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Abstract

This thesis contains four results in extremal graph theory relating to the recent notion of

robust expansion, and the classical notion of Hamiltonicity. In Chapter 2 we prove that

every sufficiently large ‘robustly expanding’ digraph which is dense and regular has an

approximate Hamilton decomposition. This provides a common generalisation of several

previous results and in turn was a crucial tool in Kühn and Osthus’s proof that in fact

these conditions guarantee a Hamilton decomposition, thereby proving a conjecture of

Kelly from 1968 on regular tournaments.

In Chapters 3 and 4, we prove that every sufficiently large 3-connected D-regular

graph on n vertices with D ≥ n/4 contains a Hamilton cycle. This answers a problem of

Bollobás and Häggkvist from the 1970s. Along the way, we prove a general result about

the structure of dense regular graphs, and consider other applications of this.

Chapter 5 is devoted to a degree sequence analogue of the famous Pósa conjecture.

Our main result is the following: if the ith largest degree in a sufficiently large graph G

on n vertices is at least a little larger than n/3+ i for i ≤ n/3, then G contains the square

of a Hamilton cycle.
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regular graphs 153

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2 The extremal examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.3 Sketch of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



4.3.1 Robust partitions of dense regular graphs . . . . . . . . . . . . . . 156

4.3.2 Finding a Hamilton cycle using a robust partition . . . . . . . . . 157

4.4 Notation and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.4.1 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.5 (4,0): Four robust expander components . . . . . . . . . . . . . . . . . . 160

4.6 (0,2): Two bipartite robust expander components . . . . . . . . . . . . . 163

4.6.1 Sketch of the proof of Lemma 4.6.1 . . . . . . . . . . . . . . . . . 163

4.6.2 Balanced subgraphs with respect to a partition . . . . . . . . . . 164

4.6.3 Tools for finding matchings . . . . . . . . . . . . . . . . . . . . . 169

4.6.4 Acyclic unions of matchings . . . . . . . . . . . . . . . . . . . . . 171

4.6.5 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.6.6 Proof of Lemma 4.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.7 (2,1) : Two robust expander components and one bipartite robust ex-

pander component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.7.1 Sketch of the proof of Lemma 4.7.1 . . . . . . . . . . . . . . . . . 182

4.7.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.7.3 Preliminaries and a reduction . . . . . . . . . . . . . . . . . . . . 184

4.7.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.7.5 The proof of Lemma 4.7.3 in the case when |A| − |B| ≥ 2

and m ≥ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.7.6 The proof of Lemma 4.7.3 in the case when |A| − |B| ≥ 2

and m ≤ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.7.7 The proof of Lemma 4.7.3 in the case when |A| = |B|+ 1. . . . . 212

4.7.8 The proof of Lemma 4.7.3 in the case when |A| = |B| . . . . . . . 220

4.8 The proof of Theorem C . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5 On degree sequences forcing the square of a Hamilton cycle 225

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.2 Overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
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CHAPTER 1

INTRODUCTION

The topic of this thesis is extremal graph theory. The objects of study are (undirected and

directed) graphs, discrete structures which are used to model various real-world systems

and with many applications in computer science and other areas. A graph is a collection

of vertices, wherein pairs of vertices are joined by at most one edge. Attempting to

understand, characterise and describe the behaviour of these simple structures has given

rise to a great many deep and difficult questions.

The sorts of problems which define graph theory are numerous and varied. Given a

class G of graphs and a property P , we might ask how many graphs in G have P? If

we choose a member of G at random, according to some distribution, can we say that P

holds with high probability? In contrast to considering the ‘typical behaviour’ of graphs

in relation to a property, extremal questions consider the ‘worst possible’ case. How big

or small must a graph invariant be to guarantee a particular property P?

Given a graph invariant µ, what is the leastm such that every G ∈ G with µ(G) ≥ m

has property P?

For example, how many edges guarantee the existence of a triangle? What minimum

degree guarantees a Hamilton cycle? These particular questions were answered many

decades ago, but continue to motivate many natural, fascinating and indeed surprising

problems in modern combinatorics, some of which I will address in this thesis.

2



1.1 Sufficient conditions for Hamilton cycles

A Hamilton cycle is a cycle in which every vertex appears exactly once. It is a very

natural object which has motivated a huge body of research since the birth of graph

theory. The decision problem of finding a Hamilton cycle is NP-complete, and appears

on Karp’s original list of NP-complete problems [69]. Thus it is unlikely that there exists

an efficient algorithm to solve it. Instead, one can focus on finding sufficient conditions

which guarantee the existence of a Hamilton cycle. Ideally we want sufficient conditions

which are easy to compute and which hold for a large class of graphs. Furthermore, we

aim to find conditions which are best possible.

Now begins a brief survey of extremal results on Hamilton cycles and related problems.

For a far more comprehensive exploration of this area, we direct the reader to e.g. [55]

or [83].

1.1.1 Vertex degree conditions

Many of the most fundamental extremal results give, for various H , a bound on the

number of edges ofG in terms of the number of vertices that guaranteeH ⊆ G. Indeed, for

graphs G on n vertices, ?n2/4? edges guarantee a triangle (Mantel’s theorem, 1907), while

?
n−1

2

?
+2 edges are required to guarantee a Hamilton cycle (due to Ore and, independently,

Bondy; see e.g. [22]). In the case of spanning subgraphs (such as the Hamilton cycle),

it makes more sense to consider conditions which guarantee many edges at every vertex.

All of the results proved in this thesis include some vertex degree condition. The simplest

such condition is a minimum degree condition: a lower bound on δ(G). Dirac [40] proved

the following:

Theorem 1.1.1. Let G be a graph on n ≥ 3 vertices with δ(G) ≥ n/2. Then G contains

a Hamilton cycle.

One can immediately see that this result is tight by considering two equal-sized cliques

which intersect at one vertex, or the almost balanced complete bipartite graph. Ore [97]
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generalised this by giving a condition on the sums of degrees of non-adjacent vertices.

Another more refined degree condition is a degree sequence condition, which gives a lower

bound on the ith largest degree di. Pósa [100] proved that if d1 ≤ . . . ≤ dn is the

degree sequence of a graph G where di ≥ i + 1 for all i < (n − 1)/2 and if additionally

d?n/2? ≥ ?n/2? when n is odd, then G contains a Hamilton cycle. This is significantly

stronger than Dirac’s theorem, as almost half the vertices of G can have degree less than

n/2. Pósa’s theorem was generalised by Chvátal [35], who characterised those degree

sequences which guarantee a Hamilton cycle. Finally, Bondy and Chvátal [21] provided

a generalisation of all of these results by proving that a graph is Hamiltonian if and only

if its closure is Hamiltonian. (The closure cl(G) of a graph G is obtained by exhaustively

adding an edge between pairs of non-adjacent vertices whose degree sum is at least |G|.)

1.1.2 Cycles of different lengths

We now consider the problem of finding cycles of many different lengths. A graph is

weakly pancyclic if it contains a cycle of every length from its girth (length of shortest

cycle) to the circumference (longest cycle). Brandt [25] showed that every non-bipartite

graph G on n vertices with more than ?(n − 1)2/4 + 1? edges is weakly pancyclic. He

conjectured that actually (n−1)(n−3)/4+4 edges should suffice. This was nearly solved

by Bollobás and Thomason [16]. If G has the stronger property of containing every cycle

of length 3 ≤ ? ≤ n, we say it is pancyclic. Bondy [17] generalised Dirac’s theorem in this

direction by showing that any graph G ?= Kn/2,n/2 on n ≥ 3 vertices with δ(G) ≥ n/2 is

pancyclic. He proposed a striking metaconjecture [18] which would generalise his result:

almost any non-trivial condition on a graph which implies Hamiltonicity in fact implies

pancyclicity (apart from maybe a simple family of exceptions).

What about the problem of finding a 2-factor, a spanning collection of vertex-disjoint

cycles (of which the Hamilton cycle is one example)? A conjecture of El-Zahar [41] from

the 80s was that, for an n-vertex graph G, if δ(G) ≥ ?k1/2? + . . . + ?k?/2?, then G

contains the vertex-disjoint union of cycles Ck1 ∪ . . . ∪ Ck?
, where k1 + . . . + k? = n. In
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this direction, Aigner and Brandt [2] showed that minimum degree (2n−1)/3 guarantees

that G contains any graph on at most n vertices and maximum degree 2. This is a special

case of a conjecture of Bollobás, Eldridge [14] and Catlin [29]: if G1 and G2 are n-vertex

graphs such that (∆(G1) + 1)(∆(G2) + 1) < n + 1, then G1 and G2 are edge-disjoint

subgraphs of the complete graph on n vertices. We prove a degree sequence version of

the result of Aigner and Brandt in Chapter 5, which is an approximate generalisation.

El-Zahar’s conjecture was eventually proved in 1999 for large n in the PhD thesis of

Abbasi [1].

1.1.3 Digraphs

Extra complexity becomes apparent when one turns to digraphs (where we seek cycles

whose edges are consistently oriented). Here, one analogue of a minimum degree condition

is a minimum semidegree condition, which stipulates that every vertex in G has in- and

outdegree at least some k (which we write as δ0(G) ≥ k). Ghouila-Houri [53] proved

that every strongly connected digraph on n vertices has a Hamilton cycle if the sum of

in- and outdegrees at every vertex is at least n. (Here, a graph G is strongly connected

if for every pair x, y of vertices, there is a (directed) path in G from x to y, and from

y to x.) In particular, δ0(G) ≥ n/2 is sufficient. Ore-type analogues were obtained by

Woodall [115] and Meyniel [92].

The situation changes when one considers oriented graphs (digraphs in which 2-cycles

are forbidden).

Theorem 1.1.2. (Keevash, Kühn and Osthus) [70] There exists n0 ∈ N such that every

oriented graph G on n ≥ n0 vertices with δ
0(G) ≥ (3n− 4)/8 contains a Hamilton cycle,

and this bound is best possible.

Strong connectivity is necessary for the presence of a Hamilton cycle in a digraph;

and in fact Camion [28] proved that it is sufficient in a tournament (a tournament is

an orientation of a complete graph). Thomassen [111] asked if a ‘stronger’ connectivity
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condition actually guarantees more in a tournament, i.e. the existence of many edge-

disjoint Hamilton cycles. This was verified by Kühn, Lapinskas, Osthus and Patel [74],

whose bounds were later improved by Pokrovskiy [99]. Observe that, even though no

degree condition is assumed, such a (weak) condition is implied by high connectivity.

In another direction, suppose we wish to find not only a consistently oriented Hamilton

cycle in a digraph, but also all other orientations of a Hamilton cycle. A best possible

minimum semidegree condition for this was provided by DeBiasio, Kühn, Molla, Osthus

and Taylor [39]. Interestingly, the cycle whose orientations alternate requires a higher

semidegree bound than any other cycle.

1.1.4 Hypergraphs

There has been much interest in Hamilton cycles in hypergraphs, which are generalisations

of graphs. Here, edges are not necessarily pairs, but may consist of larger sets of vertices.

Now there are notions of degree for sets of vertices, not just singletons; and edges may

intersect in more than one vertex, giving rise to different notions of ‘cycle’.

Suppose that H is a hypergraph on n vertices in which every edge is a set of exactly

k vertices (k-uniform), and we are interested in finding an ?-cycle, in which consecutive

edges overlap in exactly ? vertices. Let us also sensibly generalise the notion of degree –

given S ⊆ V (H), we let dH(S) be number of edges of H containing S as a subset. Then

define δt(H) to be the minimum dH(S) taken over all S with |S| = t.

One can considerably broaden the questions we have posed for graphs by asking

them in the more general hypergraph setting. For example, what is the least δt(H) that

guarantees a Hamilton ?-cycle in H?

The case (k, ?, t) = (2, 1, 1) is Dirac’s theorem. Recently, the case (k, ?, k − 1) was

solved asymptotically in a series of papers by various authors [77, 102, 103]. However,

even the conjectured bound [101] for the very natural case (k, k−1, 1) remains unproven.

To say more would be outside the scope of this thesis; we refer the interested reader

to [101].
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1.2 Hamilton decompositions

Given a graph or digraph G, we now wish to find not one but several edge-disjoint

Hamilton cycles. Suppose we actually want a Hamilton decomposition – a collection of

edge-disjoint Hamilton cycles which together contain every edge of G.

The study of Hamilton decompositions began over one hundred years ago when

Walecki (see [8]) proved that the complete graph Kn on n vertices has a Hamilton decom-

position if and only if n is odd. Tillson [112] showed that complete digraphs on n ?= 4, 6

vertices have a Hamilton decomposition. Until recently, little else was known for more

general classes of (di)graphs. Observe that being regular is a necessary condition for a

digraph to have a Hamilton decomposition (for a graph, being regular of even degree is

necessary). In 1968, Kelly (see e.g. [93]) conjectured that, in fact, for tournaments, this is

also sufficient: every regular tournament has a Hamilton decomposition. This was proved

in 2013 by Kühn and Osthus [81], for large graphs.

Theorem 1.2.1. (Kühn and Osthus) [81] There exists n0 ∈ N such that for all regular

tournaments T on n ≥ n0 vertices, T has a Hamilton decomposition.

In fact their result was much more general. They showed that a particular structural

property of digraphs (which is possessed by regular tournaments) guarantees a Hamil-

ton decomposition. This property is robust expansion, which turns out to have a close

connection with Hamiltonicity.

1.3 Robust expansion

Expansion is a familiar concept in graph theory. Roughly speaking, a graph is an expander

if each set of vertices has neighbourhood larger than itself. Robust expansion asks for

something stronger. Let G be a digraph on n vertices and suppose S ⊆ V (G). The

ν-robust outneighbourhood RN
+

ν,G
(S) of S ⊆ V (G) is the set of all vertices in G with at

7



least νn inneighbours in S. We say that G is a robust (ν, τ )-outexpander if

|RN
+

ν,G
(S)| ≥ |S|+ νn for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ )n.

There is an analogous notion of robust expansion for graphs. Why is this a useful notion to

study? Firstly, it is a property shared by many widely-studied classes of dense graphs, i.e.

those in which each vertex is adjacent to some positive proportion of the total number of

vertices. Robustly expanding (di)graphs include oriented graphs G with minimum degree

at least slightly larger than 3|G|/8, quasirandom (di)graphs (e.g. (n, d, λ)-graphs for

appropriate values of these parameters) and dense random regular graphs. In particular,

every regular tournament is a robust outexpander. Secondly, robust expansion has been

used as an essential concept in the recent solution of several longstanding conjectures,

including an implicit use in Kühn, Mycroft and Osthus’s resolution of Sumner’s universal

tournament conjecture [78, 79].

Chapter 2 is dedicated to the proof of the following theorem, which states that every

sufficiently large regular robust outexpander has an approximate Hamilton decomposi-

tion.

Theorem A. For every α > 0 there exists τ > 0 such that for all ν, η > 0 there exists

n0 = n0(α, ν, τ, η) for which the following holds. Suppose that

(i) G is an r-regular digraph on n ≥ n0 vertices, where r ≥ αn;

(ii) G is a robust (ν, τ )-outexpander.

Then G contains at least (1− η)r edge-disjoint Hamilton cycles. Moreover, such a set of

Hamilton cycles can be found in time polynomial in n.

This was a crucial tool in Kühn and Osthus’s proof that the same hypotheses in fact

guarantee a Hamilton decomposition. As noted above, this proves Kelly’s conjecture for

large graphs. A version of our result for regular tournaments was proved by Kühn, Osthus

and Treglown [86].
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Theorem 1.1.2 told us that minimum semidegree almost 3n/8 was sufficient to guar-

antee a Hamilton cycle in an oriented graph on n vertices. But the result of Kühn and

Osthus implies that, for regular oriented graphs, degree just a little larger than this in fact

guarantees a Hamilton decomposition. However, in the case of regular oriented graphs,

Jackson [64] conjectures that degree just less than n/4 should suffice for the existence of

a single Hamilton cycle.

One consequence of Kühn and Osthus’s result is that every large even D-regular

graph G on n vertices with degree D at least slightly larger than n/2 has a Hamilton

decomposition. Together with Csaba, Lo and Treglown [37], they recently showed that

actually D ≥ ?n/2? suffices, thus answering a question of Nash-Williams [94, 95].

This result is particularly striking – the threshold at which a single Hamilton cycle

appears [96] matches the threshold which guarantees a decomposition. It improves upon

work in [34, 62].

1.4 Below the threshold

Having considered one way of extending Dirac’s theorem by looking for not one but many

Hamilton cycles, we now turn to a different extension. It is natural to ask the following:

how might one decrease the degree bound in Dirac’s theorem at the expense of introducing

some extra conditions? Alternatively, is there some additional barrier to Hamiltonicity

just below the degree threshold?

This type of question has been asked many times in different extremal contexts. Recall

our initial question: given a property P , a graph invariant µ and a class G of graphs,

what is the least m such that every G ∈ G with µ(G) ≥ m has property P? Having

answered this, we can delve deeper: is there a property P ? and an m? < m such that

every G ∈ G with µ(G) ≥ m? and property P ? also has property P? In other words, just

below the threshold of m, is there some reason (i.e. the absence of P ?) that prevents P?

We give an example to illustrate this. Let P be the property of containing a triangle,
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let µ be minimum degree δ, and let G be the class of all graphs on n vertices. Mantel’s

theorem states that every G ∈ G with µ(G) > n/2 has property P . Now let P ? be the

property of having no bipartition. Andrásfai, Erdős and Sós [10] proved that every G ∈ G

with µ(G) > 2n/5 and property P ? also has property P .

1.5 Hamilton cycles in dense regular graphs

We can now return to the case when P is the property of containing a Hamilton cycle.

The well-known extremal examples for Dirac’s theorem of two equal-sized cliques which

intersect in one vertex and the almost balanced complete bipartite graph suggest what

P ? must be: the property of being regular and having a sufficiently strong connectivity

requirement.

In this spirit, Szekeres (see [63]) asked for which D = D(n) does every 2-connected

regular graph G on n vertices with degree at least D contain a Hamilton cycle. This

question was answered by Jackson [63] who showed that D ≥ n/3 suffices. So in fact the

degree threshold decreases dramatically with the additional assumptions of 2-connectivity

and regularity. Bollobás and Häggkvist [13, 58] had, earlier and independently, posed a

striking and natural conjecture which is a generalisation to t-connected graphs: every

t-connected D-regular graph on n vertices with D ≥ n/(t+1) contains a Hamilton cycle.

An example of Jung [68] and independently Jackson, Li and Zhu [66] showed this to be

false for t ≥ 4; but if true for t = 3 then this would be best possible. In Chapter 4, we

prove this completely for large n, thereby verifying the only remaining case of Bollobás

and Häggkvist’s conjecture. It is indeed surprising that the relationship between D and

t should abruptly end at t = 4.

Theorem C. There exists n0 ∈ N such that every 3-connected D-regular graph on n ≥ n0

vertices with D ≥ n/4 contains a Hamilton cycle.
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1.6 The structure of dense regular graphs

The most vital tool in our proof of Theorem C is Theorem B, a structural result for dense

regular graphs, which is the subject of Chapter 3. We have seen that the class of robust

expanders is very rich indeed. Despite this, there are many dense regular graphs which do

not have the property. How can one harness the powerful properties of robust expansion

in a general dense regular graph G? Roughly speaking, Theorem B states that such a G

has a remarkably simple structure – it can be partitioned into a small number of robust

components, each of which has strong expansion properties. We do not explicitly state

Theorem B here, as it requires a number of technical definitions.

1.7 Powers of Hamilton cycles

There is a long history of embedding spanning structures in graphs. This, unsurprisingly,

is considerably harder than finding a non-spanning structure. We have discussed the

case when the spanning structure H is a Hamilton cycle. There are many results for

other H . For example, Hajnal and Szemerédi [59] proved that every graph G on n ∈ rN

vertices with δ(G) ≥ (r − 1)n/r contains a perfect Kr-packing; that is, a collection of

vertex-disjoint cliques on r vertices. This result is best possible.

The rth power Hr of a graph H is obtained from H by adding additional edges

between every pair of vertices at distance at most r. (The adjacency matrix of Hr is

obtained by normalising the rth power of the adjacency matrix of H .) In the 1960s,

Pósa [43] conjectured that, in a graph on n vertices, minimum degree 2n/3 guarantees

C2

n
, the square of a Hamilton cycle. This was strengthened by Seymour [105], who

suggested that, for all r ≥ 1, minimum degree rn/(r + 1) guarantees the rth power of

a Hamilton cycle Cr

n
. This degree bound would be best possible. Observe that, when

n ∈ rN, Cr

n
contains a perfect Kr+1-packing. So the Pósa-Seymour conjecture is strictly

stronger than the Hajnal-Szemerédi theorem. After intensive study in the 1990s (see
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e.g. [46, 47, 48, 49, 50]), Komlós, Sárközy and Szemerédi [73] were able to prove the

conjecture for large n.

In Chapter 5, we consider a degree sequence analogue of Pósa’s conjecture. Can we

still find the square of a Hamilton cycle in a graph in which many of the vertices have

degree significantly lower than 2n/3? Our main result is the following:

Theorem D. Given any η > 0 there exists an n0 ∈ N such that the following holds. If

G is a graph on n ≥ n0 vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥ n/3 + i+ ηn for all i ≤ n/3,

then G contains the square of a Hamilton cycle.

