16 research outputs found

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page

    Topics in graph colouring and extremal graph theory

    Get PDF
    In this thesis we consider three problems related to colourings of graphs and one problem in extremal graph theory. Let GG be a connected graph with nn vertices and maximum degree Δ(G)\Delta(G). Let Rk(G)R_k(G) denote the graph with vertex set all proper kk-colourings of GG and two kk-colourings are joined by an edge if they differ on the colour of exactly one vertex. Our first main result states that RΔ(G)+1(G)R_{\Delta(G)+1}(G) has a unique non-trivial component with diameter O(n2)O(n^2). This result can be viewed as a reconfigurations analogue of Brooks' Theorem and completes the study of reconfigurations of colourings of graphs with bounded maximum degree. A Kempe change is the operation of swapping some colours aa, bb of a component of the subgraph induced by vertices with colour aa or bb. Two colourings are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes. Our second main result states that all Δ(G)\Delta(G)-colourings of a graph GG are Kempe equivalent unless GG is the complete graph or the triangular prism. This settles a conjecture of Mohar (2007). Motivated by finding an algorithmic version of a structure theorem for bull-free graphs due to Chudnovsky (2012), we consider the computational complexity of deciding if the vertices of a graph can be partitioned into two parts such that one part is triangle-free and the other part is a collection of complete graphs. We show that this problem is NP-complete when restricted to five classes of graphs (including bull-free graphs) while polynomial-time solvable for the class of cographs. Finally we consider a graph-theoretic version formulated by Holroyd, Spencer and Talbot (2007) of the famous Erd\H{o}s-Ko-Rado Theorem in extremal combinatorics and obtain some results for the class of trees

    A proof of Ringel's Conjecture

    Get PDF
    A typical decomposition question asks whether the edges of some graph GG can be partitioned into disjoint copies of another graph HH. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with nn edges packs 2n+12n+1 times into the complete graph K2n+1K_{2n+1}. In this paper, we prove this conjecture for large nn.Comment: 37 pages, 4 figure

    Generalizations of tournaments: A survey

    Get PDF

    A proof of Ringel’s conjecture

    Get PDF
    A typical decomposition question asks whether the edges of some graph G can be partitioned into disjoint copies of another graph H. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with n edges packs 2n+1 times into the complete graph K2n+1. In this paper, we prove this conjecture for large n

    Robust expansion and hamiltonicity

    Get PDF
    This thesis contains four results in extremal graph theory relating to the recent notion of robust expansion, and the classical notion of Hamiltonicity. In Chapter 2 we prove that every sufficiently large ‘robustly expanding’ digraph which is dense and regular has an approximate Hamilton decomposition. This provides a common generalisation of several previous results and in turn was a crucial tool in Kühn and Osthus’s proof that in fact these conditions guarantee a Hamilton decomposition, thereby proving a conjecture of Kelly from 1968 on regular tournaments. In Chapters 3 and 4, we prove that every sufficiently large 3-connected DD-regular graph on nn vertices with DD ≥ n/4 contains a Hamilton cycle. This answers a problem of Bollobás and Häggkvist from the 1970s. Along the way, we prove a general result about the structure of dense regular graphs, and consider other applications of this. Chapter 5 is devoted to a degree sequence analogue of the famous Pósa conjecture. Our main result is the following: if the iith^{th} largest degree in a sufficiently large graph GG on n vertices is at least a little larger than nn/3 + ii for ii ≤ nn/3, then GG contains the square of a Hamilton cycle

    Graph entropy and related topics

    Get PDF
    corecore