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Zeros in positive definite correlation matrices arise frequently in

probability and statistics, and are intimately related to the notion

of stochastic independence. The question of when zeros (i.e., spar-

sity) in a positive definite matrix A are preserved in its Cholesky

decomposition, and vice versa, was addressed by Paulsen et al. [V.I.

Paulsen, S.C. Power, R.R. Smith, Schur products and matrix comple-

tions, J. Funct. Anal. 85 (1989) 151–178]. In particular, they prove that

for the pattern of zeros in A to be retained in the Cholesky decom-

position of A,  the pattern of zeros in A has to necessarily correspond

to a chordal (or decomposable) graph associatedwith a specific type

of vertex ordering. This result therefore also yields a characteriza-

tion of chordal graphs in terms of sparse positive definite matrices,

and has proved to be extremely useful in probabilistic and statistical

analysis of Markov random fields. Now, consider a positive definite

matrix A and its Cholesky decomposition given by A = LDLT , where

L is lower triangularwith unit diagonal entries, andD a diagonalma-

trix with positive entries.  In this paper, we prove that a necessary

and sufficient condition for zeros (i.e., sparsity) in a positive definite

matrix A to be preserved in its associated Cholesky matrix L,  and in

addition also preserved in the inverse of the Cholesky matrix L−1,

is that the pattern of zeros corresponds to a co-chordal or homoge-

neous graph associated with a specific type of vertex ordering. We

proceed to provide a second characterization of this class of graphs

in terms of determinants of submatrices that correspond to cliques
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in the graph. These results add to the growing body of literature

in the field of sparse matrix decompositions, and also prove to be

critical ingredients in the probabilistic analysis of an important class

of Markov random fields.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Chordal and co-chordal graphs, and their relationships to sparse matrix decompositions, play an

important role in the probabilistic and statistical analysis of Markov random fields (see [8–10,18]). In

thesemodels the above classes of graphs are used to encode zeros in covariance or correlationmatrices

(or their inverses). The zero entries in these positive definite correlationmatrices are intimately related

to the notion of stochastic independence.

A characterization of chordal graphs or decomposable graphs, the class of graphs containing no

induced cycle of length greater than or equal to 4, in terms of appropriate sub-manifolds of positive

definite matrices was provided in [14]. In particular, positive definite matrices with zero entries ac-

cording to a decomposable graph necessarily preserve these zero entries in their respective Cholesky

matrices. The task undertaken in this paper is to findparallel anduseful characterizations of co-chordal

or homogeneous graphs, the class of graphs containing no induced 4-cycle or 4-path, in terms of ap-

propriate sub-manifolds of positive definite matrices.

Let G = (V, E) denote an undirected graph, where V = {1, 2, . . . , |V |} represents the finite

vertex set and E denotes the corresponding edge set. We use the notation Mp to denote the set of

p × p symmetric matrices and M+
p to denote the set of p × p positive definite matrices. Without

loss of generality, the notation used in this paper specifies the permutation or ordering σ ∈ Sp,

where Sp denotes the symmetric group, by a p-tuple describing where (1, 2, . . . , p) is sent by σ . Thus,

σ = (1 2 5 4 3) means σ(1) = 1, σ (2) = 2, σ (3) = 5, σ (4) = 4 and σ(5) = 3. Without

ambiguity, in some places in the paper we will denote σ , an element of the symmetric group on

p-letters, byap-tupledescribingwhere (u, v,w, . . .) is sentbyσ . Asweexplain shortly, theseorderings

play an important role in our results. Given a graph G = (V, E) and an ordering σ of the vertices of

the graph, we define

PGσ =
{
� ∈ M+

|V | : �ij = 0 whenever (σ−1(i), σ−1(j)) /∈ E
}
,

and

LGσ =
{
L ∈ M|V | : Lii = 1, Lij = 0 for i < j or (σ−1(i), σ−1(j)) /∈ E

}
.

The space PGσ is essentially a sub-manifold of the space of |V | × |V | positive definite matrices where

the elements are restricted to be zero whenever the corresponding edge (under the ordering σ ) is

missing from E. Similarly, the space LGσ is a subspace of lower triangular matrices with diagonal

entries equal to 1, such that the elements in the lower triangle are restricted to be zero whenever the

corresponding edge (under the ordering σ ) is missing from E. We now state the main theorem of the

paper. It characterizes co-chordal orhomogeneousgraphs in termsof (1) sparsematrixdecompositions

and (2) determinants of submatrices of cliques in the graph.

Theorem 1. Consider a graph G = (V, E) together with an ordering of its vertices as denoted by σ . Then

the following statements are equivalent.

(1) G is a homogeneous graph and σ is a Hasse tree based elimination scheme. 1

(2) If D is an arbitrary diagonal matrix with positive diagonal entries, then

L ∈ LGσ ⇔ L−1 ∈ LGσ ⇔ � := LDLT ∈ PGσ .

1 A certain type of vertex ordering that will be formally defined later in the paper.
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(3) Let� ∈ PGσ be arbitrarily chosen. Let� = LDLT denote itsmodified Cholesky decomposition, where

L is a lower triangular matrix with unit diagonal entries and D is a diagonal matrix with diagonal

entries Dii, i = 1, 2, . . . , p. Then for any maximal clique C of the graph G,∣∣∣(�−1)σ(C)

∣∣∣ = ∏
i∈σ(C)

1

Dii

.