Note that Theorem D allows for almost n/3 vertices in G to have degree substantially

smaller than 2n/3. However, it does not quite imply Pósa’s conjecture for large graphs

due to the term ηn. Up to this term, examples show that the result is best possible.

Due to space considerations, we are only able to present a sketch of the proof of

Theorem D. The full proof appears in [107].

1.8 Tools

We now briefly describe some of the tools used to prove the results in this thesis. Each

chapter contains the definitions and precise statements of the tools used within.

One tool used either explicitly or implicitly in every chapter is Szemerédi’s Regularity

lemma [108]. Proved in the 1970s, it states that, in every sufficiently large graph, the

vertex set can be partitioned into a constant number of parts of roughly equal size, so

that the edge distribution between any pair exhibits random-like behaviour (the pairs are

ε-regular). So it reduces the problem of embedding into deterministic structures to the

easier problem of embedding into random-like objects. The lemma has been used in the

proofs of many results in many areas of combinatorics, from its original appearance as
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an auxiliary lemma in Szemerédi’s theorem on arithmetic progressions [109] to a great

many extremal and Ramsey-Turán problems.

Given an input parameter ε (which can be thought of an an approximation error),

the original proof gives that the number of parts has tower-type dependence on ε. Unfor-

tunately, as proved by Gowers [56], one cannot do much better than this. So the lemma

only draws useful conclusions for graphs which are very large indeed.

There have been some attempts in recent years to reprove results which were originally

proved using the Regularity lemma, sometimes to obtain proofs applicable to smaller

graphs. Levitt, Sárkozy and Szeméredi [87] found a proof of Pósa’s conjecture for graphs

on n ≥ n0 vertices which avoids the Regularity lemma. Châu, DeBiasio and Kierstead [31]

were able to find an explicit bound for n0 by proving that n0 ≥ 2 × 108 suffices. This

number is large, but is nonetheless tiny compared to the regularity-sized bound given in

the original proof by Komlós, Sárközy and Szemerédi [73].

Their proof uses the Connecting-Absorbing technique, first introduced by Rödl, Ruciński

and Szemerédi [104]. Roughly speaking, absorption allows one to turn an almost span-

ning structure into a spanning structure. In [81], a complicated version of absorbing was

employed by Kühn and Osthus to strengthen Theorem A and prove Kelly’s conjecture.

Theorem D is proved using an amalgam of the Connecting-Absorbing and Regularity

methods.

The proof of Theorem D also uses the so-called Blow-up lemma of Komlós, Sárközy

and Szemerédi [72]. This states that, with regard to embedding spanning graphs of

bounded degree, ε-regular pairs behave like complete bipartite graphs.

Probabilistic arguments have been a cornerstone of combinatorial proofs since they

were first employed by Erdős to prove a lower bound for the Ramsey number R(s, s) [42].

We only employ basic probabilistic tools in this thesis, e.g. to find subgraphs which

inherit the properties of their host graph.

The proofs of all four of our main results are very long. We develop tailored ma-

chinery to solve each of the problems we consider. However, we hope that some of our
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methods (e.g. the main result of Chapter 3) will be of independent interest and will find

applications elsewhere.

1.9 Organisation of the thesis

The main content of this thesis lies in Chapters 2–5. The first three of these chapters

contain the proofs of Theorems A–C respectively; while in Chapter 5, we sketch the proof

of Theorem D. Each chapter is self-contained, and the relevant notation is stated near

the beginning of the chapter. (Much of the notation in Chapter 4 is carried over from

Chapter 3, so it will not be restated, but the reader is referred back to the appropriate

sections from Chapter 3.)

Chapter 2 is based on joint work [98] with Osthus, Chapters 3,4 on joint work [75, 76]

with Kühn, Lo and Osthus, and Chapter 5 on joint work [107] with Treglown.
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CHAPTER 2

APPROXIMATE HAMILTON DECOMPOSITIONS

OF ROBUSTLY EXPANDING REGULAR

DIGRAPHS

2.1 Introduction

A Hamilton decomposition of a graph or digraph G is a set of edge-disjoint Hamilton

cycles which together cover all the edges of G. The first result in the area was proved by

Walecki in 1892, who showed that a complete graph Kn has a Hamilton decomposition

if and only if n is odd (see e.g. [91], [8], [9]). Tillson [112] solved the analogous problem

for complete digraphs in 1980. Though the area is rich in beautiful conjectures, until

recently there were few general results.

Starting with a result of Frieze and Krivelevich [51], a very successful recent direction

of research has been to find ‘approximate’ Hamilton decompositions, i.e. a set of edge-

disjoint Hamilton cycles which cover almost all the edges of the given (di)graph. The

result in [51] concerns dense quasirandom graphs and digraphs. Hypergraph versions

of this result were proved by Frieze, Krivelevich and Loh [52] as well as Bal and Frieze

[11]. Also, Kühn, Osthus and Treglown [86] proved an approximate version of Kelly’s

conjecture. This long-standing conjecture (see [93]) states that every regular tournament

has a Hamilton decomposition. In fact, the result in [86] is much more general, namely it

states that every regular oriented graph on n vertices whose in- and outdegree is slightly
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larger than 3n/8 has an approximate Hamilton decomposition. Here an oriented graph

is a digraph with at most one edge between each pair of vertices (whereas a digraph may

have one edge in each direction between a pair of vertices).

The main result of this chapter is in turn a far reaching generalisation of the result

in [86]. Instead of a degree condition, it involves an expansion condition that has recently

been shown to have a close connection with Hamiltonicity. This notion was introduced by

Kühn, Osthus and Treglown in [85]. The condition states that for every set S which is not

too small and not too large, its ‘robust’ outneighbourhood is at least a little larger than S

itself. More precisely, suppose that G is a digraph of order n and S ⊆ V (G). The ν-robust

outneighbourhood RN
+

ν,G
(S) of S is the set of vertices with at least νn inneighbours in S.

We say that G is a robust (ν, τ )-outexpander if

|RN
+

ν,G
(S)| ≥ |S|+ νn for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ )n.

Our main result states that every sufficiently large robustly outexpanding regular digraph

has an approximate Hamilton decomposition.

Theorem A. For every α > 0 there exists τ > 0 such that for all ν, η > 0 there exists

n0 = n0(α, ν, τ, η) for which the following holds. Suppose that

(i) G is an r-regular digraph on n ≥ n0 vertices, where r ≥ αn;

(ii) G is a robust (ν, τ )-outexpander.

Then G contains at least (1− η)r edge-disjoint Hamilton cycles. Moreover, such a set of

Hamilton cycles can be found in time polynomial in n.

As observed in Lemma 12.1 of [81], every oriented graph whose in- and outdegrees

are all at least slightly larger than 3n/8 is a robust outexpander, so this does generalise

the main result of [86]. Moreover, it turns out that one can relax condition (i) to the

requirement that G is ‘almost regular’. This is due to the fact (observed in [81]) that
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every almost regular robustly expanding digraph contains a spanning regular digraph of

similar degree.

Corollary 2.1.1. For every α > 0 there exists τ > 0 such that for all ν, η > 0 there exist

n0 = n0(α, ν, τ, η) and γ = γ(α, ν, τ, η) > 0 for which the following holds. Suppose that

(i) G is a digraph on n ≥ n0 vertices with (α− γ)n ≤ d
±

G
(x) ≤ (α+ γ)n for every x in

G;

(ii) G is a robust (ν, τ )-outexpander.

Then G contains at least (α − η)n edge-disjoint Hamilton cycles. Moreover, this set of

Hamilton cycles can be found in time polynomial in n.

The result in [86] extends to almost regular oriented graphs in the same way, but

is inherently non-algorithmic (see Section 2.2). Since, for dense digraphs, the condition

of being a robust outexpander is much weaker than that of being quasirandom, Corol-

lary 2.1.1 is much more general than the result in [51] mentioned earlier. Moreover, it is

best possible in the sense that, for an almost regular digraph, an approximate Hamilton

decomposition is obviously the best one can hope for.

Theorem A is used as an essential tool by Kühn and Osthus in [81] to prove the

following result, which (under the same conditions) guarantees not only an approximate

decomposition, but a Hamilton decomposition.

Theorem 2.1.2. For every α > 0 there exists τ > 0 such that for every ν > 0 there

exists n0 = n0(α, ν, τ ) for which the following holds. Suppose that

(i) G is an r-regular digraph on n ≥ n0 vertices, where r ≥ αn;

(ii) G is a robust (ν, τ )-outexpander.

Then G has a Hamilton decomposition. Moreover, this decomposition can be found in

time polynomial in n.
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So as a special case, Theorem 2.1.2 implies that Kelly’s conjecture holds for all suf-

ficiently large regular tournaments. It also implies a conjecture of Erdős on packing

Hamilton cycles in random tournaments (see [110]). However, it turns out that the no-

tion of robust (out)expansion extends far beyond the class of tournaments and many

further applications of Theorem A are explored by Kühn and Osthus in [82]. For exam-

ple, the notion of robust expansion can be extended to undirected graphs in a natural way

and one can deduce a version of Theorem 2.1.2 for undirected graphs. In [82] this in turn

is used to prove an approximate version of a conjecture of Nash-Williams on Hamilton

decompositions of dense regular graphs. Random regular graphs of linear degree as well

as (n, d, λ)-graphs (for appropriate values of these parameters) are further examples of

robustly expanding graphs. In combination with a result of Gutin and Yeo [57], The-

orem 2.1.2 can also be used to solve a problem of Glover and Punnen [54] as well as

Alon, Gutin and Krivelevich [6] on TSP tour domination (see [81] for details). For this

application, it is crucial that the Hamilton decomposition can be found in polynomial

time.

Roughly speaking, the argument leading to Theorem 2.1.2 uses Theorem A in the

following way: let G be a robustly expanding digraph. The first step is to remove a ‘ro-

bustly decomposable’ spanning regular digraph H from G to obtain G?. H will be sparse

compared to G and will have the property that it has a Hamilton decomposition even if

we add the edges of a digraph H ?, which is very sparse compared to H and also regular

(on the same vertex set) but otherwise arbitrary. Now G? is still a robust outexpander,

so one can apply Theorem A to G? obtain an approximate Hamilton decomposition of G?.

Let H ? denote the set of edges not contained in any of the Hamilton cycles of this approx-

imate decomposition of G?. Then the fact that H is robustly decomposable implies that

H ∪H ? has a Hamilton decomposition. Together with the approximate decomposition of

G?, this yields a Hamilton decomposition of the entire digraph G. Note that the above

approach means that for Theorem 2.1.2 to be algorithmic, one needs Theorem A to be

algorithmic too.
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This chapter is organised as follows. In the next section, we give a brief outline of the

argument. We then collect the necessary tools in Section 2.3 (which is mostly concerned

with Szemerédi’s Regularity lemma) and Section 2.4 (which mainly collects properties

of robust outexpanders). We then prove Theorem A in Section 2.5. In Section 2.6, we

deduce Corollary 2.1.1 from Theorem A.

2.2 Sketch of the proof of Theorem A

Roughly speaking, the strategy of the proof of Theorem A is the following. Suppose that

a digraph G satisfies the conditions of Theorem A. First remove the edges of a carefully

chosen spanning sparse subdigraph H from G and let G? consist of the remaining edges of

G. Next, find an approximate decomposition of G? into edge-disjoint 1-factors Fi (where

a 1-factor is a spanning union of vertex-disjoint cycles). Finally, the aim is to transform

each Fi into a Hamilton cycle by removing some of its edges and adding some edges of H .

One immediate obstacle to a näıve implementation of this approach is that the Fi might

consist of many cycles, so turning each of them into a Hamilton cycle might require more

edges from H than one can afford. In [51, 86], this was overcome (loosely speaking) by

choosing the 1-factors Fi randomly. It turns out that this has the advantage that the Fi

will have few cycles, i.e. they are already close to being Hamilton cycles. One disadvantage

is that this approach is inherently non-algorithmic (and does not seem derandomisable).

A second problem is how to make sure that H contains the edges that are required

to transform each Fi into a Hamilton cycle. We overcome this by choosing H and the

1-factors Fi according to the vertex partition of G obtained from Szemerédi’s Regular-

ity lemma. More precisely, we apply the Regularity lemma to partition G into clusters

V1, . . . , VL of vertices such that almost all ordered pairs of clusters induce a pseudorandom

subdigraph of G, together with a small (but typically troublesome) exceptional set V0.

For some small constant β, we define the ‘reduced multidigraph’ R(β) whose vertices are

the clusters Vj with (multiple) edges from Vj to Vk if the corresponding subdigraph of G
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is pseudorandom and dense. Here the number of edges from Vj to Vk is proportional to

the density of G[Vj , Vk]. So each edge of R(β) corresponds to a bipartite pseudorandom

digraph between the corresponding pair of clusters in G (where all these pseudorandom

digraphs have the same density β). R(β) inherits many of the properties of G, in partic-

ular it is an almost regular robust outexpander with large minimum semidegree.

The next step is to use the Max-Flow-Min-Cut Theorem to find a spanning regular

subdigraph of R(β) which contains almost all edges of R(β). We can now (arbitrarily)

partition this regular subdigraph into a collection of edge-disjoint 1-factors Fi of R(β)

(see Section 2.5.1). Each of the Fi corresponds to a vertex-disjoint collection of ‘blown-

up’ cycles which spans most of V (G). We will denote each of these collections by Gi and

call Gi the ith slice of G. Note that the Gi are all edge-disjoint.

Roughly speaking, the aim is to add a small number of edges (which do not lie

in any of the other slices) to each Gi to transform Gi into a regular digraph which

has an approximate Hamilton decomposition. Together, these approximate Hamilton

decompositions of the slices then yield an approximate Hamilton decomposition of G. In

Section 2.5.2, we put aside three sparse subdigraphs H0, H1, H2 which we will use to add

the required edges to each Gi. So together, H0, H1 and H2 play the role of the digraph

H mentioned earlier.

So far we have ignored the exceptional vertices, but to obtain a regular spanning

subdigraph we need to incorporate them into each slice Gi. For convenience, we call

any exceptional vertex x ∈ V0 and each edge incident with V0 ‘red’. In Sections 2.5.6

and 2.5.7, we will add red edges to each Gi in such a way that the resulting slice Gi is

almost regular and only a small part of each cluster is incident to any red edges. Some

of these edges come from H1 and the others will be edges of G which are not contained

in any of the Hj or any of the Gi constructed so far.

Together with these red edges, each Gi is now an almost regular digraph consisting

mainly of a union of blown-up cycles. On the other hand, Gi may not even be connected.

But to guarantee many edge-disjoint Hamilton cycles in Gi, we clearly need to have suf-
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ficiently many edge-disjoint paths between these blown-up cycles. For this, we define an

ordering of the cycles D1, . . . , D? of Fi and specify ‘bridge vertices’ xi,j (one for each suc-

cessive pair of cycles) so that xi,j has many inneighbours in Dj and many outneighbours

in Dj+1. We find the edges incident to these xi,j within H0 (see Section 2.5.5).

We would now like to find a spanning regular subdigraph in each Gi whose degree

is almost as large as that of Gi. Trivially, this regular subdigraph would then have a

decomposition into 1-factors. However, as we have little control over the red edges added

so far, they may prevent us from finding a regular subdigraph (see Section 2.5.8 for a

discussion and an example). For this reason, we add extra (red) edges to Gi from H2 to

balance out the existing red edges. In this way, we can ensure that for each cluster V

of a blown-up cycle D, the number of edges leaving V in Gi equals the number of edges

entering its successor V + onD. This is achieved in Sections 2.5.8 and 2.5.9, by considering

an auxiliary reduced digraph R∗ which also turns out to be a robust outexpander (the

latter property is crucial here).

As indicated above, in Section 2.5.10, we can now find a spanning κ-regular subdigraph

G∗
i
of each Gi (for a suitable κ). We now decompose each G

∗
i
into 1-factors fi,1, . . . , fi,κ.

Our aim is to transform each fi,j into a Hamilton cycle by adding and removing a few

edges. The edges we add will be taken from a very sparse digraph H3,i which we removed

from Gi earlier (so H3,i can also be viewed as a union of blown-up cycles). The key point

of the proof is that we can achieve this transformation by using a very small number of

edges from H3,i for each fi,j . The reason for this is that we can guarantee that the red

edges added in the course of the proof are ‘localised’ within each Gi, i.e. on each blown-

up cycle of each Fi there are long intervals of clusters which are not incident to any red

edges. This means that for each 1-factor fi,j , its subdigraph induced by any such interval

I consists of long paths. If some of these paths lie on different cycles of fi,j , we can merge

these into a single cycle by adding and removing edges of H3,i which are induced by just

a single pair of consecutive clusters on I . Crucially, this enables us to use the bipartite

subdigraphs of H3,i induced by other pairs of consecutive clusters on I to transform other
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1-factors fi,j? of the slice Gi. Repeating this process until we have merged all cycles of

fi,j into a single cycle eventually transforms the fi,j into κ edge-disjoint Hamilton cycles,

as required (see Lemma 2.4.5 and Section 2.5.11).

An approach based on the Regularity lemma was already used in [86]. However, as

mentioned earlier, the argument there relied on a random choice of the 1-factors, which

did not translate into an algorithm. This problem is overcome by the above ‘localisation’

idea, which automatically produces 1-factors which are ‘well behaved’ with respect to

red edges in the sense described above. However, this ‘localisation property’ is quite

difficult to achieve and relies on additional ideas such as a refinement of the original

regularity partition and a special ‘unwinding’ of blown-up cycles (see Section 2.5.3 and

Lemma 2.4.4).

2.3 Notation and the Diregularity lemma

2.3.1 Notation

Throughout we will omit floors and ceilings where the argument is unaffected. The

constants in the hierarchies used to state our results are chosen from right to left. For

example, if we claim that a result holds whenever 0 < 1/n ? a ? b ? c ≤ 1 (where

n is the order of the graph or digraph), then there are non-decreasing functions f :

(0, 1] → (0, 1], g : (0, 1] → (0, 1] and h : (0, 1] → (0, 1] such that the result holds for

all 0 < a, b, c ≤ 1 and all n ∈ N with b ≤ f(c), a ≤ g(b) and 1/n ≤ h(a). Hierarchies

with more constants are defined in a similar way. Note that a ? b implies that we may

assume in the proof that e.g. a < b or a < b2. We write a = b± ε for a ∈ [b− ε, b+ ε].

For an undirected graph G containing a vertex x we writeNG(x) for the neighbourhood

of x and dG(x) for its degree. For a digraph G we write xy for the edge directed from x to

y and write N
+

G
(x) for the outneighbourhood, the set of vertices receiving an edge from x,

and write d
+

G
(x) := |N

+

G
(x)| for the outdegree of x. We define the inneighbourhood N

−

G
(x)
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and indegree d
−

G
(x) similarly. For a collection of vertices U ⊆ V (G) we write d

+

G
(U) for

the total number of edges sent out by the vertices in U . We define d
−

G
(U) analogously.

We will omit the G subscript in the above and in similar situations elsewhere if this is

unambiguous. Denote the minimum outdegree by δ+(G) and the minimum indegree by

δ−(G). Let the minimum semidegree δ0(G) be the minimum of δ+(G) and δ−(G). Denote

the maximum outdegree by ∆+(G) and define ∆−(G) and analogously. Let ∆0(G) denote

the maximum of ∆+(G) and ∆−(G). If G is a multidigraph then neighbourhoods are

multisets. For any positive integer r, an r-regular digraph on n vertices is such that every

vertex has exactly r outneighbours and r inneighbours. A 1-factor of a multidigraph G is

a 1-regular spanning digraph; that is, a collection of vertex-disjoint cycles that together

contain all the vertices of G.

If G is a multidigraph and U ⊆ V (G), we write G[U ] for the sub-multidigraph of G

induced by U . That is, the digraph with vertex set U and edge set obtained from E(G)

by including only those edges with both endpoints contained in U . If G[U ] has empty

edge set, we say that U is an isolated subset of G. If G is a digraph and U ⊆ V (G) we

write G \ U for the digraph with vertex set V (G) \ U and edge set obtained from E(G)

by deleting all edges incident to a vertex of U .

Given a digraph R and a positive integer r, the r-fold blow-up r ⊗ R of R is the

digraph obtained from R by replacing every vertex x of R by r vertices and replacing

every edge xy of R by the complete bipartite graph Kr,r between the two sets of r vertices

corresponding to x and y such that all the edges of Kr,r are oriented towards the r vertices

corresponding to y. We say that any edge in this Kr,r is contained in the blow-up of xy.

Now consider the case when V1, . . . , Vk is a partition of some set V of vertices and R is

a digraph whose vertices are V1, . . . , Vk. If R is a directed cycle, say R = C = V1 . . . Vk,

and G is a digraph with V (G) ⊆ V = V1 ∪ . . .∪ Vk, we say that (the edges of) G wind(s)

around C if, for every edge xy of G, there exists an index j such that x ∈ Vj and y ∈ Vj+1

(where indices are taken modulo k).
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2.3.2 A Chernoff bound and its derandomisation

In the proof of Claims 2.5.3 and 2.5.4, we will use the following standard Chernoff type

bound (see e.g. Corollary 2.3 in [67] and Theorem 2.2 in [106]).

