43,593 research outputs found

    Correlation of Automorphism Group Size and Topological Properties with Program-size Complexity Evaluations of Graphs and Complex Networks

    Get PDF
    We show that numerical approximations of Kolmogorov complexity (K) applied to graph adjacency matrices capture some group-theoretic and topological properties of graphs and empirical networks ranging from metabolic to social networks. That K and the size of the group of automorphisms of a graph are correlated opens up interesting connections to problems in computational geometry, and thus connects several measures and concepts from complexity science. We show that approximations of K characterise synthetic and natural networks by their generating mechanisms, assigning lower algorithmic randomness to complex network models (Watts-Strogatz and Barabasi-Albert networks) and high Kolmogorov complexity to (random) Erdos-Renyi graphs. We derive these results via two different Kolmogorov complexity approximation methods applied to the adjacency matrices of the graphs and networks. The methods used are the traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a Block Decomposition Method (BDM) measure, based on algorithmic probability theory.Comment: 15 2-column pages, 20 figures. Forthcoming in Physica A: Statistical Mechanics and its Application

    Arboreal Bound Entanglement

    Full text link
    In this paper, we discuss the entanglement properties of graph-diagonal states, with particular emphasis on calculating the threshold for the transition between the presence and absence of entanglement (i.e. the separability point). Special consideration is made of the thermal states of trees, including the linear cluster state. We characterise the type of entanglement present, and describe the optimal entanglement witnesses and their implementation on a quantum computer, up to an additive approximation. In the case of general graphs, we invoke a relation with the partition function of the classical Ising model, thereby intimating a connection to computational complexity theoretic tasks. Finally, we show that the entanglement is robust to some classes of local perturbations.Comment: 9 pages + appendices, 3 figure
    corecore