The outline of the remainder of the paper is as follows. Section 2 introduces terminology and

notation from both linear algebra and graph theory that is required in subsequent sections. Section

3 provides a first characterization of co-chordal graphs in terms of sparse matrix decompositions.

Section 4 provides a second characterization of co-chordal graphs in terms of determinants of sub-

matrices. The results in Sections 3 and 4 are illustrated through examples,which a sophisticated reader

can skip.

2. Preliminaries

2.1. Graph theory

This section introduces notation and terminology that is required in subsequent sections. An undi-

rected graph G = (V, E) consists of two sets V and E, with V representing the set of vertices, and

E ⊆ V × V the set of edges satisfying:

(u, v) ∈ E ⇐⇒ (v, u) ∈ E

When (u, v) ∈ E, we say that u and v are adjacent in G. A graph is said to be complete if all the vertices

are adjacent to each other, i.e., (u, v) ∈ E for all u, v ∈ V such that u �= v. A subgraph of V induced by

A ⊂ V is the graph G′ = (A, E ∩ (A × A)).

Definition 1. A path connecting two distinct vertices u and v in G is a sequence of distinct vertices

(u0, u1, . . . , un) where u0 = u and un = v, and for every i = 0, . . . , n − 1, (ui, ui+1) ∈ E.

Definition 2. A cycle is a path with an additional edge between the two endpoints u0 and un.

Definition 3. A set of verticesA ⊂ V is said to constitute a clique if the graph induced byA is a complete

subgraph of V . Equivalently, a clique is a set of vertices in V which are all adjacent to each other.

Definition 4. A set of vertices A ⊂ V is said to be a maximal clique if A is a clique and is not contained

in another clique. Equivalently, A ⊂ V is a maximal clique if it is a clique and the graph induced by

A ∪ {u}, for any u ∈ V \ A, is no longer a clique.

2.2. Modified Cholesky decomposition

If � is a positive definite matrix, then there exists a unique decomposition

� = LDLT , (1)

where L is a lower triangular matrix with unit diagonal entries and D a diagonal matrix with positive

diagonal entries. This decomposition of � is referred to as the modified Cholesky decomposition of �

(see [16]). The lemmabelowprovides an explicit formulation of the inverse of a lower triangularmatrix

with unit diagonal entries, and will be useful in subsequent sections.

Lemma 1. Let L be a p × p lower triangular matrix with diagonal entries equal to 1. Let

A = ∪p
r=2

{
τ : τ ∈ {1, 2, . . . , p}r, τi < τi−1 ∀ 2 � i � r

}
,
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(a) (b)
Fig. 1. (a) A decomposable graph, and (b) a non-decomposable graph.

and

Lτ =
dim(τ )∏
i=2

Lτi−1τi , τ ∈ A,

where dim(τ ) denotes the length of the vector τ . Then L−1 = N, where

Nij =
⎧⎪⎨
⎪⎩
0 if i < j

1 if i = j∑
τ∈A,τ1=i,τdim(τ )=j(−1)dim(τ )−1Lτ if i > j.

2.3. Decomposable graphs

Anundirected graphG is said to be decomposable if any induced subgraphdoes not contain a cycle of

length greater than or equal to four. They are also sometimes known as chordal graphs or triangulated

graphs. See Fig. 1 for an example of a decomposable graph and a non-decomposable graph. Since

their introduction by Chvatal [3], these graphs have been well studied, and are used in various fields

such as optimization, computer science, probability and statistics. An important branch of probability

and statistics where the class of decomposable graphs has proven to be quite useful is the study of

Markov random fields/Graphical models. Decomposable graphs have several characterizations. One

such characterization is in terms of vertex orderings.We first introduce notation and terminology that

is required in order to formally state this characterization.

Definition 5. For an undirected graph G = (V, E), an ordering σ of V is known as a perfect vertex

elimination scheme for G if for every triplet i, j, k with 1 � i < j < k � p the following holds.

(σ−1(j), σ−1(i)) ∈ E, (σ−1(k), σ−1(i)) ∈ E ⇒ (σ−1(k), σ−1(j)) ∈ E.

A perfect vertex elimination scheme σ for the decomposable graph G in Fig. 1(a) is given by σ :
(u, u′, v, v′,w)

σ→ (3, 4, 2, 5, 1).
The existence of such an ordering characterizes decomposable graphs (see Paulsen et al. [14]). More

formally, an undirected graphG = (V, E) is decomposable iff there exists an orderingσ ofV , which is a



936 K. Khare, B. Rajaratnam / Linear Algebra and its Applications 437 (2012) 932–947

perfect vertex elimination scheme. For a given decomposable graph G = (V, E), there can however be

several orderings which gives rise to perfect vertex elimination schemes. A constructive way to obtain

such an ordering is given in Lauritzen [11]. There is an interesting and useful connection between

decomposable graphs, orderingswhich give rise to perfect vertex elimination schemes, and thematrix

spaces PGσ and LGσ .

Lemma 2 (Paulsen et al. [14]). Let G = (V, E) be a decomposable graph, and σ an ordering of V which

corresponds to a perfect vertex elimination scheme for G. Then for any positive definite matrix � with

modified Cholesky decomposition given by � = LDLT , the following holds.

L ∈ LGσ ⇔ � ∈ PGσ .

Hence, for � ∈ PGσ , the zeros in � are preserved in the lower triangle of the corresponding matrix

L obtained from the modified Cholesky decomposition. Moreover for L ∈ LGσ , the zeros in L are

preserved in the matrix � obtained by � = LDLT , for any diagonal matrix D with positive diagonal

entries. The converse of Lemma 2 is also true.