Proposition 2.3.1. Suppose X has binomial distribution and 0 < a < 1. Then

P(X ≥ (1 + a)EX) ≤ e−
a
2

3
EX

and P(X ≤ (1− a)EX) ≤ e−
a
2

3
EX
.

To obtain an algorithmic version of Theorem A, we need to ‘derandomise’ our appli-

cations of Proposition 2.3.1. This can be done via the well known ‘method of conditional

probabilities.’ The following result of Srivastav and Stangier (Theorem 2.10 in [106]) pro-

vides a convenient way to apply this method. It implies that any construction based on a

polynomial number of applications of Proposition 2.3.1 can be derandomised to provide

a polynomial time algorithm.

Theorem 2.3.2. [106] Let X1, . . . , XN be independent 0/1 random variables, where

P(Xj = 1) = p and P(Xj = 0) = 1 − p for some rational 0 ≤ p ≤ 1. Suppose that

1 ≤ i ≤ m and let wij ∈ {0, 1}. Let φi :=
?

N

j=1
wijXj and fix βi with 0 < βi < 1. Let E

+

i

denote the event that φi ≥ (1+βi)E[φi] and let E
−

i
denote the event that φi ≤ (1−βi)E[φi].

Let Ei ∈ {E
+

i
, E

−

i
}. Suppose further that

m?

i=1

e
−β2

i
E(φi)/3 ≤ 1/2.

Then

P

?
m?

i=1

Ei

?

≥ 1/2

and a vector x ∈
?

m

i=1
Ei can be constructed in time O(mN

2 log(mN)).

In general, it will usually be clear that the proofs can be translated into polynomial

time algorithms. We do not prove an explicit bound on the time needed to find the set

of edge-disjoint Hamilton cycles guaranteed by Theorem A, apart from the fact that the
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time is polynomial in n.

2.3.3 The Diregularity lemma

We will use the directed version of Szemerédi’s Regularity lemma. To state it we need

some definitions. We write dG(A,B) for the density
eG(A,B)

|A||B|
of an undirected bipartite

graph G with vertex classes A and B. Given ε > 0 we say that G is ε-regular if every

X ⊆ A and Y ⊆ B with |X | ≥ ε|A| and |Y | ≥ ε|B| satisfy |d(A,B) − d(X, Y )| ≤ ε.

Given ε, d ∈ (0, 1) we say that G is (ε, d)-regular if G is ε-regular and dG(A,B) = d± ε.

We say that G is (ε, d)-superregular if both of the following hold:

• G is (ε, d)-regular;

• d(a) = (d± ε)|B|, d(b) = (d± ε)|A| for all a ∈ A, b ∈ B.

Given disjoint vertex sets A and B in a digraph G, write (A,B)G for the oriented bipartite

subgraph of G whose vertex classes are A and B and whose edges are all those from A to B

in G. We say that (A,B)G has any of the regularity properties above if the requirements

hold for the underlying undirected bipartite graph of (A,B)G.

The Diregularity lemma is a variant of the Regularity lemma for digraphs due to Alon

and Shapira [7]. We will use the degree form which can be derived from the standard

version in the same manner as the undirected degree form. The proof of the Diregularity

lemma itself is similar to the undirected version.

Lemma 2.3.3. (Degree form of the Diregularity lemma) For every ε ∈ (0, 1) and every

integer M ? there are integers M and n0 such that if G is a digraph on n ≥ n0 vertices and

d ∈ [0, 1], then there is a partition of the vertex set of G into V0, . . . , VL and a spanning

subdigraph G? of G such that the following holds:

• M ? ≤ L ≤ M ;

• |V0| ≤ εn;
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• |V1| = . . . = |VL| =: m;

• d
+

G?(x) > d
+

G
(x)− (d+ ε)n and d

−

G?(x) > d
−

G
(x)− (d+ ε)n for all vertices x ∈ V (G);

• For all 1 ≤ i ≤ L the digraph G?[Vi] is empty;

• For all 1 ≤ j ≤ L with i ?= j the pair (Vi, Vj)G? is ε-regular and has density either

0 or at least d.

We call V1, . . . , VL clusters, V0 the exceptional set and the vertices in V0 exceptional

vertices. We refer to G? as the pure digraph. The last condition of the lemma says

that all pairs of clusters are ε-regular in both directions (but possibly with different

densities). The reduced digraph R of G with parameters ε, d and M ? is the digraph

whose vertices are V1, . . . , VL and in which ViVj is an edge precisely when (Vi, Vj)G? is

ε-regular and has density at least d. For each edge ViVj of G we write dij for the density

of (Vi, Vj)G? . Suppose 0 < 1/M ? ? ε? β ? d? 1. The reduced multidigraph R(β) of G

with parameters ε, β, d,M ? is obtained from R by setting V (R(β)) := V (R) and adding

?dij/β? directed edges from Vi to Vj whenever ViVj ∈ E(R). These digraphs inherit some

of the key properties of G, as the next few results show (which are variants of well known

observations, see e.g. Lemma 11 in [86] for the next result).

Lemma 2.3.4. Let 0 < 1/n0 ? 1/M ? ? ε ? β ? d ≤ d? ? c1 ≤ c2 < 1 and let G

be a digraph of order n ≥ n0 with δ
0(G) ≥ c1n and ∆

0(G) ≤ c2n. Apply Lemma 2.3.3

with parameters ε, d and M ? to obtain a pure digraph G? and a reduced digraph R of G

and let R? denote the subdigraph of R whose edges correspond to pairs of density at least

d?. Let R(β) denote the reduced multidigraph of G with parameters ε, β, d and M ? and let

R?(β) be the multidigraph obtained from R(β) by including only those edges which also

correspond to an edge of R?. Let L := |R| = |R(β)|. Then

(i) δ0(R?) ≥ (c1 − 3d
?)L.

(ii) δ0(R?(β)) ≥ (c1 − 4d
?)
L

β
and ∆0(R?(β)) ≤ (c2 + 2ε)

L

β
.
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Proof. To prove (i), we consider the weighted digraph R?
w
obtained from R? by giving

each edge ViVj of R
? weight dij . Given a cluster Vi, we write w

+(Vi) for the sum of the

weights of all edges sent out by Vi in R
?
w
. We define w−(Vi) similarly and write w

0(R?
w
)

for the minimum of min{w+(Vi), w
−(Vi)} over all clusters Vi. Note that δ

0(R?) ≥ w0(R?
w
).

Moreover, Lemma 2.3.3 implies that d
±

G?\V0
(x) > (c1 − 2d)n for all x ∈ V (G

? \ V0). Thus

each Vi ∈ V (R
?) satisfies

(c1 − 2d)nm ≤ eG?(Vi, V (G
?
) \ V0) ≤ m

2
w
+
(Vi) + (d

?
m

2
)L

and so w+(Vi) ≥ (c1 − 2d − d
?)L ≥ (c1 − 3d

?)L. Arguing in the same way for inweights

gives us δ0(R?) ≥ w0(R?
w
) ≥ (c1 − 3d

?)L. We can deduce the first part of (ii) by noting

that

d
+

R?(β)
(Vi) =

?

Vj∈N
+

R? (Vi)

?dij/β? ≥ w
+
(Vi)/β − L > (c1 − 4d

?
)
L

β
.

Similar arguments can be used to show the remaining bounds.

Note that the previous lemma implies that, when G is dense, R and R? are certainly

spanning.

Lemma 2.3.5. Let M ?, n0 be positive integers and let ε, d, ν, τ be positive constants such

that 1/n0 ? 1/M ? ? ε ? d ≤ d? ≤ ν ≤ τ < 1 and d? ≤ ν/20. Let G be a digraph on

n ≥ n0 vertices such that G is a robust (ν, τ )-outexpander. Let R be the reduced digraph

of G with parameters ε, d and M ? with clusters of size m and let R? be the subdigraph of

R whose edges correspond to pairs of density at least d?. Then R? is a robust (ν/4, 3τ )-

outexpander.

Proof. Let G? denote the pure digraph, L := |V (R)|, and V1, . . . , VL be the clusters of

G, and V0 the exceptional set. Let m := |V1| = . . . = |VL|. Suppose S ⊆ V (R?) has

3τL ≤ |S| ≤ (1−3τ )L. Let SG denote the set of vertices which is the union of all clusters

in S. So SG ⊆ V (G) and 2τn ≤ |SG| ≤ (1 − 2τ )n. For every x ∈ RN
+

ν,G
(SG) we have
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that |N
−

G?(x) ∩ SG| ≥ |N
−

G
(x) ∩ SG| − (d+ ε)n ≥ (ν − d− ε)n ≥ νn/2. This implies that

|RN
+

ν/2,G?(SG)| ≥ |RN
+

ν,G
(SG)| ≥ |SG|+ νn ≥ |S|m + νLm

and every vertex x ∈ RN
+

ν/2,G?(SG) has at least νn/2 inneighbours in SG. Suppose, for a

contradiction, that |RN
+

ν/4,R?(S)| < |S|+ νL/4. Let RN ? denote the union of all vertices

in clusters in RN
+

ν/4,R?(S) and let T := RN
+

ν/2,G?(SG) \ RN
?; then |T | ≥ νn/4.

Note that by definition, for all V outside RN
+

ν/4,R?(S), there exists a collection V of

at least |S| − νL/4 clusters U ∈ S so that there is no edge from U to V in R?. So by

assumption such a V exists for any V which has non-empty intersection with T .

We say that a vertex x ∈ V is bad if it has indegree at least 2d?m in at least
√
εL of

the clusters in V . The final property of Lemma 2.3.3 implies that there are at most εm

vertices in V that have indegree at least 2d?m in some fixed cluster of V . So by double

counting the number of such vertex-cluster pairs, we see that any cluster contains at most

√
εm bad vertices.

Say that a cluster V is significant if |V ∩ T | ≥ ε1/3m. Then there are at least νL/5

significant clusters and we write V ? := V ∩T . Consider any x ∈ V ?, where V is significant.

We say that a cluster U in S is rich for x if x has at least νm/10 inneighbours in U .

Since x has at least νn/2 inneighbours in SG, there are at least νL/3 clusters in S which

are rich for x. So there are at least νL/12 ≥
√
εL clusters in V which are rich for x.

Since d? ≤ ν/20, this means that every x in V ? is bad. Thus V contains at least ε1/3m

bad vertices, a contradiction.

The following simple observation is well known, the version given here is proved as

Proposition 4.3(i) and (iii) in [81].

Proposition 2.3.6. Suppose that 0 < 1/m? ε ≤ d? ≤ d? 1. Let G be a bipartite graph

with vertex classes A and B of size m. Suppose that G? is obtained from G by removing

at most d?m vertices from each vertex class and at most d?m edges incident to each vertex

from G.
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(i) If G is (ε, d)-regular then G? is (2
√
d?, d)-regular.

(ii) If G is (ε, d)-superregular then G? is (2
√
d?, d)-superregular.

The following well known observation (similar to Proposition 4.2 in [81]) states that

in an ε-regular bipartite graph almost all vertices have the expected degree and almost

all pairs of vertices have the expected codegree (i.e. the expected number of common

neighbours). Its proof follows immediately from the definition of regularity.

Proposition 2.3.7. Suppose that 0 < ε ≤ d ? 1. Let G be an (ε, d)-regular bipartite

graph with vertex classes A and B of size m. Then the following conditions hold.

• All but at most 2εm vertices in A have degree (d± 2ε)m.

• All but at most 4εm2 pairs a ?= a? of distinct vertices in A satisfy |N(a) ∩N(a?)| =

(d2 ± 2ε)m.

• The vertices in B satisfy the analogues of these statements.

The following is (a special case of) Lemma 4.9 in [81].

Lemma 2.3.8. Suppose that 1/m ? ε, d ? 1/C ≤ 1. Let G = (U, V ) be a bipartite

graph with vertex classes U and V of size m. Suppose that all but at most εm vertices

in V have degree at least (1− ε)dm and for all pairs of distinct vertices in V the number

of common neighbours is at most Cd2m. Suppose also that there are at most εm2 pairs

of distinct vertices in V that have at least (1 + ε)d2m common neighbours. Then G is

(ε1/6, d)-regular.

The next result (similar to Lemma 4.10(iii) and (iv) in [81]) shows that we can par-

tition an ε-(super)regular pair into edge-disjoint ε?-(super)regular spanning subgraphs.

Lemma 2.3.9. Let K be a positive integer and let 0 < 1/m? ε? γ1, . . . , γK ? 1 such

that γ1 + . . .+ γK ≤ d ≤ 1.
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(i) If G is an (ε, d)-regular bipartite graph with vertex classes X, Y of size m, then

it contains K edge-disjoint spanning subgraphs J1, . . . , JK such that for each 1 ≤

k ≤ K we have that Jk is (ε
1/12, γk)-regular. Moreover, if x ∈ X satisfies dG(x) =

(d± ε)m, then dJk(x) = (γk ± ε
1/12)m for each 1 ≤ k ≤ K.

(ii) If G is an (ε, d)-superregular bipartite graph with vertex classes of size m, then it

contains K edge-disjoint spanning subgraphs J1, . . . , JK such that for each 1 ≤ k ≤

K we have that Jk is (ε
1/12, γk)-superregular.

Moreover, the spanning subgraphs can be found in time polynomial in m.

Proof. We only prove (i). The proof of (ii) is similar. Suppose that G is (ε, d)-regular with

vertex classes U and V of size m. Assign each edge of G to Jk with probability pk := γk/d

independently from all other edges. So the probability that an edge is assigned to none

of J1, . . . , JK is 1− (γ1 + . . .+ γK)/d ≥ 0.

Consider any vertex v ∈ V with dG(v) = (d ± 2ε)m. Then for each 1 ≤ k ≤ K, the

expected degree of v in Jk is pk(d± 2ε)m = (1±
√
ε/2)γkm. So Proposition 2.3.1 implies

that

P
?
dJk(v) ?= (1±

√
ε)γkm

?
≤ P

?

|dJk(v)− E(dJk(v))| ≥

√
ε

3
E(dJk(v))

?

≤ 2e
−εE(dJk (v))/27 ≤ 2e

−εγkm/28
.

For the remainder of the proof, we let the codegree dG(x, x
?) of a pair x, x? of vertices

in G be the number of common neighbours of x and x?. Consider any pair v, v? ∈ V of

distinct vertices with codegree dG(v, v
?) = (d2 ± 2ε)m. Then the expected codegree of

v, v? in Jk is E(dJk(v, v
?)) = (pk)

2(d2 ± 2ε)m = (1 ±
√
ε/2)(γk)

2m. So Proposition 2.3.1

30



implies that

P
?
dJk(v, v

?
) ?= (1±

√
ε)(γk)

2
m
?

≤ P

?

|dJk(v, v
?
)− E(dJk(v, v

?
))| ≥

√
ε

3
E(dJk(v, v

?
))

?

≤ 2e
−εE(dJk (v,v

?))/27
≤ 2e

−ε(γk)
2m/28

.

Similarly, consider any pair x ?= x? of vertices in G (with no restriction on the codegree

dG(x, x
?)). If dG(x, x

?) ≤ 3(γk)
2m/2d2, then clearly dJk(x, x

?) ≤ 3(γk)
2m/2d2. So suppose

that dG(x, x
?) ≥ 3(γk)

2m/2d2. Then 3(γk)
4m/2d4 ≤ E(dJk(x, x

?)) ≤ (pk)
2m = (γk)

2m/d2

and so

P

?

dJk(x, x
?
) ≥

3(γk)
2m

2d2

?

≤ P

?

dJk(x, x
?
) ≥

3

2
E(dJk(x, x

?
))

?

≤ 2e
−E(dJk (x,x

?))/12
≤ 2e

−(γk)
4m/8d4

.

Proposition 2.3.7 implies that V contains at most 2εm vertices whose degree in G is not

(d ± 2ε)m as well as at most 4εm2 pairs of distinct vertices whose codegree in G is not

(d2±2ε)m. Note that certainly γk ≥ 1/m1/8 so K/m1/8 ≤ γ1+. . .+γK ≤ d so K ≤ dm1/8.

Thus a union bound implies that with probability at least

1−

?

1≤k≤K

?

me
−εγkm/28

+m
2
e
−ε(γk)

2m/28
+m

2
e
−(γk)

4m/8d4
?

≥ 1− 2dm
1/8

?

me
−εm7/8/28

+m
2
e
−εm3/4/28

+m
2
e
−m1/2/8d4

?

≥ 1/2

all of the following properties are satisfied for each 1 ≤ k ≤ K:

• All but at most 2εm vertices v ∈ V satisfy dJk(v) = (1±
√
ε)γkm.

• All but at most 4εm2 pairs v ?= v? of vertices in V satisfy dJk(v, v
?) = |NJk

(v) ∩

NJk
(v?)| ≤ (1 +

√
ε)(γk)

2m.

• All pairs v ?= v? of vertices in V satisfy dJk(v, v
?) ≤ 3(γk)

2m/2d2.
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Then Lemma 2.3.8 (applied with
√
ε, γk, 3/2d

2 playing the roles of ε, d, C) implies that

we can ensure that Jk is (ε
1/12, γk)-regular for each 1 ≤ k ≤ K.

The proof of Theorem A begins by decomposing our digraph into ‘blown-up’ 1-factors

and we will need the following well known and easy fact that allows us to extract almost

spanning blown-up 1-factors in which pairs are superregular.

Lemma 2.3.10. Let 0 < ε ≤ γ ≤ 1 ≤ m and let D be a digraph with vertex clusters

V1, . . . , Vk each of size m such that (Vj , Vj+1)D is (ε, γ)-regular for 1 ≤ j ≤ k, where

Vk+1 := V1. Then there exists a subdigraph D
? of D with vertex clusters V ?

1
, . . . , V ?

k
where

V ?
j
⊆ Vj, |V

?
j
| = (1 − 2ε)m and (V ?

j
, V ?

j+1
)D? is (4ε, γ)-superregular for 1 ≤ j ≤ k, where

V ?
k+1

:= V ?
1
.

Proof. For each 1 ≤ j ≤ k, each Vi contains at most 2εm vertices whose outdegree or

indegree in D is either at most (γ − 2ε)m or at least (γ + 2ε)m. Deleting exactly 2εm

vertices including these from each cluster gives us D?.

We will use the following crude version of the fact that every ε-regular pair contains

a subgraph of given maximum degree ∆ whose average degree is close to ∆, which is

Lemma 13 in [86].

Lemma 2.3.11. Suppose that 0 < 1/m ? ε?, ε ? d0 ≤ d1 ? 1 and that (A,B) is an

(ε, d1)-regular pair with m vertices in each class. Then (A,B) contains a subgraph H

whose maximum degree is at most d0m and whose average degree is at least d0m/8.

The proof proceeds by greedily removing matchings and so H can be found in poly-

nomial time. Part (ii) of the following observation is proved as Lemma 5.3 in [81]; (i) is

immediate from the definition.

Lemma 2.3.12. Let r ≥ 3 and let G be a robust (ν, τ )-outexpander with 0 < 3ν ≤ τ < 1.

Let G? be the r-fold blow-up of G. Then

(i) δ0(G?) = rδ0(G).

(ii) G? is a robust (ν3, 2τ )-outexpander.
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2.3.4 Uniform refinements

We will also need to partition each vertex cluster into equal parts in such a way that the

in- and outneighbourhood of each vertex restricted to each part is roughly the size we

expect it to be. This is very similar to Lemma 4.7 in [81]. To state the result, we need

the following definitions. Let G be a digraph and let P be a partition of V (G) into an

exceptional set V0 and clusters of equal size. Suppose that P
? is another partition of V (G)

into an exceptional set V ?
0
and clusters of equal size. We say that P ? is an ?-refinement of

P if V0 = V
?
0
and if the clusters in P ? are obtained by partitioning each cluster in P into

? subclusters of equal size. (So if P contains k clusters then P ? contains k? clusters.) P ?

is an ε-uniform ?-refinement of P with respect to G if it is an ?-refinement of P which

satisfies the following condition:

(URef) Whenever x is a vertex of G, V is a cluster in P and |N
+

G
(x) ∩ V | ≥ ε|V | then

|N
+

G
(x) ∩ V ?| = (1 ± ε)|N

+

G
(x) ∩ V |/? for each cluster V ? ∈ P ? with V ? ⊆ V . The

inneighbourhoods of the vertices of G satisfy an analogous condition.

Let G be a collection of digraphs on the same vertex set. If P ? is a refinement of a partition

P with respect to G for all G ∈ G then we say that it is a refinement with respect to G.

The next lemma is a generalisation of Lemma 4.7 in [81]. Its proof is very similar

but we include it here for completeness. The proof proceeds by considering a random

partition of V ∗ (which can be derandomised by Theorem 2.3.2).

Lemma 2.3.13. Suppose that 0 < 1/m ? 1/k, ε ? ε?, d, 1/?, 1/t ≤ 1 and m/? ∈ N.

Suppose that G is a collection of t digraphs on the same set V ∗ of n ≤ 2km vertices and

that P is a partition of V ∗ into an exceptional set V0 and k clusters of size m. Then

there exists an ε-uniform ?-refinement of P with respect to G. Moreover, any ε-uniform

?-refinement P ? of P automatically satisfies the following conditions for all G ∈ G:

(i) Suppose that V , W are clusters in P and V ?,W ? are clusters in P ? with V ? ⊆ V and

W ? ⊆ W . If G[V,W ] is (ε, d)-superregular then G[V ?,W ?] is (ε?, d)-superregular.
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(ii) Suppose that V , W are clusters in P and V ?,W ? are clusters in P ? with V ? ⊆ V

and W ? ⊆ W . If G[V,W ] is (ε, d)-regular then G[V ?,W ?] is (ε?, d)-regular.

