365,095 research outputs found

    Wholeness as a Hierarchical Graph to Capture the Nature of Space

    Full text link
    According to Christopher Alexander's theory of centers, a whole comprises numerous, recursively defined centers for things or spaces surrounding us. Wholeness is a type of global structure or life-giving order emerging from the whole as a field of the centers. The wholeness is an essential part of any complex system and exists, to some degree or other, in spaces. This paper defines wholeness as a hierarchical graph, in which individual centers are represented as the nodes and their relationships as the directed links. The hierarchical graph gets its name from the inherent scaling hierarchy revealed by the head/tail breaks, which is a classification scheme and visualization tool for data with a heavy-tailed distribution. We suggest that (1) the degrees of wholeness for individual centers should be measured by PageRank (PR) scores based on the notion that high-degree-of-life centers are those to which many high-degree-of-life centers point, and (2) that the hierarchical levels, or the ht-index of the PR scores induced by the head/tail breaks can characterize the degree of wholeness for the whole: the higher the ht-index, the more life or wholeness in the whole. Three case studies applied to the Alhambra building complex and the street networks of Manhattan and Sweden illustrate that the defined wholeness captures fairly well human intuitions on the degree of life for the geographic spaces. We further suggest that the mathematical model of wholeness be an important model of geographic representation, because it is topological oriented that enables us to see the underlying scaling structure. The model can guide geodesign, which should be considered as the wholeness-extending transformations that are essentially like the unfolding processes of seeds or embryos, for creating beautiful built and natural environments or with a high degree of wholeness.Comment: 14 pages, 7 figures, 2 table

    Moduli space actions on the Hochschild Co-Chains of a Frobenius algebra I: Cell Operads

    Full text link
    This is the first of two papers in which we prove that a cell model of the moduli space of curves with marked points and tangent vectors at the marked points acts on the Hochschild co--chains of a Frobenius algebra. We also prove that a there is dg--PROP action of a version of Sullivan Chord diagrams which acts on the normalized Hochschild co-chains of a Frobenius algebra. These actions lift to operadic correlation functions on the co--cycles. In particular, the PROP action gives an action on the homology of a loop space of a compact simply--connected manifold. In this first part, we set up the topological operads/PROPs and their cell models. The main theorems of this part are that there is a cell model operad for the moduli space of genus gg curves with nn punctures and a tangent vector at each of these punctures and that there exists a CW complex whose chains are isomorphic to a certain type of Sullivan Chord diagrams and that they form a PROP. Furthermore there exist weak versions of these structures on the topological level which all lie inside an all encompassing cyclic (rational) operad.Comment: 50 pages, 7 figures. Newer version has minor changes. Some material shifted. Typos and small things correcte

    Subdivisional spaces and graph braid groups

    Get PDF
    We study the problem of computing the homology of the configuration spaces of a finite cell complex XX. We proceed by viewing XX, together with its subdivisions, as a subdivisional space--a kind of diagram object in a category of cell complexes. After developing a version of Morse theory for subdivisional spaces, we decompose XX and show that the homology of the configuration spaces of XX is computed by the derived tensor product of the Morse complexes of the pieces of the decomposition, an analogue of the monoidal excision property of factorization homology. Applying this theory to the configuration spaces of a graph, we recover a cellular chain model due to \'{S}wi\k{a}tkowski. Our method of deriving this model enhances it with various convenient functorialities, exact sequences, and module structures, which we exploit in numerous computations, old and new.Comment: 71 pages, 15 figures. Typo fixed. May differ slightly from version published in Documenta Mathematic
    • …
    corecore