Lemma 3 (Paulsen et al. [14]). Let G = (V, E) be a graph, σ be an ordering of V, and D be an arbitrary

diagonal matrix with positive diagonal entries. Suppose

L ∈ LGσ ⇔ � := LDLT ∈ PGσ .

Then G is a decomposable graph and σ corresponds to a perfect vertex elimination scheme for G.

Hence, Lemmas 2 and 3 characterize a decomposable graph G and a perfect vertex elimination

scheme σ for G in terms of the preservation of zeros in themodified Cholesky decomposition ofmatri-

ces in PGσ . These characterizations of decomposable graphs and orderings of vertices ofG has proven to

be tremendously useful for working with sparse positive definite matrices in probability and statistics

(see [7,10,12,17,18]). Another class of graphs that is also highly useful in this context is the class of

co-chordal graphs or homogeneous graphs (see [2,8–10,12]). Yet characterizations of homogeneous

graphs, similar to the above for decomposable graphs, are not available. These characterizations are

the subject of the rest of the paper.

2.4. Homogeneous graphs

A graph G = (V, E) is defined to be co-chordal or homogeneous if for all v, v′ such that (v, v′) ∈ E,

either

{u : u = v′ or (u, v′) ∈ E} ⊆ {u : u = v or (u, v) ∈ E},
or

{u : u = v or (u, v) ∈ E} ⊆ {u : u = v′ or (u, v′) ∈ E}.
Equivalently, a graph G is said to be homogeneous if it is decomposable and does not contain the graph
1• − 2• − 3• − 4•, denoted by A4, as an induced subgraph. See Fig. 2 for an example of a homogeneous

graph, and a non-homogeneous graph which is decomposable. Connected homogeneous graphs have

an equivalent representation in terms of directed rooted trees, called Hasse diagrams. The reader is

referred to [12] for a detailed account of the properties of homogeneous graphs. We write v → w

whenever

{u : u = w or (u,w) ∈ E} ⊆ {u : u = v or (u, v) ∈ E}.
Now denote by R the equivalence relation on V defined by

uRv ⇔ u → v and v → u.

Let v̄denote theequivalenceclass inV/R containingv. TheHassediagramofG is definedasadirected

graph with vertex set VH = V/R = {v̄ : v ∈ V} and edge set EH consisting of directed edges with

(ū, v̄) ∈ EH for ū �= v̄ if the following holds: u → v and �v′ such that u → v′ → v, v̄′ �= ū, v̄′ �= v̄.
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(a) (b) (c)
Fig. 2. (a) A homogeneous graph, (b) a non-homogeneous graph which is decomposable, and (c) the Hasse tree corresponding to the

homogeneous graph in (a).

IfG is a connectedhomogeneous graph, then theHasse diagramdescribed above is a directed rooted

tree such that the number of children of a vertex is never equal to one. It was proved in [12] that there

is a one-to-one correspondence between the set of connected homogeneous graphs and the set of

directed rooted trees with vertices weighted by positive integers (w(ū) = |ū|), such that no vertex

has exactly one child. If u → v and ū �= v̄, we say that u is an ancestor of v in the Hasse tree of G. It is

easily seen that if G is a disconnected homogeneous graph, then each connected component of G gives

rise to a Hasse tree. If ū = v̄, we say that u is a twin of v in the Hasse tree of G.

A subclass of orderings associated with a homogeneous graph, which will be used in subsequent

analysis, is defined as follows.

Definition 6. If G = (V, E) is a homogeneous graph, then an ordering σ of V is defined to be a Hasse

tree based elimination scheme for G if for every pair of vertices u, v, the following holds.

u → v, ū �= v̄ ⇒ σ(u) > σ(v).

Alternatively, if ū is an ancestor of v̄ in the Hasse diagram of G, then σ(u) > σ(v).

The lemma below follows easily from the definition of homogeneous graphs.

Lemma 4.

(a) If Gi = (Vi, Ei) is a homogeneous graph for every 1 � i � n, and Vi and Vj are disjoint for every

1 � i �= j � n, then G = (∪n
i=1Vi, ∪n

i=1Ei
)
is also a homogeneous graph. Conversely, if G = (V, E)

is a homogeneous graph, then any disjoint connected component of G is also a homogeneous graph.

(b) If G = (V, E) is a connected homogeneous graph, |V | = m, and σ is a Hasse tree based elimination

scheme for G, then the equivalence class of σ−1(m) lies at the root of the Hasse tree of G.

Example 1. Consider the homogeneous graph G in Fig. 2(a) and the corresponding Hasse tree in Fig.

2(c). A Hasse tree based elimination scheme σ for the homogeneous graph G is given by σ(w) =
5, σ (v) = 4, σ (v′) = 3, σ (u′) = 2, σ (u) = 1. Note that a homogeneous graph is also a de-

composable graph, and a Hasse tree based elimination scheme is also a perfect vertex elimination

scheme. However, every perfect vertex elimination scheme for a homogeneous graph may not nec-

essarily be a Hasse tree based elimination scheme. For the homogeneous graph G in Fig. 2(a), the

ordering σ given by σ(v′) = 5, σ (w) = 4, σ (u′) = 3, σ (u) = 2, σ (v) = 1 is a perfect vertex

elimination scheme, but not a Hasse tree based elimination scheme, since w → v′, w̄ �= v̄′ but
σ(w) = 4 < σ(v′) = 5.
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3. Characterization in terms of sparse matrix decompositions

We now provide the first characterization of homogeneous graphs that yields a parallel result to

that of Paulsen et al. [14] for decomposable graphs. We note that antecedents of the results in Paulsen

et al. [14] were given in [1,5,6].