Proof. To prove the existence of an ε-uniform ?-refinement of P , let P∗ be a partition

obtained by splitting each cluster V ∈ P uniformly at random into ? subclusters. More

precisely, the probability that a vertex x ∈ V is assigned to the ith subcluster is 1/?,

independently of all other vertices. Consider a fixed graph G in G, a fixed vertex x

of G and a cluster V ∈ P with d+ := |N
+

G
(x) ∩ V | ≥ εm. Given a cluster V ? ∈ P∗

with V ? ⊆ V , we say that (x,G) is out-bad for V ? if the outdegree of x into V ? in G is

not (1 ± ε/2)d+/?. We say that x is out-bad for V ? if (x,G) is out-bad for V ? for some

G ∈ G. Then Proposition 2.3.1 implies that the probability that x is out-bad for V ?

is at most 2te−ε
2d+/3·4? ≤ 2te−ε

4m. Since P∗ contains k? ≤ n clusters, the probability

that the common vertex set of the graphs in G contains some vertex which is out-bad for

at least one cluster V ? ∈ P∗ is at most tn2e−ε
4m < 1/8. We argue analogously for the

inneighbourhoods of the vertices in G (by considering ‘in-bad’ vertices).

We now say that a cluster V ? of P∗ is good if |V ?| = (1±ε2/2)m/?. A similar argument

as above shows that the probability that P∗ has a cluster which is not good is at most

1/4. So with probability at least 1/2, all clusters of P∗ are good, and no vertices are

out-bad or in-bad.

Now obtain P ? from P∗ as follows: for each cluster V of P , equalize the sizes of the

corresponding ? subclusters in P by moving at most ε2m/2? vertices from one subcluster

to another. So whenever G is a graph in G, x is a vertex of G, V is a cluster in P and

|N
+

G
(x) ∩ V | ≥ ε|V |, it follows that we have

|N
+

G
(x) ∩ V

?
| = (1± ε/2)|N

+

G
(x) ∩ V |/?± ε

2
m/2?

for each cluster V ? ∈ P ? with V ? ⊆ V . The inneighbourhoods of the vertices of G satisfy

an analogous condition. So (URef) holds and so P ? is an ε-uniform ?-refinement of P .

To prove (i), suppose that P ? is any ε-uniform ?-refinement of P , that G ∈ G, and
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that G[V,W ] is (ε, d)-superregular (where V and W are clusters in P). Let V ? and W ?

be clusters in P ? with V ? ⊆ V and W ? ⊆ W . Then G[V ?,W ?] is ε?-regular and thus

ε?-regular. Consider any x ∈ V ? and let d+ := |N
+

G
(x) ∩W |. Thus d+ = (d ± ε)m since

G[V,W ] is (ε, d)-superregular. Together with the ε-uniformity of P ? this implies that

|N
+

G
(x) ∩W ?| = (1 ± ε)d+/? = (d ± ε?)m/?. The inneighbourhoods in V ? of the vertices

in W ? satisfy the analogous property. Thus G[V ?,W ?] is (ε?, d)-superregular.

The proof of (ii) is almost identical.

Let ε > 0 and let P be a partition of V (G) into an exceptional set V0 and clusters

of size m. Let P ? be another partition of V (G) into an exceptional set V ?
0
and clusters

of size m? where m ≥ m? and |m − m?| ≤ 2εm?. We say that P and P ? are ε-close if

|V0 ∩ V
?
0
| ≥ (1− ε)|V ?

0
| and if for each cluster U in P ? there is a cluster V in P such that

|U ∩ V | ≥ (1 − ε)m?. In this case we say that U and V are associated. Note that V is

unique when ε < 1/2. Suppose that R is a multidigraph whose vertices are the clusters

of P . Let R? be the multidigraph obtained from R by relabelling V by V ? for each V ∈ P

associated with V ? ∈ P ?. So R? has vertex set consisting precisely of the clusters of P ?.

Moreover, for each edge E from U to V in R, there is a unique edge E ? from U ? to V ?

in R? which is associated with E. The following lemma states that refinements of ε-close

partitions are still ε?-close with a slightly bigger parameter ε?.

Lemma 2.3.14. Suppose that 0 < 1/m? 1/k, ε1, ε2 ? ε?, d, 1/? ≤ 1 and that m/? ∈ N.

Suppose that G is a digraph on n ≤ 2km vertices and that P is a partition of V (G) into

an exceptional set V0 and k clusters of size m. Let P
? be an ε1-uniform ?-refinement of

P. Suppose that R is another partition of V (G) into an exceptional set V ?
0
and clusters of

size m? that is ε2-close to P. Then, in time polynomial in m, one can find an ε?-uniform

?-refinement R? of R which is ε?-close to P ?.

Proof. Let U be a cluster of P and let V be the cluster of R associated with U . Then,

for each U ? in P ? such that U ? ⊆ U we have that |U ? ∩ V | ≥ m?/? − ε2m
?, so we can

pick a subset V ? of U ? ∩ V of size exactly (1 − ε2?)m
?/?. There are now exactly ε2?m

?
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vertices of V which do not lie in any subcluster V ?. Distribute these among the V ? so

that every subcluster has equal size m?/?. Together with V ?
0
, these subclusters form the

partition R?. Clearly U ? and V ? are associated clusters of P ? and R? respectively and

|U ? ∩ V ?| ≥ (1− ε?)m?/?. It is easy to see that R? has the required properties.

Observe that if ε1 ≤ ε2 then any ε1-uniform refinement is also an ε2-uniform refine-

ment, and two ε1-close partitions are also ε2-close.

Let P2 denote the partition obtained by taking an ε-uniform ?1-refinement P1 of a

partition P and then taking an ε-uniform ?2-refinement of P1. Then P2 is a 3ε-uniform

?2?1-refinement of P . Indeed, whenever x is a vertex of G, V is a cluster in P and

|N
+

G
(x) ∩ V | ≥ ε|V |, then for each cluster V ? ∈ P2 with V

? ⊆ V , we have

|N
+

G
(x) ∩ V

?
| = (1± ε)

2
|N

+

G
(x) ∩ V |/?2?1 = (1± 3ε)|N

+

G
(x) ∩ V |/?2?1, (2.3.1)

and similarly for the inneighbourhoods.

2.4 Tools for finding subgraphs, 1-factors and Hamil-

ton cycles

2.4.1 Almost regular spanning subgraphs

The following result (which is proved as Lemma 5.2 in [81]) shows that in a robust

outexpander, we can guarantee a spanning subdigraph with a given degree sequence (as

long as the required degrees are not too large and do not deviate too much from each

other). If x is a vertex of a multidigraph Q, we write d
+

Q
(x) for the number of edges in Q

whose initial vertex is x and d
−

Q
(x) for the number of edges in Q whose final vertex is x.

Lemma 2.4.1. Let q ∈ N. Suppose that 0 < 1/n ? ε ? ν ≤ τ ? α < 1 and

that 1/n ? ρ ≤ qν2/3. Let G be a digraph on n vertices with δ0(G) ≥ αn which

is a robust (ν, τ )-outexpander. Suppose that Q is a multidigraph on V (G) such that

36



whenever xy ∈ E(G) then Q contains at least q edges from x to y. For every vertex

x of G, let n+
x
, n−

x
∈ N be such that (1 − ε)ρn ≤ n+

x
, n−

x
≤ (1 + ε)ρn and such that

?

x∈V (G)
n+
x
=

?

x∈V (G)
n−
x
. Then Q contains a spanning submultidigraph Q? such that

d
+

Q?(x) = n
+

x
and d

−

Q?(x) = n
−
x
for every x ∈ V (G) = V (Q).

The next result (Lemma 16 in [86]) is an analogue of the previous one where we

consider superregular pairs instead of robust outexpanders. In both cases, the proof is

algorithmic (as it is based on the Max-Flow-Min-Cut Theorem).

Lemma 2.4.2. Let 0 < 1/n ? ε ? β ? α? ? α ? 1. Suppose that G = (A,B) is an

(ε, β + ε)-superregular pair where |A| = |B| = n. Define κ := (1 − α)βn. Suppose we

have a non-negative integer m+

a
≤ α?βn associated with each a ∈ A and a non-negative

integer m
−

b
≤ α?βn associated with each b ∈ B such that

?

a∈A
m+

a
=

?

b∈B
m

−

b
. Then

G contains a spanning subgraph H in which dH(a) = n
+

a
:= κ −m+

a
for any a ∈ A and

dH(b) = n
−

b
:= κ−m

−

b
for any b ∈ B.

2.4.2 Decomposing regular digraphs into 1-factors

Petersen proved that every regular undirected graph can be decomposed into 1-factors.

The corresponding result for directed graphs is well known; for completeness we include

the proof (which is algorithmic as perfect matchings can be found in polynomial time).

Proposition 2.4.3. Any r-regular multidigraph G contains r edge-disjoint 1-factors.

Proof. Define an undirected bipartite graph J with two vertex classes A and B, each of

which is a copy of V (G), with an edge from a ∈ A to b ∈ B for each edge from a to b

in G. J is r-regular so, by Hall’s Theorem [60], contains a perfect matching M1. Then

J \M1 is (r − 1)-regular so contains a perfect matching M2. Repeating this procedure

we can decompose J into r perfect matchings, each of which corresponds to a 1-factor in

G.
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2.4.3 Unwinding cycles

At two points in the proof, we will partition a blown-up cycle into several longer, thinner

blown-up cycles on subclusters of the original clusters. The following section describes

how this process is implemented and describes a special approximate decomposition to

be used in Section 2.5.3.

Suppose that D = p⊗Cn is a p-fold blow-up of a cycle Cn of length n. Let X1, . . . , Xn

be the vertex classes of D. We call any edge-disjoint collection C1, . . . , Cp? of p? Hamilton

cycles of D a p?-unwinding of D. The following lemma guarantees a (p − 1)-unwinding

in which, for each Cd and each i, the ith vertices of two distinct classes Xj and Xj? have

distance at least p on Cd.

Lemma 2.4.4. Suppose that p > 2 is a prime, suppose n ∈ N and let D = p ⊗ Cn be a

p-fold blow-up of a cycle Cn of length n. Denote the vertex classes of D by X1, . . . , Xn

where, for all j with 1 ≤ j ≤ n, we have Xj = {x1
j
, . . . , x

p

j
}. Then D contains a (p− 1)-

unwinding C1, . . . , Cp−1 such that for every 1 ≤ d ≤ p− 1 and every 1 ≤ i ≤ p,

(i) if p is coprime to n, then the vertices xi
1
, . . . , xi

n
have pairwise distance at least p

on Cd;

(ii) if p is not coprime to n, then the vertices xi
1
, . . . , xi

n−2 have pairwise distance at

least p on Cd.

Proof. We first prove (i). Let {a} denote the residue of a modulo p and [b] the residue of

b modulo n where we adopt the convention that {?p} := p and [?n] := n for any ? ∈ N.

For 1 ≤ d ≤ p− 1 define the modular arithmetic progression

P (d) := ({1}, {1 + d}, . . . , {1 + (np− 1)d})

in Zp. For each 1 ≤ k ≤ np and 1 ≤ d ≤ p− 1, define the edge

e
d

k
:= x

P (d)k

[k]
x
P (d)k+1

[k+1]
,
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Figure 2.1: Illustrating Lemma 2.4.4(i) with n = 10, p = 7, d = 2 and Lemma 2.4.4(ii)

with n = 10, p = 5, d = 1.

where P (d)k denotes the kth term of P (d) and P (d)np+1 := P (d)1. We define C
d to be

the digraph with vertex set V (D) and edges ed
1
, . . . , ed

np
(see Figure 2.1). Note that Cd is

clearly a closed walk in D.

Claim A. For each 1 ≤ d, d? ≤ p− 1 and 1 ≤ k, k? ≤ np the following hold:

(a) P (d) is periodic with period p.

(b) Suppose P (d)k = P (d
?)k? and P (d)k+1 = P (d

?)k?+1. Then d = d
?.

We first show that the claim implies (i). First note that (a) and the fact that n is coprime

to p imply that every vertex is visited exactly once in the closed walk Cd, so Cd must

in fact be a Hamilton cycle. Now suppose ed
k
= ed

?

k?
. Then (b) implies that also d = d?.

Thus no two Cd share an edge; thus C1, . . . , Cp−1 is a collection of edge-disjoint Hamilton

cycles. (a) implies that, on each Cd, the distance between xi
?
and xi

??
is a multiple of p

for any 1 ≤ ?, ?? ≤ n. Therefore C1, . . . , Cp−1 have the required property.

Proof of Claim A. To prove (a) of the claim, note that P (d)k = P (d)k? if and only

if 1 + kd ≡ 1+ k?d mod p if and only if k ≡ k? mod p since d is coprime to p. To
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prove (b), note that P (d)k = P (d
?)k? and P (d)k+1 = P (d

?)k?+1 imply that

1 + kd ≡ 1 + k
?
d
?
mod p (2.4.1)

1 + (k + 1)d ≡ 1 + (k
?
+ 1)d

?
mod p. (2.4.2)

Subtracting (2.4.1) from (2.4.2) gives d ≡ d? mod p; but 1 ≤ d, d? ≤ p − 1 so

d = d?. This proves the claim and completes the proof of (i). ?

We now prove (ii). So suppose instead that n and p are not coprime. Then n? := n − 2

is coprime to p since p > 2. The idea is to use paths derived from the cycles defined

above for the first n? clusters and extend them into Hamilton cycles via the remaining

clusters. To this end, form an auxiliary blown-up cycle D̃ from D by identifying xi
j
with

xi
j?
whenever 1 ≤ i ≤ p and j, j ? ∈ {n − 1, n, 1} and call this vertex xi

1
in D̃. Now

remove any resulting loops from D̃. So D̃ = p ⊗ Cn−2. Next, apply (i) to D̃ to obtain

C̃1, . . . , C̃p−1. Now, for each 1 ≤ d ≤ p − 1, obtain E1(C
d) from E(C̃d) by replacing

any edge xi
n−2x

i?

1
by xi

n−2x
i?

n−1. Note that, in D, E1(C
1), . . . , E1(C

p−1) is an edge-disjoint

collection of p− 1 paths each of length n?.

Claim B. The collections E1(C
1), . . . , E1(C

p−1) of paths can be extended into

p − 1 edge-disjoint Hamilton cycles C1, . . . , Cp−1 respectively such that Cd is a

subdivision of C̃d for each 1 ≤ d ≤ p− 1.

Proof. For each 1 ≤ d ≤ p − 1 we will need to find a collection of edge-disjoint

paths from xi
n−1 to x

i

1
for 1 ≤ i ≤ p to extend E1(C

d) to Cd. Moreover, these

collections must be pairwise edge-disjoint. By Hall’s Theorem, we can find p − 1

edge-disjoint perfect matchings M1, . . . ,Mp−1 in the complete bipartite subgraph

(Xn−1, Xn) of D. For each 1 ≤ d ≤ p− 1 and 1 ≤ i ≤ p, define

Pi,d = x
i

n−1x
i?

n
x
i

1

whenever xi
n−1x

i?

n
is an edge in Md. Since the Md are edge-disjoint matchings, the
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Pi,d are edge-disjoint paths with the required property. Thus, for each 1 ≤ d ≤

p− 1, defining

E(C
d
) := E1(C

d
) ∪

?

1≤i≤p

Pi,d

gives p− 1 edge-disjoint Hamilton cycles C1, . . . , Cp−1. This proves the claim. ?

Note that since Cd is a subdivision of C̃d, the distance between any two vertices in Cd is

at least the distance in C̃d. This immediately gives the required property, and completes

the proof of (ii).

2.4.4 Merging 1-factors in blown-up cycles

In Section 2.5.10 we will have found an approximate decomposition of a robustly ex-

panding digraph into 1-factors. The following lemma will use the special structure of

the 1-factors to merge their cycles into a single Hamilton cycle. It is a special case of

Lemma 6.5 in [81], which in turn is based on an idea in [33]. As noted in [81], the cy-

cle guaranteed by the lemma can be found in polynomial time. Roughly speaking, the

lemma asserts that if we have a 1-regular digraph F where most of the edges wind around

a ‘blown-up’ cycle C = V1 . . . Vk, then under certain circumstances we can turn F into a

(single) cycle by replacing a few edges of F by edges from a digraph G whose edges all

wind around C.

Lemma 2.4.5. Let 0 < 1/m ? ε ? d < 1. Let V1, . . . , Vk be pairwise disjoint clusters,

each of size m and let C = V1 . . . Vk be a directed cycle on these clusters. Let J ⊆ E(C).

Let G be a digraph on V1 ∪ · · · ∪ Vk such that G[Vi, Vi+1] is (ε, d)-superregular for every

ViVi+1 ∈ J . Suppose that F is a 1-regular digraph with V1 ∪ · · · ∪ Vk ⊆ V (F ) such that

the following properties hold:

(i) For each edge ViVi+1 ∈ J the digraph F [Vi, Vi+1] is a perfect matching.

(ii) For each cycle D in F there is some edge ViVi+1 ∈ J such that D contains a vertex

in Vi.
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(iii) Whenever ViVi+1, VjVj+1 ∈ J are such that J avoids all edges in the segment Vi+1CVj

of C from Vi+1 to Vj, then F contains a path Pij joining some vertex ui+1 ∈ Vi+1

to some vertex u?
j
∈ Vj such that Pij winds around C.

Then we can obtain a cycle on V (F ) from F by replacing F [Vi, Vi+1] with a suitable perfect

matching in G[Vi, Vi+1] for each edge ViVi+1 ∈ J .

It will also be convenient to use the following result from [85], which guarantees a

Hamilton cycle in a robustly expanding digraph. The proof of Lemma 2.4.5 actually

consists of repeated applications of Theorem 2.4.6 to a suitable auxiliary digraph. The

proof of Theorem 2.4.6 can be made algorithmic but this is not needed here as we only

apply it to a ‘reduced’ digraph, obtained from the Regularity lemma.

Theorem 2.4.6. Let n0 be a positive integer and α, ν, τ be positive constants such that

1/n0 ? ν ≤ τ ? α < 1. Let G be a digraph on n ≥ n0 vertices with δ
0(G) ≥ αn which

is a robust (ν, τ )-outexpander. Then G contains a Hamilton cycle.

2.5 The proof of Theorem A

2.5.1 Applying the Diregularity lemma

We choose τ so that τ ? α. Without loss of generality we may assume that ν ? τ as

any robust (ν, τ )-outexpander is also a robust (ν ?, τ )-outexpander for any ν ? ≤ ν. We

may also assume that 0 < η ? ν as a collection of (1− η?)r edge-disjoint Hamilton cycles

certainly contains a collection of (1 − η)r edge-disjoint Hamilton cycles if η? ≤ η. Define

further constants satisfying

0 < 1/n0 ? 1/M ? 1/M
?
? ε̃? ε? ε

?
? ξ ? 1/p

? β ? d? 1/s? γ ? d
?
? η ? ν ? τ ? α, (2.5.1)

where s ∈ N is even and p is a prime.
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Let G be a digraph of order n ≥ n0 such that G is an r-regular robust (ν, τ )-

outexpander with r ≥ αn. Define α̃ by r = α̃n. Apply the Diregularity lemma (stated

as Lemma 2.3.3) to G with parameters ε̃12, d,M ? to obtain clusters Ṽ1, . . . , ṼL̃ of size m̃,

an exceptional set V0, a pure digraph G
? and a reduced digraph R̃. So |R̃| = L̃ and

M ? ≤ L̃ ≤ M . We denote the above partition of G by P̃ and call the Ṽj the clusters of P̃ ,

frequently referred to as base primary clusters (to distinguish them from other types of

cluster defined later on). Let R̃? be the spanning subdigraph of R̃ whose edges correspond

to pairs of density at least d?. So ṼiṼj is an edge of R̃
? if (Ṽi, Ṽj)G? has density at least d?.

When Ẽ is an edge of R̃ from Ṽi to Ṽj we write G
?(Ẽ) for the subdigraph (Ṽi, Ṽj)G?

and dij for the density of this pair. Then by Lemma 2.3.3, G
?(Ẽ) is (ε̃12, dij)-regular. Let

R̃(β) denote the reduced multidigraph of G (obtained from R̃) with parameters ε̃12, β, d

and M ?. Let R̃?(β) be the multidigraph obtained from R̃(β) by including only those

edges which also correspond to an edge of R̃?. Roughly speaking, our aim is to find

an approximate decomposition of R̃(β) into edge-disjoint 1-factors F̃ , and then find an

approximate Hamilton decomposition of a subdigraph of G consisting mainly of edges

that correspond to a pair in F̃ .

For each edge Ẽ of R̃, apply Lemma 2.3.9(i) to G?(Ẽ) with parameters K := ?dij/β?

and γk := β for each 1 ≤ k ≤ K to obtain K edge-disjoint (ε̃, β)-regular subdigraphs.

We associate each of these with a unique edge E from Ṽi to Ṽj of R̃(β) and call the

corresponding digraph G?(E).

Let A be a cluster of R̃ and let E(A) denote the set of edges incident to A in R̃(β).

