and in addition also preserved in the inverse of the Cholesky matrix L1L^{-1}, is that the pattern of zeros corresponds to a co-chordal or homogeneous graph associated with a specific type of vertex ordering. We proceed to provide a second characterization of this class of graphs in terms of determinants of submatrices that correspond to cliques in the graph. These results add to the growing body of literature in the field of sparse matrix decompositions, and also prove to be critical ingredients in the probabilistic analysis of an important class of Markov random fields

    Marginal log-linear parameters for graphical Markov models

    Full text link
    Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parametrizations under linear constraints induce a wide variety of models, including models defined by conditional independences. We introduce a sub-class of MLL models which correspond to Acyclic Directed Mixed Graphs (ADMGs) under the usual global Markov property. We characterize for precisely which graphs the resulting parametrization is variation independent. The MLL approach provides the first description of ADMG models in terms of a minimal list of constraints. The parametrization is also easily adapted to sparse modelling techniques, which we illustrate using several examples of real data.Comment: 36 page
    corecore