Lemma 5 (Khare and Rajaratnam [10]). Let G = (V, E) be a homogeneous graph, and σ an ordering of

V which corresponds to a Hasse tree based elimination scheme for G. Then for any positive definite matrix

� with modified Cholesky decomposition given by � = LDLT , the following holds.

� ∈ PGσ ⇔ L ∈ LGσ ⇔ L−1 ∈ LGσ .

A detailed constructive proof is given in [9]. A proof in a more general context can also be found in

[2,13]. One of the main results of this paper is the converse of Lemma 5.

Proposition 1. Let G = (V, E) be a graph, σ be an ordering of V, and D be an arbitrary diagonal matrix

with positive diagonal entries. Suppose

L ∈ LGσ ⇔ L−1 ∈ LGσ ⇔ � := LDLT ∈ PGσ .

Then G is a homogeneous graph and σ corresponds to a Hasse tree based elimination scheme for G.

Proof. We proceed by induction and prove the result in a series of claims.

Claim 1. The result holds for |V | = 3.

Proof of Claim 1. Let V = {u, v,w}. We consider two cases.

Case I: E = φ, {(u, v)}, {(u,w)}, {(v,w)} or {(u, v), (u,w), (v,w)}. See Fig. 3.

G is a homogeneous graph in every case. Also, each disjoint connected component is a complete

graph,whichmeans that every ordering corresponds to aHasse tree based elimination scheme. Hence,

the result holds vacuously.

Case II: E = {(u, v), (v,w)}, {(u,w), (v,w)} or {(u, v), (u,w)}. See Fig. 4.

Let us first consider the case E = {(u, v), (v,w)}. Note that G is a homogeneous graph. It remains

to be shown that σ is a Hasse tree based elimination scheme. Now if σ(v) = 1, and

L =

⎛
⎜⎜⎜⎝
1 0 0

1 1 0

1 0 1

⎞
⎟⎟⎟⎠ ∈ LGσ ,

Fig. 3. Case I with |V | = 3 for Proposition 1.

Fig. 4. Case II with |V | = 3 for Proposition 1.
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then �32 = (LDLT )32 = d11 �= 0. Hence, � /∈ PGσ , yielding a contradiction. Similarly, if σ(v) = 2,

and

L =

⎛
⎜⎜⎜⎝
1 0 0

1 1 0

0 1 1

⎞
⎟⎟⎟⎠ ∈ LGσ ,

then L
−1
31 = 1 �= 0. Hence, L−1 /∈ LGσ , once more yielding a contradiction to the assumptions in the

proposition. Henceσ(v) = 3. Note that v → u, v → w and v̄ �= ū, v̄ �= w̄. Hence, any orderingσ such

that σ(v) = 3 is a Hasse tree based elimination scheme. The other cases when E = {(u,w), (v,w)}
and E = {(u, v), (u,w)} follow by symmetry. Hence, the result for |V | = 3 holds true.

As mentioned earlier, we shall use an induction argument on the number of vertices to prove the

result. Suppose now that the result holds true for all graphs with m − 1 vertices. Let G = (V, E) be a

graph with |V | = m, and σ be an ordering of V for which

L ∈ LGσ ⇔ L−1 ∈ LGσ ⇔ � := LDLT ∈ PGσ ,

for an arbitrary diagonal matrix D with positive diagonal entries. We need to show two results: (i) G

is homogeneous and (ii) the ordering σ is a Hasse tree based elimination scheme.

LetG′ be the subgraph induced byG on the set of vertices V \{σ−1(m)}, and letσ ′ be the restriction
ofσ onV \{σ−1(m)}. Note thatG′ togetherwith the orderingσ ′ is none other thanGwith the ordering

σ (or Gσ ), but with the highest labeled vertex removed.

Claim 2.

L∗ ∈ LG′
σ ′ ⇔ (L∗)−1 ∈ LG′

σ ′ ⇔ �∗ = L∗D∗(L∗)T ∈ PG′
σ ′ .

where D∗ is the upper (m − 1) × (m − 1) principal submatrix of D.

Proof of Claim 2. Let L∗ ∈ LG′
σ ′ . Then

L :=
⎛
⎝L∗ 0

0T 1

⎞
⎠ ∈ LGσ

⇒
⎛
⎝L∗ 0

0T 1

⎞
⎠

−1

=
⎛
⎝(L∗)−1 0

0T 1

⎞
⎠ ∈ LGσ

⇒ (L∗)−1 ∈ LG′
σ ′ .

By a similar argument (L∗)−1 ∈ LG′
σ ′ ⇒ L∗ ∈ LG′

σ ′ . Hence (L∗)−1 ∈ LG′
σ ′ ⇔ L∗ ∈ LG′

σ ′ .
Note that,

L∗ ∈ LG′
σ ′

⇔ L =
⎛
⎝L∗ 0

0T 1

⎞
⎠ ∈ LGσ

⇔ � = LDLT =
⎛
⎝L∗D∗(L∗)T 0

0T Dmm

⎞
⎠ ∈ PGσ

⇔ �∗ := L∗D∗(L∗)T ∈ PG′
σ ′ .
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Hence, we have now established that

L∗ ∈ LG′
σ ′ ⇔ (L∗)−1 ∈ LG′

σ ′ ⇔ �∗ = L∗D∗(L∗)T ∈ PG′
σ ′ .