For an edge E in E(A) and x ∈ A, we say that the pair (x, E) is good if

• A is the initial cluster of E and d
+

G?(E)
(x) = (β ± 2ε̃)m̃; or

• A is the final cluster of E and d
−

G?(E)
(x) = (β ± 2ε̃)m̃

and say it is bad otherwise (recall that m̃ is the cluster size). We say that x is good if

x forms a bad pair with at most ξ|E(A)| edges in E(A). Note that for a fixed edge E

in E(A), at most ε̃m̃ vertices x ∈ A are bad. So by double counting the number of bad
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pairs, it is easy to see that the number of bad vertices in A is at most ε̃m̃/ξ.

We remove every bad vertex from its cluster as well as possibly some more arbitrary

vertices so that exactly ε̃m̃/ξ vertices have been removed from each cluster. We then

remove at most 2sp further vertices from each cluster in order to guarantee that the

cluster size is divisible by 2sp. We still denote the cluster size by m̃ and still call the

clusters base primary. Each vertex removed here is added to the exceptional set V0, which

we now call the core exceptional set. So

|V0| ≤ (ε̃
12
+ ε̃/ξ)n + 2spL̃

(2.5.1)

≤
√
ε̃n/2. (2.5.2)

We still denote the partition of V (G) into V0 and these clusters by P̃ . Note that for each

edge E of R̃(β), the digraph G?(E) is still (
√
ε̃, β)-regular by Proposition 2.3.6(i) (at most

ε̃m̃/4 vertices were removed from each cluster). Lemma 2.3.4 implies that

δ
0
(R̃

?
) ≥ (α̃ − 3d

?
)L̃ and δ

0
(R̃

?
(β)) ≥ (α̃ − 4d

?
)
L̃

β
,

δ
0
(R̃(β)) ≥ (α̃ − 4d)

L̃

β
and ∆

0
(R̃(β)) ≤ (α̃ + 2ε̃

12
)
L̃

β
. (2.5.3)

By Lemma 2.3.5, R̃? is a robust (ν/4, 3τ )-outexpander. Note that it is a subdigraph of

R̃?(β) ⊆ R̃(β) and that all of its edges have multiplicity at least q := d?/β in R̃?(β). Let

r̃ := (α̃ − γ)L̃/β. (2.5.4)

For each cluster U , let n
±

U
:= d

±

R̃(β)
(U)− r̃ and let ρ := γ/β, so ρ ≤ qν2/3. Note that

(1−
4d

γ
)ρL̃ = (γ − 4d)

L̃

β
≤ n

±

U
≤ (γ + 2ε̃

12
)
L̃

β
= (1 +

2ε̃12

γ
)ρL̃.

So we can apply Lemma 2.4.1 to (G,Q) := (R̃?, R̃?(β)) to obtain a sub-multidigraph

W of R̃?(β) (and hence of R̃(β)) such that the in- and outdegrees of each cluster U

are exactly n
±

U
. So R̃(β) \W is a spanning r̃-regular sub-multidigraph of R̃(β). Apply
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Proposition 2.4.3 to decompose R̃(β) \W into r̃ 1-factors F̃1, . . . , F̃r̃ of R̃(β). So each F̃t

corresponds to a collection of blown-up cycles spanning V (G) \ V0. Note that this step

would not work if we only considered R̃ and R̃(β) and tried to apply Lemma 2.4.1 to find

W in R̃(β) directly.

2.5.2 Thin auxiliary digraphs H

We now define edge-disjoint subdigraphs H
+

0
, H

−

0
, H

+

1
, H

−

1
and H2 of G, which are sparse

‘shadows’ of the reduced multidigraph. They act as reservoirs of well-distributed edges

which will be used at various stages in the proof. The role of H
±

0
is to connect blown-up

cycles (in Section 2.5.5) to ensure that our final merging procedure does indeed yield

Hamilton cycles. In Section 2.5.6 edges will be taken from H
±

1
to connect the vertices

in the special exceptional sets V0,i (defined later) to the non-exceptional vertices in each

slice Gi (defined in Section 2.5.3). H2 will be used to construct ‘balancing edges’ which

will be introduced in Section 2.5.8. We choose these subdigraphs already at this point

because if we remove them later then this might destroy the superregularity of the pairs

in the Gi.

We obtain H
+

0
, H

−

0
, H

+

1
, H

−

1
, H2 as follows. Each has vertex set V (G) and initially

contains no edges. Then, for each edge E of R̃(β), G?(E) is a (
√
ε̃, β)-regular pair and

we can apply Lemma 2.3.9(i) to G?(E) with γ1 := β1 where

β1 := (1− 5γ)β (2.5.5)

and γ2 := . . . = γ6 := γβ, to obtain six edge-disjoint pairs J1, . . . , J6, where Jk is

(ε̃1/24, γk)-regular, and we call these digraphs G
∗(E), H

+

0
(E), H

−

0
(E), H

+

1
(E), H

−

1
(E)

and H2(E) respectively. We denote the union of H(E) over all edges E of R̃(β) by H .

We will only use the weaker bounds that the ‘remaining’ subdigraph G∗(E) of G?(E) is

(ε/8, β1)-regular and for each H = H
+

0
, H

−

0
, H

+

1
, H

−

1
, H2 we have that H(E) is (ε, γβ)-

regular. Moreover, Lemma 2.3.9(i) implies that if E is an edge from A to B and if x ∈ A
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and y ∈ B are good for E, then

d
+

H(E)
(x), d

−

H(E)
(y) = (γβ ± 2ε)m̃. (2.5.6)

Note also that V0 is isolated in each H . We now derive some further properties of these

digraphs which we will need later. Firstly, we have the following property for H
+

0
and

H
−

0
:

(H0) Suppose that ÃB̃ is an edge of R̃. Then for at least (1− ε?)|Ã| of the vertices x ∈ Ã

and (1− ε?)|B̃| of the vertices y ∈ B̃ we have

|N
+

H
+

0

(x) ∩ B̃| ≥ γdm̃/2 and |N
−

H
−

0

(y) ∩ Ã| ≥ γdm̃/2.

To see this, note first that every edge E of R̃ has multiplicity at least d/β in R̃(β). Let

E1, . . . , E? be the edges of R̃(β) corresponding to E. So d/β ≤ ? ≤ 1/β. Recall that

H
+

0
(Ei) is (ε, γβ)-regular. Let A

? be the set of all vertices x ∈ Ã such that x has outdegree

at least (γβ − 2ε)m̃ in each of H
+

0
(E1), . . . , H

+

0
(E?). Then |A?| ≥ (1− ?ε)m̃ ≥ (1− ε?)m̃.

Moreover, for all x ∈ A?, we have

|N
+

H
+

0

(x) ∩ B̃| ≥ ?(γβ − 2ε)m̃ ≥
d

β

γβ

2
m̃ =

γdm̃

2
.

The proof of the second inequality is similar.

We also have the following property of H
+

1
and H

−

1
:

(H1) For all x ∈ V (G) \ V0, we have γα̃n/3 ≤ d
±

H
+

1

(x), d
±

H
−

1

(x) ≤ 2γα̃n.

Recall the definitions of ‘good’ and ‘bad’ from Section 2.5.1:

Let A be a cluster of R̃ and let E(A) denote the set of edges incident to A in R̃(β).

For an edge E in E(A) and x ∈ A, we say that the pair (x, E) is good if

• A is the initial cluster of E and d
+

G?(E)
(x) = (β ± 2ε̃)m̃; or

46



• A is the final cluster of E and d
−

G?(E)
(x) = (β ± 2ε̃)m̃

and say it is bad otherwise (recall that m̃ is the cluster size). We say that x is good if x

forms a bad pair with at most ξ|E(A)| edges in E(A).

Now, (H1) follows from the fact that V0 contains all the bad vertices (in the sense of

Section 2.5.1). Indeed, since any vertex x ∈ V (G) \ V0 is good we have

d
+

H
+

1

(x)
(2.5.6)

≥ δ
+
(R̃(β))(1− ξ)(γβ − 2ε)m̃

(2.5.3)

≥
α̃L̃

2β
γβm̃ ≥ γα̃n/3.

The other bounds in (H1) follow similarly.

2.5.3 Unwinding cycles

For each 1 ≤ t ≤ r̃ we now apply Lemma 2.3.10 to each cycle in F̃t to remove vertices

from each cluster, so that they now have size exactly (1− ε/4)m̃ and such that each edge

E of F̃t corresponds to an (ε/2, β1)-superregular pair G
∗(E). By removing at most 2sp

further vertices from each cluster we obtain clusters of size m such that 2sp | m. We call

these adapted primary clusters or adapted primary (t)-clusters if we wish to emphasise

the dependence on t, and say that each such cluster is associated with the base primary

cluster from which it was formed. Since 2sp ≤ εm̃/4 it is easy to see that now each edge

E of F̃t corresponds to an (ε, β1)-superregular pair G
∗(E). Note that

1

m
≤
2L̃

n
≤
2M

n0
?
1

L̃
and (1− ε)n

(2.5.2)

≤ mL̃ ≤ m̃L̃ ≤ n. (2.5.7)

Let Ṽ
spec

0,t
denote the set of all those vertices in G which were removed from the clusters

in this step. We call them the special exceptional vertices (for the original slice t). So

|Ṽ
spec

0,t
| ≤ εn/4 + 2spL̃ ≤ εn/2. Let Ṽ0,t = V0 ∪ Ṽ

spec

0,t
. Then

|Ṽ0,t|
(2.5.2)

≤
2εn

3
. (2.5.8)
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We denote the collection of the adapted primary (t)-clusters together with the excep-

tional set Ṽ0,t by P(t). Note that P(t) and P̃ are 2ε/3-close for every 1 ≤ t ≤ r̃ (recall

that this notion was defined before Lemma 2.3.14).

For each cycle C in a given 1-factorisation, we would like to ensure that the outneigh-

bourhood of an exceptional vertex is well-distributed on each cycle, in the sense that

each cluster V of C contains only a small fraction of the neighbours of any exceptional

vertex. Currently, we cannot guarantee this. But we will be able to achieve this property

by considering a refinement of the partition P(t) for each t. As associated clusters in

each P(t) only differ slightly from one another, we can find this refinement in such a way

that the subclusters are also similar by ensuring that all such refinements are close to a

refinement of P̃ .

Let G = {G,H
+

0
, H

−

0
, H

+

1
, H

−

1
, H2}. We now apply Lemma 2.3.13 to our base primary

clusters and exceptional set V0 to obtain an ε̃-uniform s-refinement P
?
s
of P̃ with respect

to G, and we call the resulting subclusters base s-clusters. So we have Ls := sL̃ base

s-clusters. Apply Lemma 2.3.13 to P ?
s
to obtain an ε̃-uniform p-refinement P ?

p
of P ?

s
with

respect to G. Let

Lp := pLs = spL̃. (2.5.9)

We call the Lp subclusters obtained from an s-cluster base p-clusters. By the remark

before (2.3.1), P ?
p
is also a 3ε̃-uniform sp-refinement of P̃ . Finally apply Lemma 2.3.13

to P ?
p
to obtain an ε̃-uniform 2-refinement P ?

2p
of P ?

p
with respect to G. The argument

before (2.3.1) implies that P ?
2p
is a 4ε̃-uniform 2p-refinement of P ?

s
and a 5ε̃-uniform

2sp-refinement of P̃ . We call the subclusters obtained from an s-cluster base 2p-clusters.

Define constants εs, εp, ε2p such that ε ? εs ? εp ? ε2p ? ε?. Now do the following

for each t with 1 ≤ t ≤ r̃. Apply Lemma 2.3.14 to P̃ to obtain an εs-uniform s-refinement

Ps(t) of P(t) that is εs-close to P ?
s
. Next apply Lemma 2.3.14 to P ?

s
to obtain an εp-

uniform p-refinement Pp(t) of Ps(t) that is εp-close to P ?
p
. By the observation at the

end of Section 2.3.4, Pp(t) is also an ε
?-uniform sp-refinement of P(t). Finally apply

Lemma 2.3.13 to P ?
p
to obtain an ε2p-uniform 2-refinement P2p(t) of Pp(t) that is ε2p-
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close to P ?
2p
. Again, P2p(t) is an ε

?-uniform 2p-refinement of Ps(t) and an ε
?-uniform

2sp-refinement of P(t). For j = s, p, 2p we call the clusters of Pj(t) the (adapted) j-

clusters or j-(t)-clusters if we wish to emphasise the dependence on t. For each such j we

have that Pj(t) is an ε
?-uniform refinement of P(t) that is ε?-close to P ?

j
, so each adapted

j-cluster in Pj(t) is associated with a unique base j-cluster in P ?
j
. Write

ms := m/s and mp := m/sp (2.5.10)

for the respective sizes of the s- and p-clusters (which are the same for all t though the

clusters themselves are different). Note that

mp ≤
n

Lp
≤ 2mp. (2.5.11)

By a slight abuse of notation we can consider R̃ and R̃(β) as digraphs on either base

or adapted (t)-clusters, depending on the context. For each 0 ≤ t ≤ r̃, we now define

corresponding reduced digraphs for the refinements defined above, where, for convenience,

Pj(0) := P ?
j
.

Let Rs = s ⊗ R̃ be the s-fold blow-up of R̃, where for a vertex W of R̃ (which is an

adapted primary (t)-cluster if t ≥ 1), the corresponding vertices in Rs are the subclusters

of W in Ps(t). Define Rs(β) = s ⊗ R̃(β) analogously. Also let Rp = p ⊗ Rs, where for a

vertex U of Rs the corresponding vertices in Rp are the subclusters of U in Pp(t). So the

vertices of Rp are precisely the p-clusters and also Rp = sp⊗R̃. Define Rp(β) = p⊗Rs(β)

= sp⊗R̃(β) analogously. Note that apart from the fact that the clusters which form their

vertex sets are slightly different for different values of t, these digraphs are the same, so

there is no need for any dependence on t in the notation.

Suppose that Ẽ is an edge of R̃(β) from Ũ to W̃ and that U is an s-cluster which is

a subcluster of Ũ and W is an s-cluster which a subcluster of W̃ . Note that there is a

unique edge E in Rs(β) from U to W corresponding to Ẽ. Thus to each edge E of Rs(β)
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we can associate the digraph

G
∗
(E) := G

∗
(Ẽ)[U,W ]. (2.5.12)

We make a similar association for each edge F of Rp(β) by defining G
∗(F ) analogously.

We now use the 1-factors F̃t to define edge-disjoint 1-factors F
?
j
in the reduced digraph

Rs(β) and then use the F
?
j
to find edge-disjoint 1-factors Fi in Rp(β). Note that each

cycle C of F̃t corresponds to an s-fold blow-up C
? of C in Rs(β). So for each cycle C in

F̃t we can apply Lemma 2.4.4 to obtain an (s − 1)-unwinding C1, . . . , Cs−1 of C
?. Here

we do not need the special properties of the (s − 1)-unwinding which are guaranteed by

Lemma 2.4.4; in fact any unwinding yielding edge-disjoint Hamilton cycles will do. So

F̃t corresponds to a set of (s− 1) 1-factors F
?
j
(with (t− 1)(s− 1) + 1 ≤ j ≤ t(s− 1)) of

Rs(β). We say that such an F
?
j
has original factor type t (and that t is the original type

of j). Note that for each cluster W of R̃, there are s clusters of F ?
j
which are subclusters

of W . Moreover, all of these lie on the same cycle of F ?
j
. Let

rs := (s− 1)r̃. (2.5.13)

Then altogether this gives us a set of rs edge-disjoint 1-factors F
?
1
, . . . , F ?

rs
of Rs(β).

Consider any cycle C? of a 1-factor F
?
j
obtained from a cycle C of F̃t as above. Let K

be the length of C; so C? has length Ks. We say that an s-cluster lying on C? is clean

for F ?
j
if it belongs to the last K clusters of C? (where for each cycle we pick a consistent

ordering of its vertices in advance). Note that K ≥ 2 and so C? has at least two clean

s-clusters. Moreover, for each adapted primary cluster W , exactly one subcluster of W

in Ps(t) is clean for F
?
j
. Note that for different 1-factors F ?

j
, the set of clean clusters will

usually be different.

It turns out that we actually need a stronger property than the one described above,

namely we need that (?) below holds. (This will enable us to ensure that, in the digraphs

Gi that we consider later, only a few clusters will contain vertices sending or receiving
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an edge from the exceptional set and these will be sufficiently far apart.) For this, we

use our refinement Pp(t) of each s-cluster into p subclusters and unwind the cycles in the

above 1-factorisation again.

For every V ∈ Ps(t), let V
1, . . . , V p be the p-clusters contained in V . Note that the

collection of all V k over all s-clusters V contained in an adapted primary cluster W are

precisely the p-clusters refining W . For each cycle D = V1 . . . VK in F ?
j
(where this is

the same ordering we specified above) let D? be the p-fold blow-up of D whose vertex

classes are the p-clusters V k

?
contained in V1, . . . , VK . Apply Lemma 2.4.4 to D

? to find

a (p − 1)-unwinding D1, . . . , Dp−1 of D
? with V k

?
playing the role of xk

?
. We have the

following property:

(?) For each 1 ≤ d ≤ p − 1 and 1 ≤ k ≤ p, the p-clusters V k

1
, . . . , V k

K−2 have pairwise

distance at least p on Dd.

Note that (?) holds only for the p-clusters in V1, . . . , VK−2 and not necessarily VK−1

or VK . This is the reason for introducing the clean s-clusters: recall that VK−1 and VK

are clean. This will mean that we will never introduce any edges between their vertices

and the exceptional set (see (b) in Section 2.5.4).

Moreover, for all 1 ≤ ? ≤ K, we have from Lemma 2.4.4 that V 1

?
, . . . , V

p

?
lie on

the same cycle Dd. Additionally, their successors on Dd all belong to a single adapted

primary cluster V?+1. Also F
?
j
gives rise to a set of (p− 1) edge-disjoint 1-factors Fi (with

(j − 1)(p − 1) + 1 ≤ i ≤ j(p − 1)) of Rp(β). We say that such an Fi has intermediate

factor type j and original factor type t where t is the original type of F ?
j
. For each i, write

V
spec

0,i
:= Ṽ

spec

0,t
for the special exceptional set associated with Fi, where t is the original

factor type of Fi. Note that for every i, every vertex in G is contained either in a p-cluster

of Fi, in V0 or in V
spec

0,i
. Note also that for each adapted primary cluster W of R̃, there

are sp clusters of Fi which are subclusters of W . Also let

rp := (p− 1)rs. (2.5.14)
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Then altogether this gives us a set of rp edge-disjoint 1-factors F1, . . . , Frp of Rp(β). Note

that for each t, there are exactly (s− 1)(p− 1) of the Fi which have original factor type

t. Furthermore,

rp

(2.5.4)

≤
α̃spL̃

β
and so rp

(2.5.9)

≤
α̃Lp

β
; also 1/m ≤ 1/mp

(2.5.7)

? 1/rp. (2.5.15)

For each edge E ∈ E(Fi) from A to B, let Gi(E) := G∗(E), where G∗(E) was

defined just after (2.5.12). Let Gi denote the union of the digraphs Gi(E) over all E with

E ∈ E(Fi) and call it the ith slice. ClearlyG1, . . . , Grp are edge-disjoint. Given E ∈ E(Fi)

for some 1 ≤ i ≤ rp, let Ẽ ∈ E(F̃t) be the unique edge such that E is in the blow-up of

Ẽ, where Fi has original factor type t. As noted directly before (2.5.7), G
∗(Ẽ) is (ε, β1)-

superregular and hence Gi(E) = G
∗(E) is (ε?, β1)-superregular by Lemma 2.3.13(i).

Recall that since V
spec

0,i
is different for each i, the vertex set of a p-cluster will be

slightly different in Gi and Gi? when Fi and Fi? have different original factor types. Note

that if U is a base 2p-cluster (of size mp/2), and U(t) is the associated 2p-(t)-cluster, then

|U ∩ U(t)| ≥ (1− ε
?
)mp/2. (2.5.16)

as the corresponding partitions are ε?-close. (On the other hand,
?

1≤t≤r̃
U(t) may be

empty.) The same statements hold for s- and p-clusters. When adding edges incident to

exceptional vertices in Section 2.5.6 we need to be careful about distinguishing between

base 2p-clusters and the 2p-(t)-clusters which are actually contained in the clusters of our

slices.

2.5.4 Red clusters and edges

The aim of this section is to lay some groundwork for Sections 2.5.5, 2.5.6 and 2.5.7 by

specifying the properties that the edges between the exceptional vertices and the rest of

V (G) need to satisfy. In Section 2.5.5 our aim is to remove a bounded number of bridge
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vertices V
bridge

0,i
from each Gi \(V0∪V

spec

0,i
) and change their neighbourhoods in such a way

that the blown-up cycles in Gi are connected via bridge vertices. Some additional vertices

will also be removed and added to V
spec

0,i
to keep the cluster sizes equal. In Section 2.5.6

we will add edges to Gi which are incident to V0. In Section 2.5.7 we will do the same

for V
spec

0,i
. We will then let

V0,i := V0 ∪ V
spec

0,i
∪ V

bridge

0,i
.

V0,i is then the exceptional set for the slice Gi: each vertex will lie either in a cluster of Gi

or in V0,i. Any edge incident to a vertex in V0,i and any vertex in a cluster of Gi incident

to such an edge will be called i-red (or red if this is unambiguous). Roughly speaking,

when adding red edges to Gi, we will need to ensure that Gi is a spanning almost-regular

digraph, that no non-exceptional vertex has large i-red degree and that the set of red

vertices is small and well-distributed.