By the induction hypothesis, it follows that G′ is a homogeneous graph and σ ′ corresponds to a Hasse

tree based elimination scheme for G′, i.e.,
σ ′(v) = σ(v) < σ ′(u) = σ(u) when u → v, ū �= v̄, ∀u, v ∈ V \ {σ−1(m)}. (2)

Claim 3. G is a homogeneous graph and σ is a Hasse tree based elimination scheme.

Proof of Claim 3. Now let V ′ = ∪k
i=1Vi, where Vi is the vertex set corresponding to the ith disjoint

connected component of G′.
Suppose (σ−1(m), u) /∈ E for each u ∈ V \ {σ−1(m)}, i.e., the vertex σ−1(m) is disconnected from

the graph G′. Then by Lemma 4, the graph G is a homogeneous graph with V =
(
∪k

i=1Vi

)
∪ {σ−1(m)}

being the disjoint partition of the vertices corresponding to its disjoint connected components. Also,

from (2) and the fact that σ−1(m) is disconnected from every vertex in V \ {σ−1(m)}, it follows that

σ is a Hasse tree based elimination scheme for G.

Suppose (σ−1(m), u) ∈ E for some u ∈ Vi. Let v
∗
i ∈ Vi be such that σ(v∗

i ) = maxvi∈Vi σ(vi).

Since G′ is a homogeneous graph, σ restricted to V \ {σ−1(m)} is a Hasse tree based elimination

scheme, and Vi is the vertex set corresponding to a connected component of G′, it follows from Lemma

4 that the equivalence class of v∗
i lies at the top of the Hasse tree of Vi in G′. We therefore deduce that

(v∗
i , vi) ∈ E, ∀vi ∈ Vi.

We proceed by claiming that (σ−1(m), v∗
i ) ∈ E. If v∗

i = u, it follows immediately. If v∗
i �= u, then

m > σ(v∗
i ) > σ(u). Suppose L is defined by

Lij =
{
1 if i = m, j = σ(u) or i = σ(v∗

i ), j = σ(u) or i = j,

0 otherwise.

Note that L ∈ LGσ . If � := LLT , then by assumption � ∈ PGσ , and

�mσ(v∗
i )

= Lmσ(u)Lσ(v∗
i )σ (u) + ∑

v∈Vi,v �=u

Lmσ(v)Lσ(v∗
i )σ (v) = 1.

Hence, it follows that (σ−1(m), v∗
i ) ∈ E. Now let vi ∈ Vi, vi �= v∗

i .Wealsonowclaim that (σ−1(m), vi)∈ E. Note that (v∗
i , vi) ∈ E from the discussion above. Suppose L is defined by

Lij =
⎧⎨
⎩
1 if i = m, j = σ(v∗

i ) or i = σ(v∗
i ), j = σ(vi) or i = j,

0 otherwise.

First note that L ∈ LGσ , and hence by assumption L−1 ∈ LGσ . Since L
−1
mσ(vi)

= 1 (by using the

inversion formula in Lemma 1), it follows that (σ−1(m), vi) ∈ E. Hence, we have established that if

(σ−1(m), u) ∈ E for some u ∈ Vi, then (σ−1(m), vi) ∈ E for every vi ∈ Vi.

Now let Vi1 , Vi2 , . . . , Vip be the components of G′ which share at least one edge with σ−1(m).

Since the graph induced by Vir on G′ is a connected homogeneous graph for every 1 � r � p, and

σ−1(m) is connected to every vertex in Vi1 , Vi2 , . . . , Vip by the argument above, the introduction of

σ−1(m) does not give rise to any new 4-cycle or 4-path, due of the following reasoning: Consider an

arbitrary collection of 4 vertices in V . If all of them lie in Vir for some r, and if σ−1(m) is not one of

the vertices, then these 4 vertices cannot form a 4-cycle or a 4-path as the subgraph induced by Vir

on G is a homogeneous graph. If none of the vertices is σ−1(m), and all of them do not lie in Vir for

some r, then the graph induced by these vertices on G is a disconnected graph, which implies that

the induced sub-graph cannot be a 4-cycle or a 4-path. Finally, if σ−1(m) is one of the vertices, and

since it is connected to all the other three vertices, they cannot form an induced 4-cycle or an induced

4-path.
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It follows that the graph inducedby {σ−1(m)}∪
(
∪p

r=1Vir

)
onG is a connectedhomogeneous graph.

Moreover, sinceσ−1(m) is connected to every vertex in Vi1 , Vi2 , . . . , Vip , its equivalence class has to lie

at the root of the corresponding Hasse tree. Note that the disjoint connected components of G′ other
than Vi1 , Vi2 , . . . , Vip are also connected homogeneous graphs. It follows that G is a homogeneous

graph with disjoint connected components {σ−1(m)} ∪
(
∪p

r=1Vir

)
and Vt, t �= i1, i2, . . . , ip. Note

thatσ ′ (which is the restriction ofσ toG′) corresponds to aHasse tree based elimination scheme forG′,
and thatσ(u) < mwhenever u �= σ−1(m). Hence,σ(u) < mwheneverσ−1(m) → u, σ−1(m) �= ū.

Also, since σ−1(m) is at the top of the Hasse tree in its connected component, there does not exist

u ∈ V \ {σ−1(m)} such that u → σ−1(m). This leads us to conclude that σ is a Hasse tree based

elimination scheme for G. Hence the result is proved. �

Remark. A useful alternative probabilistic characterization of homogeneous graphs can be found in

[4,15]. This probabilistic result essentially states that G is homogeneous iff “G is Markov equivalent to

a directed acyclic graph (DAG)”. In contrast, the characterization proved in this section is algebraic in

nature, and is thereforedifferent from theprobabilistic characterization. The algebraic characterization

above can be established directly starting from the probabilistic characterization mentioned above,

by using the notion of “d-separation”. The proof however is non-trivial and does not seem to offer a

simplification over the first principles proof provided here.

We now give a series of examples to illustrate the necessity of the assumptions in the characteri-

zation discussed above.

Example 2. Consider the homogeneous graph G in Fig. 2(a). Let σ be a Hasse tree based elimination

scheme defined by σ(w) = 5, σ (v) = 4, σ (v′) = 3, σ (u′) = 2, σ (u) = 1. Let

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

0 0 0 1 0

1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ LGσ .

Then,

L−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 0 0 1 0

0 0 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ LGσ , and � = LLT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1

1 2 2 0 2

1 2 3 0 3

0 0 0 1 1

1 2 3 1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ PGσ .

Now consider σ which is a perfect vertex elimination scheme, but not a Hasse tree based elimination

scheme, given by σ(v′) = 5, σ (w) = 4, σ (u′) = 3, σ (u) = 2, σ (v) = 1. Then

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 1 1 0 0

1 1 1 1 0

0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ LGσ , but L−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 −1 1 0 0

−1 0 −1 1 0

1 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/∈ LGσ .
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It can be verified that � = LLT ∈ PGσ . Now let σ be given by σ(v) = 5, σ (u′) = 4, σ (v′) =
3, σ (w) = 2, σ (u) = 1. Then, σ is not a perfect vertex elimination scheme, and

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ LGσ , but � = LLT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0

1 2 2 2 1

1 2 3 3 1

1 2 3 4 1

0 1 1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/∈ PGσ .

Now consider the non-homogeneous graph G in Fig. 2(b). Note that G is however a decomposable

graph. The ordering σ given by σ(u′) = 4, σ (w) = 3, σ (u) = 2, σ (v) = 1 is a perfect vertex

elimination scheme. However,

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ LGσ , but L−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

−1 1 0 0

1 −1 1 0

−1 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

/∈ LGσ .

4. Characterization in terms of determinants

We now give a second characterization of homogeneous graphs with vertex orderings correspond-

ing to Hasse tree based elimination schemes. Let us first establish some notation, that shall be used

throughout this section. If A ∈ Mn andM,M∗ ⊆ {1, 2, . . . , n}, then
AM := ((Aij))i,j∈M, AMM∗ := ((Aij))i∈M,j∈M∗ .

The proposition below and its converse, stated and proved subsequently, provide the second charac-

terization of homogeneous graphs.

Proposition 2. Let G = (V, E) be a homogeneous graph, and σ an ordering of V which corresponds to a

Hasse tree based elimination scheme for G. Let� ∈ PGσ , and� = LDLT denote its Cholesky decomposition.

Then, for any maximal clique C,∣∣∣(�−1)σ(C)

∣∣∣ = ∏
i∈σ(C)

1

Dii

.

Proof. Let C ⊆ V be a maximal clique in G, where C = {u1, u2, . . . , ur}, with σ(u1) > σ(u2) >
· · · > σ(ur). First note that

(�−1)σ(C) =
[
(L−1)σ(V)σ (C)

]T
D−1

[
(L−1)σ(V)σ (C)

]
. (3)

We will prove that the determinant of the RHS of (3) equals the determinant of
[
(L−1)Tσ(C)

]
D

−1
σ(C)[

(L−1)σ(C)

]
, and the result will follow.

We start by first showing that L
−1
σ(w)σ (ui)

= 0 when w /∈ C for i = 1, 2, . . . , r. Note that σ(ui) >

σ(w), L
−1
σ(w)σ (ui)

= 0, as L−1 is a lower triangular matrix. Now let σ(ui) < σ(w). Suppose to the

contrary that L
−1
σ(w)σ (ui)

�= 0. Since L−1 ∈ LGσ by Lemma 5, we get (w, ui) ∈ E. Hence,w is an ancestor

or twin of ui in the Hasse tree of G. Now by the very definition of a homogeneous graph, every vertex

sharing an edge with ui also shares an edge with w. Hence, (w, uj) ∈ E for j = 1, 2, . . . , r, which

gives a contradiction to the maximality of C. Hence we conclude that L
−1
σ(w)σ (ui)

= 0 when w /∈ C for

i = 1, 2, . . . , r.
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Now using the Cauchy–Binet identity in (3),∣∣∣(�−1)σ(C)

∣∣∣ = ∣∣∣∣[(L−1)σ(V)σ (C)

]T
D−1

[
(L−1)σ(V)σ (C)

]∣∣∣∣
= ∑

A⊆V,|A|=r

∣∣∣∣[(L−1)σ(A)σ (C)

]T
D

−1
σ(A)

[
(L−1)σ(A)σ (C)

]∣∣∣∣ .
Note that if A ⊆ V, |A| = r, and A �= C, then there exists w such that w ∈ A but w /∈ C. Hence, from

the argument above, L
−1
σ(w)σ (ui)