To achieve this, for each i we will only add red edges incident to some carefully

selected 2p-clusters and then apply property (?) (which we derived from Lemma 2.4.4).

More precisely, for fixed i, let j = j(i) and t = t(i) respectively be the intermediate

and original factor types of Gi. For each s-cluster U of Ps(t), let U1, . . . , Up denote the

p-clusters of Pp(t) which are subclusters of U . For 1 ≤ ? ≤ p, let U(?) and U(? + p) be

the 2p-clusters contained in U?. In Gi, we will add red edges between V0,i and U(k) only

if

(a) t ≡ k mod 2p and

(b) U is not a clean cluster in F ?
j
.

We call such a 2p-cluster U(k) i-red and we call a p-cluster i-red if it contains an i-red

2p-cluster (or simply red if this is unambiguous). Note that (a) implies that every s-

cluster U which is not clean contains exactly one red 2p-cluster (and thus exactly one red

p-cluster). Moreover, recall that any adapted primary cluster contains exactly one clean

s-cluster; thus it contains exactly s− 1 red p-clusters.
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All red vertices will be contained in red 2p-clusters, but note that we do not require

every red cluster to contain a red vertex. Let

κ := (1− γ)β1mp. (2.5.17)

We would like to find exactly κ edge-disjoint Hamilton cycles in each of the Gi. For this,

we will first need to add edges so that Gi satisfies the following for all i with 1 ≤ i ≤ rp:

(Red0) There exists a sequence D1x1D2x2 . . . x?−1D?x?D1 with the following properties:

• Each Dj is a cycle of Fi and every cycle of Fi appears at least once in the

sequence;

• V
bridge

0,i
:= {x1, . . . , x?} and each xj has exactly κ outneighbours in Dj+1 and

exactly κ inneighbours in Dj .

(Red1) d
±

Gi
(x) = κ for all x ∈ V0,i;

(Red2) V0,i is an independent set in Gi;

(Red3) |N
±

Gi
(y) ∩ V0,i| ≤

√
ξβ1mp for all y /∈ V0,i;

(Red4) For every red p-cluster V , all red edges of Gi are incident to a single 2p-cluster

contained in V . In particular, |N
±

Gi
(V0,i) ∩ V | ≤ mp/2 for all clusters V ∈ Rp;

(Red5) If V, V ? are red p-clusters on a cycle C of Fi, then they have distance at least p on

C;

(Red6) If a p-cluster V contains the final vertex of a red edge in Gi, then it contains no

initial vertices of red edges in Gi, and vice versa;

(Red7) G1, . . . , Grp are edge-disjoint and Gi(E) is (2ε
?, β1)-superregular for all E ∈ E(Fi).

Roughly speaking, given a 1-factor f of Gi, (Red0) and (Red1) will ensure that f has

a path between any pair of successive cycles Dj of Fi. (Red2)–(Red6) imply that the red
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edges are well-distributed. This will be crucial when applying Lemma 2.4.5 to transform

f into a Hamilton cycle in Section 2.5.11.

Suppose that V is a red p-cluster. Since only one of the two 2p-clusters contained in

V is red, it follows that (Red4) will automatically be satisfied for V if we add red edges

according to (a) and (b). It is easy to see that this will also satisfy (Red5). Indeed, recall

that every non-clean s-cluster contains exactly one red p-cluster. Moreover, if U? and U??

are non-clean s-clusters then the p-cluster Uk

?
is red if and only if Uk

??
is red. Suppose

a cycle C in Fi was obtained by unwinding the blow-up of C
? in F ?

j
; then the last two

s-clusters in C ? (using the same ordering as in Section 2.5.3) are clean and hence contain

no red p-clusters by (b). So (?) implies that the red clusters on C will have distance at

least p apart.

Let F = rp/4p. For each k with 1 ≤ k ≤ 2p, note that the number of all digraphs

Gi whose original type t satisfies (a) is 2F . For each k, consider an ordering of all these

graphs.

We will now fix which of the (red) 2p-clusters will receive red edges and which of them

will send out red edges. For each i = 1, . . . , rp, let t = t(i) be the original type of Gi and

let k with 1 ≤ k ≤ 2p satisfy (a). Suppose that Gi is the fth graph with original type

t (so 1 ≤ f ≤ 2F ). For each adapted primary cluster W ∈ P(t), let W1, . . . ,Ws denote

the set of all s-clusters contained in W . Recall that exactly one of the Wj is clean. Now

choose a set S
+

W
of s-clusters from W1, . . . ,Ws/2 so that none of the s-clusters in S

+

W
is

clean and so that |S
+

W
| = s/2− 1 (recall that s is even). Let I

+

W
denote the set of indices

of the s-clusters in S
+

W
. Similarly choose S

−

W
from Ws/2+1, . . . ,Ws with |S

−

W
| = s/2 − 1

which avoids the clean cluster and let I
−

W
be the corresponding set of indices.

For each s-cluster W? contained in W , let W?(k) denote the kth 2p-cluster contained

in W?, where k is defined as in the previous paragraph. We call W?(k) in-red (for i) if

• 1 ≤ f ≤ F and ? ∈ I
+

W
, or F < f ≤ 2F and ? ∈ I

−

W
.

We call W?(k) out-red (for i) if

• 1 ≤ f ≤ F and ? ∈ I
−

W
, or F < f ≤ 2F and ? ∈ I

+

W
.

55



If a p-cluster V contains an in-red 2p-cluster, we say that V is in-red (and similarly for

out-red clusters). So the number of in-red p-clusters in each adapted primary cluster W

is exactly

|I
−

W
| =

s

2
− 1 (2.5.18)

and similarly for out-red clusters.

2.5.5 Connecting blown-up cycles

In the final section of the proof we will successively find 1-factors in each Gi and then

turn each of these into a Hamilton cycle. As mentioned earlier, (Red0) will be used to

ensure that each 1-factor f of Gi has a path connecting any pair of consecutive cycles of

Fi, which will make it possible to merge the cycles of f into a Hamilton cycle. In this

section we will modify Gi so that (Red0) holds.

We will join cycles by choosing bridge vertices xi,j in V (G) \ (V0 ∪ V
spec

0,i
) whose

neighbourhoods will be chosen from the sparse digraphs H
±

0
defined in Section 2.5.2. In

what follows, we write A
−

j
for the predecessor of the p-cluster Aj in Fi.

Claim 2.5.1. There is a sequence A1B1A2B2 . . . AL̃
B
L̃
A1 of p-clusters in Rp such

that, for each 1 ≤ j, j ? ≤ L̃ the following hold:

(i) Let Ãj and B̃j be the adapted primary clusters containing Aj and Bj respec-

tively. Then there is an edge from Ãj to B̃j in R̃.

(ii) A
−

j
is out-red and Bj is in-red;

(iii) Bj and Aj+1 lie in the same adapted primary cluster (where AL̃+1
:= A1).

(iv) Every adapted cluster contains exactly one Aj and exactly one Bj?.

(v) All the Aj and Bj? are distinct.
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A1

B
L̃

A
−

1

A
−

2

B1

A2

C

B2

A3

A
−

3

xi,1 xi,2

x
i,L̃

xi,3

Figure 2.2: Bridge vertices xi,1, xi,2, xi,3 chosen from p-clusters A1, A2, A3 respectively.

Proof. Observe that, by Lemma 2.3.5, R̃ is a robust (ν/4, 3τ )-outexpander, so

Theorem 2.4.6 implies that R̃ contains a Hamilton cycle C = Ã1 . . . ÃL̃
. We will

choose Aj in Ãj and Bj in Ãj+1. This will automatically satisfy (i), (iii) and (iv)

and ensures that they will be distinct, except possibly Aj = Bj−1. Now recall

that, by (2.5.18), each adapted primary cluster contains exactly s/2−1 in-red and

s/2 − 1 out-red p-clusters. Moreover, as noted after (?), they all lie on the same

cycle in Fi and p-clusters directly preceding those in Ãj on Fi all lie in the same

adapted primary cluster, which we call Ã
−

j
. Thus we can always choose an in-red

Bj−1 in Ãj and an out-red A
−

j
∈ Ã

−

j
whose successor Aj on Fi lies in Ãj , proving

(ii). Moreover, we have s/2− 1 > 1 choices for Aj so we may assume that Aj and

Bj−1 are distinct. This proves (v) and thus the claim. ?

We will choose the bridge vertices in the sets Aj . The next claim guarantees many

candidates for these bridge vertices whose neighbourhoods have the required properties.
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Claim 2.5.2. For each i with 1 ≤ i ≤ rp, whenever a p-cluster Aj ∈ V (Fi) is

joined by an edge in Rp to a p-cluster Bj ∈ V (Fi) the following holds. Let (A
−

j
)?

and B ?
j
be 2p-clusters contained in A

−

j
and Bj respectively. Then Aj contains at

least mp/2 vertices x such that both |N
−

H
−

0

(x)∩ (A
−

j
)?| > κ and |N

+

H
+

0

(x)∩B ?
j
| > κ.

We say that a vertex x as in Claim 2.5.2 is (i, j)-useful.

Proof of Claim 2.5.2. Note that (H0) and (URef) imply that, for at least 3mp/4

of the vertices x ∈ Aj , we have

|N
+

H
+

0

(x) ∩ B
?

j
| ≥ γdmp/5

(2.5.17)

> κ.

As Fi (and thus Rp) contains the edge A
−

j
Aj , for at least 3mp/4 of the vertices

x ∈ Aj we similarly have

|N
−

H
−

0

(x) ∩ (A
−

j
)
?
| > κ.

So at least mp/2 the vertices in Aj satisfy both inequalities, which proves the

claim. ?

Now we choose the set V
bridge

0,i
satisfying (Red0). For each 1 ≤ i ≤ rp, consider the

sequence guaranteed by Claim 2.5.1 and for each 1 ≤ j ≤ L̃, let (A
−

j
)red and Bred

j
be the

unique red 2p-clusters contained in A
−

j
and Bj respectively. So (A

−

j
)red is out-red and Bred

j

is in-red. For each 1 ≤ j ≤ L̃, apply Claim 2.5.2 to the pair (Aj , Bj) with (A
−

j
)red, Bred

j

playing the roles of (A
−

j
)?, B?

j
respectively, to obtain a vertex xi,j ∈ Aj which is (i, j)-useful

and which is distinct from all vertices chosen so far. Note that the latter is possible since

Claim 2.5.1(v) implies that for each i, we only choose one vertex from Aj . So altogether,

we choose at most rp vertices from each Aj , which is at most mp/3 by (2.5.15). In each

Gi, remove each xi,j from Aj and denote the collection of all xi,j with 1 ≤ j ≤ L̃ by

V
bridge

0,i
. This process is illustrated in Figure 2.2.

Now, for each 1 ≤ i ≤ rp, there are exactly sp − 1 of the p-clusters in each adapted
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primary (t)-cluster of Gi from which no vertices have been removed in this step, where t

is the original type of Fi. We still need to ensure that p-clusters of Gi have equal size, so

we choose a further (sp− 1)rpL̃ ≤ εn/3 distinct vertices such that exactly one is removed

from each untouched p-cluster in each Gi. Each such vertex is moved from its cluster

into V
spec

0,i
. The final inequality in (2.5.15) implies that we can assume that each vertex

x is moved into V
spec

0,i
for at most one 1 ≤ i ≤ rp in this step. Now adapted primary

(t)-clusters become adapted primary [i]-clusters and (adapted) s-, p- and 2p-(t)-clusters

become (adapted) s-, p- and 2p-[i]-clusters respectively (or s-, p-, 2p-clusters if this is

unambiguous). This will not overlap with previous notation as from now on we never

refer to (t)-clusters and only ever refer to base and [i]-clusters. (2.5.16) implies that if U

is a base 2p-cluster and U[i] is the associated 2p-[i]-cluster, then

|U ∩ U[i]| ≥ (1− ε
?
)mp/2− 1. (2.5.19)

We still refer to the cluster sizes m,ms and mp in the same way since each one has only

lost at most sp vertices (which does not affect any calculations). The 2p-clusters may no

longer have exactly the same size, but this also does not affect any of the calculations.

We call V
bridge

0,i
the set of bridge vertices and say that every edge incident to a bridge

vertex is i-red. We now have that

|V0,i|
(2.5.8)

≤ εn. (2.5.20)

Since in Gi, we removed exactly one vertex from each p-cluster, we still have

|N
+

H
+

0

(xi,j) ∩ B
red

j
| ≥ κ and |N

−

H
−

0

(xi,j) ∩ (A
−

j
)
red
| ≥ κ.

Since the xi,j are all distinct, it follows that for each xi,j , we can choose κ of these outedges

from H
+

0
and add them to Gi. Similarly, we can choose κ of these inedges from H

−

0
and

add them to Gi, whilst also removing every other edge incident to xi,j in Gi. So (Red1)
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is satisfied for V
bridge

0,i
.

It is now easy to verify (Red0). For each 1 ≤ i ≤ rp, consider the sequence given

by Claim 2.5.1. Let Dj be the cycle of Fi containing the adapted p-cluster Aj for each

1 ≤ j ≤ L̃ and let xj := xi,j be the bridge vertex which was removed from Aj in

Gi. Note that each cycle of Fi appears several times in the sequence. We claim that

D1x1D2x2 . . . xL̃D?xL̃D1 is a sequence satisfying (Red0). The first property is immediate

from Claim 2.5.1(iv). Each xj has inneighbourhood contained in A
−

j
which is in Dj since

Aj is, and its outneighbourhood is contained in Bj which lies in the same adapted cluster

as Aj+1 and thus in the cycle Dj+1. Therefore the second property is also satisfied.

(Red2) follows since the in- and outedges incident to bridge vertices were chosen from

edge-disjoint subdigraphs H
−

0
and H

+

0
respectively. Furthermore, by Claim 2.5.1(v),

any y /∈ V0,i is incident to at most one i-red edge so (Red3) holds. In each red p-

cluster V , red edges were only added to the unique red 2p-cluster W contained in V so

(Red4) is satisfied. (Red5) is satisfied by the comments after the statement of (Red7).

Moreover every out-red p-cluster only sends out red edges and every in-red p-cluster only

receives red edges so (Red6) holds. The edge-disjointness in (Red7) is immediate from

the construction. Finally, note that any vertex in V (G)\V0,i lost at most one inneighbour

and one outneighbour in Gi, so for each edge E of Fi, Gi(E) is certainly still (2ε
?, β1)-

superregular. Therefore (Red0) and (Red2)–(Red7) are all satisfied. Note that (Red1)

holds for all vertices in V
bridge

0,i
. The aim of the next two sections is to maintain these

properties while also achieving (Red1) for all vertices in V0,i.

2.5.6 Incorporating the core exceptional set V0

Note that so far, Gi contains no edges with initial or final vertex in V0 ∪ V
spec

0,i
. In this

section and the next we will add edges incident to these vertices into the Gi. Recall that we

call such edges and any incident vertices i-red or red if this is unambiguous. Throughout

both sections we will refer to (a) and (b) in Section 2.5.4. To achieve (Red1), we consider

the core exceptional set V0 and the special exceptional set V
spec

0,i
separately. In this section
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we consider the core exceptional set. Roughly speaking, the set of edges between V0 and

Gi \ V0 will consist of a random subdigraph of G induced by V0 and the red 2p-clusters

of Gi. The following claim guarantees the existence of suitable edge-disjoint random

subdigraphs. Recall from Section 2.5.4 that F = rp/4p.

Claim 2.5.3. Let X be a base 2p-cluster which is a subcluster of a base primary

clusterW . Then in G we can find F edge-disjoint bipartite graphs E
+

1
(X), . . . , E

+

F
(X)

with all edges oriented from V0 to X so that for all 1 ≤ f ≤ F the following hold:

(i) For all x ∈ V0 we have d
+

E
+

f
(X)
(x) ≥

1−ε

2spF

?
|N

+

G
(x) ∩W | − 5ε̃m̃

?
.

(ii) For all y ∈ X we have d
−

E
+

f
(X)
(y) <

√
ξβ1mp/2.

We can also find E
−

1
(X), . . . , E

−

F
(X) satisfying analogous properties for the in-

neighbourhoods.

Proof. Let E+(X) denote the digraph induced by the set of edges from V0 to

X in G. Now consider a random partition of the edges of E+(X) into F parts

E
+

f
(X). More precisely, assign each edge of E+(X) to E

+

f
(X) with probability

1/F , independently of all other edges. There are several cases to consider. Say that

x ∈ V0 is prolific if |N
+

G
(x) ∩W | > 5ε̃m̃. Say that V0 is large if |V0| ≥

√
ξβ1mp/2

and small otherwise. Every x ∈ V0 which is not prolific satisfies the condition in

(i) with probability 1, and the inequality in (ii) is satisfied with probability 1 if V0

is small. Suppose that x is prolific. Then since P ?
2p
is a 5ε̃-uniform 2sp-refinement

of P̃ , (URef) implies that d
+

E+(X)
(x) ≥

1−5ε̃

2sp
|N

+

G
(x) ∩W |.

Then for each 1 ≤ f ≤ F , each prolific x ∈ V0 and each y ∈ X ,

E

?

d
+

E
+

f
(X)
(x)

?

≥
1− 5ε̃

2spF
|N

+

G
(x) ∩W | and E

?

d
−

E
+

f
(X)
(y)

?

≤
|V0|

F
.

By Proposition 2.3.1 (with a := ε/2) we have that, for fixed f and prolific
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x ∈ V0,

P

?

d
+

E
+

f
(X)
(x) ≤

1− ε

2spF
|N

+

G
(x) ∩W |

?

≤ exp

?

−
5ε2ε̃m̃(1− 5ε̃)

24spF

?

(2.5.15)

≤ exp

?

−
ε̃2βn

s2pL̃2

?
(2.5.1)

≤ e
−
√
n

and |V0|F ≤ n2. So taking a union bound over all f and all x ∈ V0 we see that the

probability that (i) fails for some f in this partition is at most n2e−
√
n. Similarly,

for large V0, fixed f and y ∈ X , Proposition 2.3.1 implies that

P

?

d
−

E
+

f
(X)
(y) >

2|V0|

F

?

≤ exp

?

−

√
ξβ1mp

6F

?

(2.5.21)

= exp

?

−
2
√
ξβ1m

3srp

?
(2.5.1),(2.5.15)

≤ e
−
√
n
.

Note that n ≤ 2Lpmp by (2.5.11) and

rp

(2.5.14)

≥ spr̃/2
(2.5.4)

≥ spα̃L̃/3
(2.5.9)

= α̃Lp/3.

Thus

2|V0|

F

(2.5.2)

≤ 4
√
ε̃n
p

rp
≤
24
√
ε̃pmp

α̃

(2.5.1)

<

√
ξβ1mp

2
. (2.5.22)

Furthermore, |X |F ≤ n2, so (2.5.21) and (2.5.22) imply that the probability that

(ii) fails for this partition is at most n2e−
√
n. Therefore the partition satisfies both

(i) and (ii) with probability 1 − 2n2e−
√
n ≥ 1/2. This proves the claim. ?

For each k with 1 ≤ k ≤ 2p, recall from the end of Section 2.5.4 that the number of all

graphs Gi whose original type t satisfies (a) is 2F . For each k, consider the ordering of

all these digraphs as chosen in Section 2.5.4 and suppose that Gi is the fth digraph with

original type t. We now define the edges of Gi between V0 and V (G) \V0,i. For each base

s-clusterW?, letW?(k) denote the kth base 2p-cluster contained inW?. Apply Claim 2.5.3

to obtain F bipartite digraphs E
+

f
(W?(k)) and F bipartite digraphs E

−

f
(W?(k)) for each

W?(k). Now let W ?
?
denote the s-[i]-cluster associated with W? and W?(k)

? denote the
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2p-[i]-cluster associated with W?(k). Let E
+

f
(W?(k)

?) be the subdigraph of E
+

f
(W?(k))

consisting of all edges whose final vertex lies in W?(k)
? and let E

−

f
(W?(k))

?) be the subdi-

graph of E
−

f
(W?(k)) consisting of all edges whose initial vertex lies in W?(k)

?. Then, by

(2.5.19), for all x ∈ V (G) we have

d
+

E
+

f
(W?(k)

?)
(x) ≥ d

+

E
+

f
(W?(k))

(x)− ε
?
mp/2− 1. (2.5.23)

An analogous statement is true for the indegrees in E
−

f
. Recall that k with 1 ≤ k ≤ 2p

is defined by the fact that Gi has original type t and t ≡ k mod 2p, and that I
+

W
and

I
−

W
are the indices of the non-clean s-clusters in W defined at the end of Section 2.5.4.

If 1 ≤ f ≤ F , we add the following edges to Gi:

• all edges lying in the digraphs E
+

f
(W?(k)

?) with ? ∈ I
+

W
;

• all edges lying in the digraphs E
−

f
(W?(k)

?) with ? ∈ I
−

W
.

If F < f ≤ 2F , we add the following edges to Gi:

• all edges lying in the digraphs E
+

f−F
(W?(k)

?) with ? ∈ I
−

W
;

• all edges lying in the digraphs E
−

f−F
(W?(k)

?) with ? ∈ I
+

W
.