= 0 for i = 1, 2, . . . , r, and for such A �= C,∣∣∣∣[(L−1)σ(A)σ (C)

]T
D

−1
σ(A)

[
(L−1)σ(A)σ (C)

]∣∣∣∣ =
∣∣∣∣[(L−1)σ(A)σ (C)

]T ∣∣∣∣
∣∣∣D−1

σ(A)

∣∣∣ ∣∣∣[(L−1)σ(A)σ (C)

]∣∣∣ = 0,

since one row in thematrix (L−1)σ(A)σ (C) is zero. Therefore the onlynon-zero summand in theCauchy–

Binet formula is when A = C. Hence∣∣∣(�−1)σ(C)

∣∣∣ =
∣∣∣∣[(L−1)σ(C)

]T ∣∣∣∣
∣∣∣D−1

σ(C)

∣∣∣ ∣∣∣[(L−1)σ(C)

]∣∣∣ = ∏
i∈σ(C)

1

Dii

,

where the last equality follows fromthe fact that (L−1)σ(C) is a lower triangularmatrixwithall diagonal

entries equal to one (and therefore has determinant one) , and D
−1
σ(C) is a diagonal matrix. Hence the

result is proved. �

We now proceed to prove the following lemma required in the proof of the converse of

Proposition 2.

Lemma 6. Let G = (V, E) be a 4-cycle or 4-path, and let σ be an ordering of V. Then, irrespective of the

way σ orders the vertices of the 4-cycle or the 4-path, there exist u, v,w ∈ V such that (u, v), (v,w) ∈
E, (u,w) /∈ E, and σ(v) < σ(u) < σ(w) or σ(u) < σ(v) < σ(w).

Proof.

(i) LetG be a 4-cycle. Recall that u, v ∈ V are said to be neighbors inG if (u, v) ∈ E. Consider the two

neighbors of v := σ−1(1). Let u denote the neighbor with the smaller σ -value, and w denote

the remaining neighbor. Note that (u, v), (v,w) ∈ E, but (u,w) /∈ E. Also, σ(v) = 1 < σ(u) <
σ(w).

(ii) Let G be a 4-path. We consider three possibilities which are exhaustive, and in each case show

the existence of three vertices with the required properties.

Case I. σ−1(1)has twoneighbors: Let v := σ−1(1). In this case, let udenote the neighborwith the

smaller σ -value, andw denote the remaining neighbor. Hence, σ(v) = 1 < σ(u) < σ(w).
Case II. σ−1(1) has one neighbor, and σ−1(2) has two neighbors: Let v := σ−1(2). If one of

the two neighbors of v = σ−1(2) is u = σ−1(1), denote the remaining neighbor by w,

and observe that σ(w) is equal to 3 or 4. Hence, σ(u) = 1 < σ(v) = 2 < σ(w). If the
neighbors of v = σ−1(2) are u = σ−1(3) and w = σ−1(4), then σ(v) = 2 < σ(u) =
3 < σ(w) = 4.

Case III. σ−1(1) and σ−1(2) both have one neighbor: In this case, v := σ−1(3) has two neighbors,

one of which has to bew = σ−1(4). Let u be the remaining neighbor and observe that σ(u)
is equal to 1 or 2. Hence, σ(u) < σ(v) = 3 < σ(w) = 4.

We now establish the converse of Proposition 2.

Proposition 3. Let G = (V, E) be a graph, and σ be an ordering of V. Now if G is not a homogeneous

graph, or if G is a homogeneous graph and σ does not correspond to a Hasse tree based elimination scheme
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for G, then there exists a maximal clique C, and � ∈ PGσ such that

∣∣∣(�−1)σ(C)

∣∣∣ �= ∏
i∈σ(C)

1

Dii

,

where � = LDLT denotes the modified Cholesky decomposition of �.

Proof of Proposition 3.We shall prove the result for each of the two possible cases.

Case I: G is not a homogeneous graph.

As the graph G is not homogenous, it contains a 4-cycle or a 4-path. If G contains a 4-cycle or a

4-path, by Lemma 6, there exist u, v,w ∈ V such that (u, v), (v,w) ∈ E, (u,w) /∈ E, and σ(v) <
σ(u) < σ(w) or σ(u) < σ(v) < σ(w). Now define � as follows.

�ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5 if i = σ(v), j = σ(v),

1 if i = j, i �= σ(v),

1 if i = σ(v), j = σ(u) or i = σ(v), j = σ(w)

or i = σ(u), j = σ(v) or i = σ(w), j = σ(v),

0 otherwise.

Then � ∈ PGσ . Note that all the diagonal entries of � are 1 and all off-diagonal entries are 0 ex-

cept the 3 × 3 submatrix for σ(u), σ (v), σ (w). Hence, � is a permuted block diagonal matrix with

σ(u), σ (v), σ (w) forming one block and every other index forming a block by itself. Using the simple

fact that the inverse of a permuted block triangular matrix is permuted block triangular, we get that

�
−1
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

if i = σ(v), j = σ(v),
4
3

if i = σ(u), j = σ(u) or i = σ(w), j = σ(w),

1 if i = j, i �= σ(v) or σ(u) or σ(w),

− 1
3

if i = σ(v), j = σ(u) or i = σ(v), j = σ(w),

or i = σ(u), j = σ(v) or i = σ(w), j = σ(v),
1
3

if i = σ(u), j = σ(w) or i = σ(w), j = σ(u),

0 otherwise.