Note this implies that all edges from Gi \ V0 to V0 have initial vertex in an out-red

cluster and similarly for the in-red clusters. Moreover, the sets of edges assigned to Gi and

Gi? are disjoint for i ?= i
?. Indeed, this follows from the fact that, for j ?= k, E

±

f
(W?(j))

and E
±

f
(W?(k)) are clearly edge-disjoint; that for f ?= f ?, E

±

f
(W?(k)

?) and E
±

f ?(W?(k)
?)

are also edge-disjoint; and that each E
±

f
(W?(k)) is used for at most one of the Gi.

Therefore Claim 2.5.3, (2.5.23) and (2.5.18) imply that for all x ∈ V0, we have that

d
+

Gi
(x) ≥ (s/2− 1)

?

W∈P̃

?
1− ε

2spF
(|N

+

G
(x) ∩W | − 5ε̃m̃)−

ε?mp

2
− 1

?

.

Note also that

2spF =
srp

2

(2.5.15)

≤
s

2

α̃Lp

β

(2.5.11)

≤
s

2

α̃n

βmp

. (2.5.24)
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So

d
+

Gi
(x) ≥ (s/2− 1)

(1− ε?)

2spF
(α̃n− |V0| − 2ε

?
n)

(2.5.2),(2.5.24)

≥ (1− 4ε
?
)βmp

(2.5.5)

≥ β1mp

(2.5.17)

≥ κ, (2.5.25)

and we have an analogue for indegrees. So we can delete edges from each x ∈ V0 so that

d
±

Gi
(x) = κ in each slice and hence (Red1) holds for all vertices in V0.

2.5.7 Incorporating the special exceptional set V
spec

0,i

We now prove a claim which will be used to achieve (Red1) for the set V
spec

0,i
of special

exceptional vertices. Before this, we first need to derive a further property (H1?) of H
±

1

from (H1).

Write S
+

i
for the collection of vertices contained in the out-red 2p-[i]-clusters and

define S
−

i
analogously. Note that each of S

±

i
consists of the vertices in exactly s/2− 1 of

the 2p-[i]-clusters in each adapted s-[i]-cluster.

For every 1 ≤ k ≤ 2p and every base s-cluster U ∈ P ?
s
, let U(k) be the kth base

2p-cluster of U , and write H
+

1,k
for the spanning subdigraph of H

+

1
consisting of all edges

whose final vertex lies in
?

U∈P ?
s

U(k). Also define H
−

1,k
to be the spanning subdigraph of

H
−

1
consisting of all edges whose initial vertex lies in

?

U∈P ?
s

U(k). We have the following

property of H
±

1
:

(H1?) For all x ∈ V (G) \V0, whenever i has original type t and k satisfies 1 ≤ k ≤ 2p and

(a) we have that

γα̃n

20p
≤ |N

+

H
+

1,k

(x) ∩ S
−

i
| , |N

−

H
−

1,k

(x) ∩ S
+

i
| ≤

γα̃n

p
.

To prove (H1?), note that since P ?
2p
was a 5ε̃-uniform 2sp-refinement of P̃ , (URef) implies
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that, for each x ∈ V (G) \ V0, each 1 ≤ k ≤ 2p and U ∈ P ?
s
,

|N
+

H
+

1,k

(x) ∩ U(k)| ≥
(1− 5ε̃)

2sp

?

|N
+

H
+

1

(x) ∩ Ũ | − 5ε̃m̃

?

where Ũ is the base primary cluster containing U . If U(k)i is the 2p-[i]-cluster associated

with U(k), (2.5.19) implies that

|N
+

H
+

1,k

(x) ∩ U(k)i| ≥ |N
+

H
+

1,k

(x) ∩ U(k)| − ε
?
mp/2− 1.

But whenever i has original type t and k satisfies (a), S
−

i
contains all the vertices from ex-

actly s/2−1 of the 2p-[i]-clusters U(k)i contained in each adapted [i]-cluster Ũi associated

with Ũ , so

|N
+

H
+

1,k

(x) ∩ S
−

i
∩ Ũi| ≥ (s/2− 1)

?
1− 5ε̃

2sp
(|N

+

H
+

1

(x) ∩ Ũ | − 5ε̃m̃)−
ε?mp

2
− 1

?

≥ |N
+

H
+

1

(x) ∩ Ũ |/6p− ε
?
smp.

Therefore, summing over all base primary clusters Ũ and recalling that V0 is an isolated

set in H
+

1
we have that

|N
+

H
+

1,k

(x) ∩ S
−

i
| ≥

d
+

H
+

1

(x)

6p
− ε

?
smpL̃

(H1)

≥
γα̃n

20p
.

The other bounds in (H1?) follow similarly.

Claim 2.5.4. For each i with 1 ≤ i ≤ rp, there are subdigraphs Q
+

i
of H

+

1
and

Q
−

i
of H

−

1
each consisting of edges between V

spec

0,i
and V (G) \ V0,i so that

(i) for all x ∈ V
spec

0,i
we have |N

+

Q
+

i

(x) ∩ S
−

i
|, |N

−

Q
−

i

(x) ∩ S
+

i
| ≥ κ.

(ii) For all y ∈ V (G) \ V0,i we have d
+

Q
−

i

(y), d
−

Q
+

i

(y) ≤
√
ξβ1mp/3.

(iii) all the Q
±

i
are pairwise edge-disjoint.
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Proof. For each vertex x in V (G) \ V0, we let T (x) := {i : x ∈ V
spec

0,i
}. Recall that

x ∈ V
spec

0,i
if and only if

(A) x ∈ Ṽ
spec

0,t
and i has original type t; or

(B) x was removed to compensate for the removal of a bridge vertex.

Note that x can satisfy both (A) and (B). Suppose that x satisfies (A). Let Lx =

{t : x ∈ Ṽ
spec

0,t
}. Note x /∈ V0. So x is good in the sense of Section 2.5.1, and hence

|Lx| ≤ ξL̃/β. As observed before (2.5.20), any x ∈ V (G) \ V0 is in at most one set

V
spec

0,i
due to (B). Therefore

|T (x)| ≤ |Lx|(s− 1)(p− 1) + 1 ≤ ξL̃sp/β
(2.5.9)

= ξLp/β.

For each 1 ≤ i ≤ rp and each 1 ≤ k ≤ 2p we define digraphs Q
+

i,k
as follows. For

each k, we randomly assign each edge of H
+

1,k
whose initial vertex is x to one of

the digraphs Q
+

i,k
with i ∈ T (x) with probability q := β/ξLp (independently of all

other edges, and each edge is assigned to at most one of the Q
+

i,k
). The sum of

the probabilities is at most 1. Note that V0 is an isolated set in H
±

1,k
. Now define

Q
+

i
:= Q

+

i,k
where i has original type t and k satisfies (a). Then (iii) certainly

holds, and for all x ∈ V
spec

0,i
, we have

E
?

|N
+

Q
+

i

(x) ∩ S
−

i
|

?

=

β|N
+

H
+

1,k

(x) ∩ S
−

i
|

ξLp

(H1?)

≥
γα̃βn

20pξLp

(2.5.11)

≥ 2βmp. (2.5.26)

Proposition 2.3.1 implies that, for fixed 1 ≤ i ≤ rp and fixed x ∈ V
spec

0,i
,

P
?

|N
+

Q
+

i

(x) ∩ S
−

i
| < β1mp

?

≤ exp

?

−
βmp

6

?
(2.5.9),(2.5.11)

≤ exp

?

−
βn

12spL̃

?

≤ e
−
√
n
.

So a union bound implies that the probability that there exist i and x not satisfying

this inequality is at most n2e−
√
n < 1/4. (i) now follows since κ ≤ β1mp by (2.5.17).
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For (ii), note that for any vertex y ∈ V (G) we have

E
?

d
−

Q
+

i

(y)

?

≤ q|V
spec

0,i
|
(2.5.20)

≤
β

ξLp
εn

(2.5.11)

≤
2ε

ξ
βmp ≤

?
ξβmp/4. (2.5.27)

Proposition 2.3.1 shows (as in Claim 2.5.3) that the probability that the condition

in (ii) fails for some i and some y ∈ V (G) is at most 1/4. So there is a choice

of Q
+

1
, . . . , Q+

rp
so that all the conditions hold, and similarly for Q

−

1
, . . . , Q−

rp
, as

required. ?

It is now easy to obtain the edges of Gi between V
spec

0,i
and V (G) \ V0,i. Apply Claim

2.5.4 to find edge-disjoint digraphs Q
±

i
for each 1 ≤ i ≤ rp. Recall that S

±

i
⊆ V (G) \ V0,i

and so (Red6) will follow if we add i-red edges with initial vertex in S
+

i
or final vertex in

S
−

i
. So for each x ∈ V0,i we add exactly κ edges in Q

+

i
going from x to S

−

i
and exactly κ

edges in Q
−

i
going to x from S

+

i
.

We have now incorporated V0,i into each Gi. It remains to verify that (Red0)–(Red7)

hold. Recall that we partially verified these properties for the red vertices incident to

bridge vertices at the end of Section 2.5.5. In particular, (Red0) was achieved in Section

2.5.5 and the edges we have added here do not affect it. The previous paragraph shows

that (Red1) holds for all vertices in V
spec

0,i
. Since we already verified it for the bridge

vertices V
bridge

0,i
in Section 2.5.5 and for V0 in Section 2.5.6, it now holds for all vertices

in V0,i. Clearly, our construction satisfies (Red2). (Red3) follows from Claims 2.5.3(ii)

and 2.5.4(ii) and the fact that each non-exceptional vertex is incident to at most one

bridge vertex in each slice. Recall that, in Section 2.5.4, we showed how (Red4) and

(Red5) follow from (a) and (b) of the construction. (Red6) follows from the fact that

in constructions including V0 and V
spec

0,i
and V

bridge

0,i
, the outedges from V0,i always went

to in-red clusters and the inedges to V0,i came from out-red clusters. (Red7) follows

immediately from the edge-disjointness of the digraphs in Claims 2.5.3 and 2.5.4 and the

observation in the final paragraph of Section 2.5.5.

Note that Theorem 2.3.2 implies that the proofs of Claims 2.5.3 and 2.5.4 can be
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‘derandomised’ and so red edges satisfying (Red0)–(Red7) can be found in polynomial

time.

2.5.8 Finding shadow balancing sequences

We have now incorporated all the exceptional vertices to form rp edge-disjoint slices Gi of

G, together containing almost all edges, such that each slice is a spanning almost-regular

subdigraph of G. The main aim of this section is to add further red edges to each slice Gi

so that the number of red edges sent out by vertices in each cluster V equals the number

received by its successor V + on the cycle of Fi containing V .

This ‘balancing property’ is necessary for the following reason. Suppose that V is

out-red and suppose that we have a 1-factor f containing a red edge sent out to V0,i by

a vertex x ∈ V . If V + is not red, any edge of f to V + must have its initial vertex in V .

So f [V, V +] must be a perfect matching, which is impossible since there can be no edge

in f from x to a vertex in V +. Note that the absence of red edges incident to V − does

not give rise to the above problem. But we observe a similar problem for U, U− when U

is in-red. So the above ‘balancing property’ is certainly necessary to obtain even a single

1-factor. We will see in Section 2.5.10 that, combined with our other properties, it is also

sufficient.

We will add ‘balancing edges’ between non-exceptional vertices to achieve the above

property while also ensuring that no vertex is incident to many red edges. As indicated

above, it will turn out to be sufficient to only add such edges to either the predecessor or

successor of existing red clusters. By the end of Section 2.5.9 our new red clusters will

consist of consecutive pairs, well-spaced around each blown-up cycle.

We will first find ‘shadow balancing edges’ in the reduced digraph between suitable

cluster pairs. For this, we will use the fact that Rp is a robust outexpander. Then we

will choose the required number of edges from the sparse pre-reserved subdigraph H2

induced on these pairs. When doing this, we need to be careful to maintain (Red6) with

p replaced by p− 1.
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Given Gi, we denote the set of red p-clusters by T (so we suppress the dependence on i

here). Let Tin denote the set of in-red clusters and define Tout similarly, so T = Tin∪Tout.

For a set S ⊆ T of p-clusters, we let S− denote the predecessors of S on T and define S+

similarly.

Now, for each 1 ≤ i ≤ rp and each p-cluster V , let

s
±

i
(V ) :=

?

y∈V

|N
±

Gi
(y) ∩ V0,i| (2.5.28)

be the number of red edges entering/leaving V . So s
+

i
(V ) ?= 0 only if V ∈ Tout and

s
−

i
(V ) ?= 0 only if V ∈ Tin. Note that (Red1) implies that

?

V ∈Rp

s
+

i
(V ) =

?

V ∈Rp

s
−

i
(V ). (2.5.29)

Let

b :=
ξ1/6β1m

2

p

Lp
and c := ξ

1/5
β1m

2

p
. (2.5.30)

A balancing sequence Bi with respect to Gi is a spanning subdigraph of H2 with the

following properties:

(B1) d
±

Bi
(y) ≤ 8ξ1/6β1mp for every y /∈ V0,i;

(B2) We have the following degree conditions:

d
+

Bi
(V ) =






s
−

i
(V +) + c if V ∈ T

−

in

c if V ∈ Tout

0 otherwise,

d
−

Bi
(V ) =






c if V ∈ Tin

s
+

i
(V −) + c if V ∈ T

+

out

0 otherwise.

We will use so called ‘shadow balancing sequences’ as a framework to find balancing
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sequences. For this, define an auxiliary digraph R∗ with V (R∗) = T as follows. Let

N
+

R∗(V ) =






?

N
+

Rp
(V −) ∩ Tin

?

∪

?

N
+

Rp
(V −) ∩ T

+

out

?−

if V ∈ Tin
?

N
+

Rp
(V ) ∩ Tin

?

∪

?

N
+

Rp
(V ) ∩ T

+

out

?−

if V ∈ Tout.

(2.5.31)

This definition reflects the fact that red edges entering V ∈ Tin will be balanced by edges

leaving V − (and entering either Tin or the successor W
+ of some W ∈ Tout). Similarly an

edge leaving V ∈ Tout will be balanced by an edge entering V
+. Note that R∗ depends

on i. If we need to emphasise this, we write R∗
i
.

Define a shadow balancing sequence B ?
i
to be a multidigraph with vertex set V (R∗)

whose edges are copies of edges of R∗ as follows. Let

n
+

V
:=






s
−

i
(V ) + c if V ∈ Tin

c if V ∈ Tout

and n
−

V
:=






c if V ∈ Tin

s
+

i
(V ) + c if V ∈ Tout.

Then B ?
i
has the following properties:

(B1?) no edge of R∗ appears more than b times in B ?
i
.

(B2?) For every V ∈ V (R∗), we have d
+

B?
i

(V ) = n
+

V
and d

−

B?
i

(V ) = n
−

V
.

Note that (2.5.29) implies that

?

V ∈R∗

n
+

V
=

?

V ∈R∗

n
−

V
. (2.5.32)

To find these shadow balancing sequences, we will need that R∗ is a robust outexpander

with sufficiently large minimum semidegree.

Claim 2.5.5. Let ν ? = ν3/64. Then

(i) R∗ is a robust (ν ?, 12τ )-outexpander.

(ii) δ0(R∗) ≥ α̃|R∗|/4.
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Proof. To prove part (i) of the claim, we will use the fact that an (s/2 − 1)-fold

blow-up of a robust (ν/4, 3τ )-outexpander is a (ν ?, 6τ )-robust outexpander (see

Lemma 2.3.12). Let Rin

p
= Rp[Tin] and R

out

p
= Rp[T

+

out]. Since every adapted

primary cluster contains exactly s/2 − 1 out-red p-clusters, it follows that Rin

p
is

an (s/2 − 1)-fold blow-up of R̃. So it is a robust (ν ?, 6τ )-outexpander. Similarly,

Rout

p
is a robust (ν ?, 6τ )-outexpander.

Consider any S ⊆ Tin with 6τ |Tin| ≤ |S| ≤ (1−6τ )|Tin|. Note that Tin and Tout

are disjoint (see e.g. (Red6)). So Tin and (T
+

out)
− are disjoint and hence (2.5.31)

implies that

|RN
+

ν?,R∗(S)| = |RN
+

ν?,Rp
(S

−
) ∩ Tin|+ |(RN

+

ν?,Rp
(S

−
) ∩ T

+

out
)
−
|. (2.5.33)

Now let S
−

in
be obtained from S− by replacing each p-cluster V ∈ S− by an

arbitrary (but distinct) p-cluster Vin ∈ Tin which lies in the same adapted primary

cluster as S−. Note this is possible as S ⊆ Tin implies that S (and thus S
−)

contains at most s/2− 1 of the p-clusters from each adapted s-cluster. Note that

in Rp, each cluster receives an edge from Vin if and only if it receives an edge from

V . So (2.5.31) implies that

|RN
+

ν?,Rp
(S

−
) ∩ Tin| = |RN

+

ν?,Rp
(S

−

in
) ∩ Tin| = |RN

+

ν?,Rin
p

(S
−

in
)|

≥ |S
−

in
|+ ν

?
|R

in

p
| = |S|+ ν

?
|R

∗
|/2.

Similarly, let S
−

out be obtained from S
− by replacing each p-cluster V ∈ S− by an

arbitrary (but distinct) cluster Vout ∈ T
+

out which lies in the same adapted s-cluster
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as V . Then we have

|(RN
+

ν?,Rp
(S

−
) ∩ T

+

out
)
−
| = |RN

+

ν?,Rp
(S

−
) ∩ T

+

out
|

= |RN
+

ν?,Rp
(S

−

out
) ∩ T

+

out
| = |RN

+

ν?,Rout
p

(S
−

out
)|

≥ |S
−

out
|+ ν

?
|R

out

p
| = |S|+ ν

?
|R

∗
|/2.

So altogether, we have |RN
+

ν?,R∗(S)| ≥ 2|S|+ ν ?|R∗|.

Now suppose that S ⊆ Tout with 6τ |Tout| ≤ |S| ≤ (1 − 6τ )|Tout|. Similarly as

above, (2.5.31) implies that

|RN
+

ν?,R∗(S)| = |RN
+

ν?,Rp
(S) ∩ Tin|+ |(RN

+

ν?,Rp
(S) ∩ T

+

out
)
−
| (2.5.34)

≥ 2|S|+ ν
?
|R

∗
|.

Now consider any S ⊆ V (R∗) with 6τ |R∗| ≤ |S| ≤ (1 − 6τ )|R∗|. Then either

|S ∩ Tin| ≥ |S|/2 or |S ∩ Tout| ≥ |S|/2. In either case, we get |RN
+

ν?,R∗(S)| ≥

|S|+ ν ?|R∗|. This proves part (i) of the claim.

To prove part (ii), suppose that V ∈ Tin. Note that R
in

p
satisfies δ0(Rin

p
) ≥

α̃|Rin

p
|/2 by Lemma 2.3.12(i). Choose any V

−

in
∈ Tin which lies in the same adapted

primary cluster as V −. Then, similarly as observed above, V
−

in
has the same

outneighbours within the set Tin as V
− (both in the digraph Rp). So the degree

bound follows for V . The case when V ∈ Tout is similar. ?

It is now easy to find shadow balancing sequences B ?
i
satisfying (B1?) and (B2?). Indeed,

note that c ≤ n
±

V
≤ c +

√
ξβ1m

2

p
by (Red3). In particular, (2.5.30) implies that n

+

V
=

c
?
1± ξ3/10

?
and similarly for n

−

V
. Let R? be obtained from R∗ by replacing each of the

edges of R∗ by b copies of this edge and let n? := |R∗| = (s − 2)L̃. We will apply

Lemma 2.4.1 as follows:

R∗ R? n? b ξ3/10 ν ? c/n?

playing the role of G Q n q ε ν ρ
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Then

ρ :=
c

n?

(2.5.30)

=
ξ1/5β1m

2

p

(s− 2)L̃

(2.5.1)

≤
ξ1/6β1m

2

p
ν ?2

3spL̃

(2.5.9),(2.5.30)

=
bν ?2

3

as required by Lemma 2.4.1, and we obtain a spanning subdigraph B ?
i
of R? with d

±

B?
i

(V ) =

n
±

V
for each V ∈ V (R?) = V (R∗).

2.5.9 Adding balancing sequences

Note that for each edge E ? of R∗
i
, there is a unique edge E of Rp (from a p-cluster

A to a p-cluster B) which corresponds to E ?. More precisely, (2.5.31) shows that if

E ? = V W ∈ E(R∗
i
) then

E =






V −W if V ∈ Tin,W ∈ Tin

V −W+ if V ∈ Tin,W ∈ Tout

V W if V ∈ Tout,W ∈ Tin

V W+ if V ∈ Tout,W ∈ Tout.

(2.5.35)

(As before, V − denotes the predecessor of V on Fi.) So for each edge of B
?
i
, we can choose

the corresponding edge of Rp. For each i and each edge E of Rp, let ci(E) denote the

number of times that the edge E is chosen due to B ?
i
. So ci(E) ≤ b by (B1

?). If we now

replace the chosen edges E of Rp with ci(E) edges in H2(E), this will give the required

balancing sequence Bi. However, we need to be careful to ensure that we can do this for

every i with 1 ≤ i ≤ rp so that all edges are disjoint. We also wish to maintain (Red4)

and (Red6).

We now need to consider the dependence on i again, as clusters in different slices are

not quite the same. Given a base p-cluster A in Rp, let A[i] be the associated p-[i]-cluster.