Let C denote the maximal clique of G containing u and v. Note that w /∈ C. Let �3 denote the

3 × 3 submatrix of � corresponding to σ(u), σ (v), σ (w). Let �3 = L3D3L
T
3 denote the modified

Cholesky decomposition of �3, and � = LDLT be the modified Cholesky decomposition of �. For

i, j ∈ {σ(u), σ (v), σ (w)}, let us define for simplicity of notation, (L3)ij as the entry in the row cor-

responding to σ−1(i) and the column corresponding to σ−1(j) in L3. Using the property that all the

diagonal entries of � are 1 and all off-diagonal entries are 0 except for �3, and the uniqueness of the

modified Cholesky decomposition of �, it follows that

Lij =
⎧⎪⎨
⎪⎩
(L3)ij if i > j, i, j ∈ {σ(u), σ (v), σ (w)},
1 if i = j,

0 otherwise,

and

Dii =
{
(D3)ii if i = σ(u), σ (v) or σ(w),

1 otherwise.

The actual values of the elements of L3 and D3 however, depends on the relative order of σ(u), σ (v),
σ (w). If σ(v) < σ(u) < σ(w), then Dσ(v)σ (v) = 5, Dσ(u)σ (u) = 4

5
, Dσ(w)σ (w) = 3

4
and Dii = 1 if

i �= σ(v), σ (u) or σ(w). Hence,
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∣∣∣(�−1)σ(C)

∣∣∣ = 1

3
�= ∏

i∈σ(C)

1

Dii

= 1

4
.

If σ(u) < σ(v) < σ(w), then Dσ(u)σ (u) = 1, Dσ(v)σ (v) = 4, Dσ(w)σ (w) = 3
4
and Dii = 1 if

i �= σ(u), σ (v) or σ(w). Hence,

∣∣∣(�−1)σ(C)

∣∣∣ = 1

3
�= ∏

i∈σ(C)

1

Dii

= 1

4
.

Case II: G is homogeneous but σ is not a Hasse tree based elimination scheme.

Since σ is not a Hasse tree based elimination scheme, there exist vertices a, b ∈ V such that b is an

ancestor of a in theHasse tree ofG, andσ(b) < σ(a). Since b is an ancestor of a, there exists c ∈ V , such

that (b, c) ∈ E and (a, c) /∈ E. Now there are three possibilities for the way σ orders a, b, c given that

σ(b) < σ(a), namely, σ(b) < σ(a) < σ(c) or σ(b) < σ(c) < σ(a) or σ(c) < σ(b) < σ(a). Let
v = b, u = a, w = c for thefirst possibility, andv = b, u = c, w = a for the latter twopossibilities.

Then note that (u, v), (v,w) ∈ E, (u,w) /∈ E, and σ(v) < σ(u) < σ(w) or σ(u) < σ(v) < σ(w).
We have thus shown the existence of vertices u, v,w such that (u, v), (v,w) ∈ E, (u,w) /∈ E, and

σ(v) < σ(u) < σ(w) or σ(u) < σ(v) < σ(w). We can therefore use the same � and maximal

clique C as in Case I above, and reach the desired conclusion. Hence the result is proved. �

We now illustrate the proposition through an example.

Example 3. Consider the homogeneous graph G in Fig. 2(a). The maximal cliques are given by C1 =
{w, v′, u′, u} and C2 = {w, v}. The ordering σ given by σ(w) = 5, σ (v) = 4, σ (u′) = 3, σ (u) =
2, σ (v′) = 1 is a Hasse tree based elimination scheme. Let

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1

1 2 2 0 2

1 2 3 0 3

0 0 0 1 1

1 2 3 1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ PGσ .

Then, ∣∣∣(�−1)σ(C1)

∣∣∣ = 1 = ∏
i∈σ(C1)

1

Dii

,

and ∣∣∣(�−1)σ(C2)

∣∣∣ = 1 = ∏
i∈σ(C2)

1

Dii

.

Now consider σ which is a perfect vertex elimination scheme, but not a Hasse tree based elimination

scheme, given by σ(v′) = 5, σ (w) = 4, σ (u′) = 3, σ (u) = 2, σ (v) = 1, then

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0

0 1 1 1 1

0 1 2 2 2

1 1 2 4 3

0 1 2 3 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ PGσ ,
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but ∣∣∣�−1
σ(C2)

∣∣∣ = 2 �= ∏
i∈σ(C2)

1

Dii

= 1.

Now let σ be given by σ(v) = 5, σ (u′) = 4, σ (v′) = 3, σ (w) = 2, σ (u) = 1. Then, σ is not a perfect

vertex elimination scheme, and

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 1 1 1 0

1 5 1 1 1

1 1 5 1 0

1 1 1 5 0

0 1 0 0 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ PGσ ,

but ∣∣∣(�−1)σ(C1)

∣∣∣ = 0.002042484 �= ∏
i∈σ(C1)

1

Dii

= 0.001953125.

Consider the non-homogeneous graph G in Fig. 2(b). Note however that G is a decomposable graph.

The maximal cliques are given by C1 = {u′,w}, C2 = {w, u}, C3 = {u, v}. The ordering σ given by

σ(u′) = 4, σ (w) = 3, σ (u) = 2, σ (v) = 1 is a perfect vertex elimination scheme. Let

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ PGσ .

Note however that∣∣∣(�−1)σ(C3)

∣∣∣ = 3

5
�= ∏

i∈σ(C3)

1

Dii

= 1

3
.

The two characterizations in the paper are summarized in the main theorem in the introduction.
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