Each p-[i]-cluster A[i] contains at most one red 2p-[i]-cluster by (Red4). If there is such

a subcluster, denote it by A∗[i]. If there is no such subcluster, let A∗[i] be an arbitrary

subcluster of A[i]. We will only add balancing edges incident to A∗[i]. Let A∗ be the

base 2p-cluster associated with A∗[i]. Suppose that E is an edge of Rp from A to B.
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Let Ẽ ∈ E(R̃(β)) be one of the edges whose blow-up contains E; then H2(Ẽ) is (ε, γβ)-

regular as observed in Section 2.5.2. Write H2(E
∗) for the subdigraph of H2(Ẽ) induced

on (A∗, B∗); then by Lemma 2.3.13(i) we have that H2(E
∗) is (ε?, γβ)-regular.

Write H2(E
∗[i]) for the subdigraph of H2(E

∗) induced on (A∗[i], B∗[i]). Whenever E

is chosen due to B ?
i
, we will add balancing edges to Gi from H2(E

∗[i]). By (2.5.19) we

have that, for all i with 1 ≤ i ≤ rp, H2(E
∗[i]) is a subdigraph of H2(E

∗) obtained by

removing at most ε?mp/2 + 1 vertices from each vertex class.

Now for each i in succession we aim to apply Lemma 2.3.11 to find a set Ci(E)

of ci(E) edges in H2(E
∗), and remove the edges of Ci(E) from further consideration.

Suppose we have found C1(E), . . . , Ci−1(E) in H2(E
∗). Suppose further that each of

these has maximum degree at most d0mp and that the edges are from A
∗ to B∗. We now

wish to find Ci(E).

Let H
i−1

2
(E∗) denote the subdigraph of H2(E

∗) obtained by removing the edges of

C1(E), . . . , Ci−1(E) and removing any vertex not present in H2(E
∗[i]). So H

i−1

2
(E∗) is

also a subdigraph of H2(E
∗[i]). By (2.5.19), the number of vertices in each vertex class

of H
i−1

2
(E∗) is at most ε?mp/2 + 1 less than that in H2(E

∗). Moreover, at most rpd0mp

edges have been removed from each vertex.

We need the following short claim.

Claim 2.5.6. Let d0 := 8b/m
2
p
where b is defined in (2.5.30). Suppose that H is a

subdigraph of H2(E
∗) obtained by removing at most ε?mp/2 + 1 vertices from each

of A∗ and B∗ and at most rpd0mp edges at every vertex. Then H is (ξ1/15, γβ)-

regular.

Proof. Note first that

d0 =
8b

m2
p

=
8ξ1/6β1

Lp
. (2.5.36)

So

2rpd0

(2.5.15)

≤
16ξ1/6β1

Lp

α̃Lp

β
≤ 16ξ

1/6
α̃ ≤ ξ

1/7
.
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Also ε? ? ξ1/7. So Proposition 2.3.6(i) with ξ1/7 playing the role of d? implies the

claim. ?

Claim 2.5.6 implies that H
i−1

2
(E∗) is (ξ1/15, γβ)-regular. So we can apply Lemma 2.3.11

to find Ci(E), with a maximum degree of at most 8ci(E)/mp ≤ 8b/mp = d0mp. We

continue inductively until we have found C1(E), . . . , Crp(E).

Now let Bi be the union of all Ci(E) over all edges E of Rp. Note that the Bi are

edge-disjoint by construction. To verify (B1), note that for all y ∈ V (G) \ V0,i,

d
±

Bi
(y) ≤ Lpd0mp

(2.5.36)

= 8ξ
1/6
β1mp,

as required. (2.5.35) implies that the clusters that send out shadow balancing edges are

precisely T
−

in
∪ Tout and the clusters that receive shadow balancing edges are precisely

Tin ∪ T
+

out. Suppose that V ∈ T
−

in
. Then we have that

d
+

Bi
(V )

(2.5.35)

= d
+

B?
i

(V
+
)
(B2?)

= n
+

V + = s
−

i
(V

+
) + c

so (B2) holds in this case. The other cases follow similarly. Therefore Bi satisfies (B1)

and (B2). Note that only vertices in a single 2p-subcluster of each p-cluster (which is the

red subcluster if one of them is red) are incident to a balancing edge.

For each 1 ≤ i ≤ rp we add the edges of Bi to Gi. So now E(Gi) consists of edges

from each cluster to its unique successor on Fi together with the i-red edges incident to

V0,i and the balancing edges Bi.

2.5.10 Almost decomposing into 1-factors

Our aim now is to use Lemma 2.4.2 to find a κ-regular spanning subdigraph of each Gi.

For this, the ‘balancing property’ achieved in Section 2.5.9 will be crucial.

Before this, for each i, we first remove a subdigraph H3,i of Gi, which will be needed in

Section 2.5.11. We do this as follows. For each edge E of Fi, recall that Gi(E) is (2ε
?, β1)-
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superregular by (Red7). Apply Lemma 2.3.9(ii) to Gi(E) with parameters K := 2 and

γ1 := γ
2β1, γ2 := β2 where

β2 := (1− γ
2
)β1 (2.5.37)

to obtain two edge-disjoint subdigraphs of Gi(E): a (2ε
?1/12, γ2β1)-superregular digraph

H3,i(E) and a (2ε
?1/12, β2)-superregular ‘remainder’ subdigraph which we still denote by

Gi(E). We let H3,i have vertex set V (G) and edge set given by the union of H3,i(E) over

all edges E of Fi.

We now continue with finding a κ-regular spanning subdigraph of each Gi. Denote

the collection of i-red edges incident to V0,i by Ti. For each 1 ≤ i ≤ rp we call the edges

in Ti ∪Bi and any p-cluster containing a vertex incident to such an edge i-red or red (so

balancing edges are also regarded as red now). Write d
±

i
(x) := d

±

Ti
(x) + d

±

Bi
(x) for each

x ∈ V (Gi) and define d
±

i
(V ) =

?

x∈V
d
±

i
(x) for V ∈ V (Fi). So by (2.5.28) we have that,

for each V ∈ V (Fi),

d
±

i
(V ) = s

±

i
(V ) + d

±

Bi
(V ). (2.5.38)

For each 1 ≤ i ≤ rp we now have the following properties:

(Red0?) There exists a sequence D1x1D2x2 . . . x?−1D?x?D1 with the following properties:

• Each Dj is a cycle of Fi and every cycle of Fi appears at least once in the

sequence;

• V
bridge

0,i
= {x1, . . . , x?} and each xj has exactly κ outneighbours in Dj+1 and

exactly κ inneighbours in Dj ;

(Red1?) d
±

i
(x) = κ for each x ∈ V0,i;

(Red2?) V0,i is an independent set in Gi;

(Red3?) d
±

i
(y) ≤ ξ1/7β2mp for each y ∈ Gi \ V0,i;

(Red4?) For every red cluster V ∈ Rp, all i-red edges are incident to a single 2p-cluster
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contained in V . In particular, at most mp/2 vertices in V are incident to an i-red

edge;

(Red5?) In Fi any out-red p-cluster V is preceded by p− 3 p-clusters which are neither out-

red nor in-red, and is succeeded by an in-red p-cluster. Any in-red p-cluster V is

succeeded by p− 3 p-clusters which are neither out-red nor in-red, and is preceded

by an out-red p-cluster;

(Red6?) Each p-cluster is either out-red, in-red or contains no vertices incident to a red edge;

(Red7?) G1, . . . , Grp are edge-disjoint and Gi(E) is (2ε
?1/12, β2)-superregular for all E ∈

E(Fi);

(B2??) d
+

i
(V ) = d

−

i
(V +) for all p-clusters V ∈ V (Fi).

(Red0?), (Red1?) and (Red2?) follow immediately from (Red0), (Red1) and (Red2) re-

spectively. (Red3?) follows from summing the degrees given by (Red3) and (B1) and

using (2.5.37). (Red4?) is a consequence of (Red4) and our choice of edges in Section

2.5.9. (Red5?) follows from (Red5) and (B2): indeed, the (red) clusters in T = Tin ∪ Tout

are separated by exactly p − 1 non-red clusters by (Red5), and by (B2), the only other

red clusters are precisely those in T
−

in
∪ T

+

out. (Red6
?) and edge-disjointness in (Red7?)

follow from (Red6) and edge-disjointness in (Red7), as well as the construction of Bi in

Sections 2.5.8 and 2.5.9. The second part of (Red7?) was verified directly after (2.5.37).

(B2??) is a direct consequence of (B2) and (2.5.38). So for example, if V ∈ Tout then

d
+

i
(V ) = s

+

i
(V ) + c = d

−

Bi
(V

+
) = d

−

i
(V

+
).

Consider any edge E from V to V + in Fi. We wish to find a subdigraph Gi(E)
∗ of

Gi(E) such that, together with the red edges incident to V and V
+, every vertex in V has

outdegree κ and every vertex in V + has indegree κ. The union of these subdigraphs over

all edges E ∈ E(Fi), together with the red edges Bi ∪ Ti, will form a κ-regular spanning

subdigraph G∗
i
of Gi. (Recall that κ was defined in (2.5.17).)
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Given any x ∈ V , let m+

x
= d

+

i
(x) and given any y ∈ V +, let m−

y
= d

−

i
(y). By (Red3?)

we have that m+

x
, m−

y
≤ ξ1/7β2mp and by (B2

??) we have that

?

x∈V

m
+

x
=

?

y∈V +

m
−

y
.

Let ε̂ := 2ε?1/12 and β̂ := β2 − ε̂. So (Red7
?) implies that Gi(E) is (ε̂, β̂ + ε̂)-superregular

for every E ∈ E(Fi). Let

α̂ := 1−
(1− γ)β1

β2 − ε̂
.

So κ = (1 − α̂)β̂mp, and it is easy to see that γ/2 ≤ α̂ ≤ 2γ, so that β̂ ? α̂ ? 1. Thus

we can apply Lemma 2.4.2 to Gi(E) with ε̂ playing the role of ε, β̂ playing the role of β

and α̂ playing the role of α. Then we obtain a spanning subdigraph Gi(E)
∗ of Gi(E) in

which each x ∈ V has outdegree κ−m+

x
and each y ∈ V + has indegree κ−m−

y
. Then

G
∗

i
:=

?

E∈E(Fi)

Gi(E)
∗
∪ Bi ∪ Ti

is a κ-regular spanning subdigraph of Gi as required. Moreover G
∗
1
, . . . , G∗

rp
are edge-

disjoint subdigraphs of G by (Red7?). Now apply Proposition 2.4.3 to each G∗
i
to obtain

κ edge-disjoint 1-factors fi,1, . . . , fi,κ of each Gi.

2.5.11 Merging 1-factors into Hamilton cycles

The final step is to use edges disjoint from our collection of 1-factors to merge cycles

such that each 1-factor is transformed into a Hamilton cycle. Then we will have found

an approximate decomposition into edge-disjoint Hamilton cycles. The argument will be

exactly the same for each Gi. So since we will work within a fixed Gi, we will label the κ

factors obtained from Gi as f1, . . . , fκ. We wish to use Lemma 2.4.5 and edges from our

pre-reserved digraph H3,i to merge the cycles in each fj .

We will use the fact that each fj has a structure closely related to that of Fi (which,

78



recall, is a 1-factor of Rp(β)). We say that a non-red cluster is black and we say that an

edge of Fi is black if both the initial cluster and final cluster are black. So for all black

edges V V + in Fi we have that fj [V, V
+] is a perfect matching for each fj , since in Gi

every edge from a vertex in V goes to a vertex in V +. (Red5?) implies that every pair

UoutUin of consecutive red clusters on any cycle of Fi is followed by p − 3 consecutive

black clusters. Denote the path of length p − 4 from the first of these black clusters to

the last by IU , so every edge in IU is black. So we can choose p− 4 disjoint sets of edges

J1, . . . , Jp−4 of Fi so that for each pair of consecutive red clusters UoutUin, Jq contains

exactly one edge of IU . So each Jq consists of exactly |T | = |Tin|+ |Tout| = (s− 2)L̃ edges

of Fi and has non-empty intersection with any cycle of Fi.

The idea is to apply Lemma 2.4.5 repeatedly to transform each of the fj into a

Hamilton cycle. Each time H3,i will play the role of G, and each Jq will play the role of

J roughly κ/p times. If E is a set of edges in Fi, we write H3,i(E) :=
?

E∈E
H3,i(E).

We now describe the merging procedure for f1. Denote the cycles of Fi by D1, . . . , D?.

Let K1 be the 1-regular digraph consisting of all cycles of f1 which contain a vertex in

a cluster of D1. Now apply Lemma 2.4.5 as follows: D1 plays the role of C, J1 ∩ E(D1)

plays the role of J , K1 plays the role of F and H3,i(J1) plays the role of G.

Condition (i) in Lemma 2.4.5 is clearly satisfied since every edge of J1 is black. To

verify condition (ii), let D be any cycle of K1. We claim that D contains a vertex x from

a black cluster B. To see this, suppose that D contains a vertex y which lies in an in-red

cluster. Then the next vertex of D lies in a black cluster. Similarly, if y lies in an out-red

cluster, then the vertex preceding y on D lies in a black cluster, which proves the claim.

Now let IU be the black interval containing B; then there is a path in D (containing x)

which contains at least one vertex from each cluster in IU . But J1 ∩ E(D1) contains an

edge of IU , as required.

To verify (iii), let V V + and WW+ be edges of J1 ∩ E(D1) such that J1 avoids all

edges in the segment V +D1W . Then there is exactly one pair of successive red clusters

UoutUin in this segment. So for each va ∈ V
+ there is a path Pa in f1 from va to a distinct
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vertex uout
a
in Uout which winds around D1. Similarly, for each u

in

a?
∈ Uin there is a path

P ?
a?
in f1 from ua? to a distinct vertex wa? ∈ W which winds around D1. But by (Red4

?),

for at least half of the vertices uout
a

∈ Uout, there is an edge in f1 to some u
in

a?
∈ Uin. So

f1 contains at least one path vaPau
out

a
uin
a?
P ?
a?
wa? from va ∈ V + to wa? ∈ W which winds

around D1, as required.

So we can find a matching M1 in H3,i(J1) and a cycle C1 with V (C1) = V (K1) and

E(C1) ⊆ K1 ∪M1. We replace the 1-regular subdigraph K1 of f1 by C1. We call the

resulting 1-factor f1(1) and we denote H3,i \M1 by H
2

3,i
. Note that all cycles of f1 which

contained a vertex in D1 have now been merged into a single cycle of f1(1).

For 2 ≤ k ≤ ? we define f1(k) inductively as follows. Let Kk be the 1-regular digraph

consisting of all cycles of f1(k− 1) which contain a vertex in a cluster of Dk. Now let Dk

play the role of C, J1 ∩E(Dk) play the role of J , Kk play the role of F and H3,i(J1) play

the role of G. Note that the k choices J1 ∩ E(Dk?) with 1 ≤ k
? ≤ k playing the role of J

so far are pairwise vertex-disjoint. Exactly as above, the conditions (i)-(iii) are satisfied

and we can apply Lemma 2.4.5 to obtain a 1-factor f1(k) in which all cycles containing a

vertex in Dk have been merged. Moreover if two vertices x and y lie on a common cycle

of f1(k − 1) they lie on a common cycle of f1(k). We repeat this for all 1 ≤ k ≤ ? to

obtain f ?
1
:= f1(?). We will see below that f

?
1
is a Hamilton cycle.

We now aim to carry out a similar procedure for f2, . . . , fκ to obtain f
?
2
, . . . , f ?

κ
. The

approach will be to use J1 for f1, . . . , fκ? where κ
? := κ/(p − 4) and more generally to

use Jq for f(q−1)κ?+1, . . . , fqκ? . Note that, to obtain f
?
1
, we removed exactly one perfect

matching from each H3,i(E) for each edge E of J1. To reuse J1 we need only check that,

at each step and for each edge E of J1, the remainder of the sparse digraph H3,i(E)

satisfies the conditions required of G in Lemma 2.4.5. For this, let H t

3,i
(Jq) denote a

subdigraph of H3,i(Jq) obtained by removing t arbitrary perfect matchings from H3,i(E)

for each E ∈ Jq.

Claim 2.5.7. Let κ? be defined as above and let ε∗ := 2
?
β1/p. Then H

κ?

3,i
(E) is
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(ε∗, γ2β1)-superregular whenever E is an edge in Jq, where 1 ≤ q ≤ p− 4.

Proof. To see this, it suffices to consider a single edge E = XY in J1. Write

H := Hκ?

3,i
(E). Then, since at each stage we removed a perfect matching, in total

we removed κ? edges incident to each vertex in X ∪Y , which is at most β1mp/p by

(2.5.17). Since H3,i(E) is (2ε
?1/12, γ2β1)-superregular (see directly after (2.5.37)),

we can apply Proposition 2.3.6(ii) with H3,i(E) playing the role of G, H playing

the role of G? and d? := β1/p to find that H is (ε∗, γ2β1)-superregular. Note that

ε∗ ? γ2β1 by (2.5.1). This proves the claim. ?

Suppose that we have constructed f ?
1
, . . . , f ?

t
with t < κ? in the same way as f ?

1
. Then

we will have used t perfect matchings in H3,i(E) for each E ∈ J1. Let H
t

3,i
(J1) denote

the subdigraph of H3,i(J1) consisting of the remaining edges. Then Claim 2.5.7 implies

that H t

3,i
(J1) can still play the role of G in Lemma 2.4.5. So we can construct f

?
t+1

in the

same way as f ?
1
. Thus we can obtain f ?

1
, . . . , f ?

κ?
as described above.

Now for each 2 ≤ q ≤ p − 4 and each 1 ≤ t ≤ κ? we can use Jq to obtain f
?

(q−1)κ?+t

from f(q−1)κ?+t in exactly the same way (except that we use edges from H3,i(Jq) and so

Jq ∩ E(Dk) now plays the role of J for 1 ≤ k ≤ ?).

More precisely, write f(q−1)κ?+t(0) := f(q−1)κ?+t and H
0

3,i
(Jq) := H3,i(Jq). For each

1 ≤ j ≤ ? let K(q−1)κ?+t be the 1-regular digraph consisting of all cycles of f(q−1)κ?+t(j−1)

which contain a vertex in a cluster of Dj . Apply Lemma 2.4.5 with Dj playing the role

of C, Jq ∩E(Dj) playing the role of J , K1 playing the role of F and H
t−1

3,i
(Jq) playing the

role of G to obtain f(q−1)κ?+t(j). By Claim 2.5.7, H t

3,i
(Jq) satisfies the conditions required

of G in the lemma. Exactly as for f1 above, f(q−1)κ?+t(j) is a 1-factor in which all cycles

containing a vertex in Dj have been merged, and if two vertices lie on a common cycle

of f(q−1)κ?+t(j − 1) they also lie on a common cycle of f(q−1)κ?+t(j). Write f
?

(q−1)κ?+t
:=

f(q−1)κ?+t(?). Now let H
j

3,i
(Jq) denote the remainder of H

j−1

3,i
(Jq) after these ? applications

of the lemma.

We have now obtained f ?
1
, . . . , f ?

κ
. They are clearly edge-disjoint 1-factors. We claim

that f ?
j
is a Hamilton cycle for each 1 ≤ j ≤ κ. Indeed, suppose not. It suffices to
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consider f ?
1
. Let C and C ? be cycles in f ?

1
where C contains a vertex x in some cycle D of

Fi and C
? contains a vertex x? in some cycle D? of Fi. Recall that, by our construction,

for all cycles Dk in Fi, every vertex in (a cluster of) Dk is contained in a single cycle in

f ?
1
. Consider the sequence given by (Red0?) as a cyclic sequence and pick an interval

DgxgDg+1xg+1 . . . xg?−1Dg?xg?

such that D = Dg and D
? = Dg? . By (Red0

?) and (Red1?), the inneighbour of xg in

f ?
1
is contained in D, so xg ∈ V (C). But similarly the outneighbour of xg in f

?
1
is

contained in Dg+1, so all vertices lying in a cluster of Dg+1 are contained in V (C) and

thus xg+1 ∈ V (C). Continuing along the subsequence we conclude that every vertex lying

in a cluster of D? lies on C. So x? lies on both C ? and C; so since f ?
1
is a 1-factor we must

have C = C ?. Thus f ?
1
is a Hamilton cycle, and the same holds for f ?

2
, . . . , f ?

κ
.

Finally, we can bound the total number of Hamilton cycles as follows. Note that

κ
(2.5.5),(2.5.10),(2.5.17)

= (1− γ)(1− 5γ)β
m

sp
.

rp
(2.5.4),(2.5.13),(2.5.14)

= (s− 1)(p− 1)(α̃ − γ)
L̃

β
≥ (1−

√
γ)sp

α̃L̃

β
.

So altogether, after repeating the procedure for every 1 ≤ i ≤ rp, we have found

rpκ ≥ (1− γ)(1− 5γ)(1−
√
γ)α̃L̃m̃

(2.5.7)

≥ (1−
√
γ)

3
(1− ε)α̃n

(2.5.1)

≥ (1− η)r

edge-disjoint Hamilton cycles, as required. This completes the proof of Theorem A.

82



2.6 The proof of Corollary 2.1.1

We now use Theorem A and Lemma 2.4.1 to prove Corollary 2.1.1.

Proof. As in the proof of Theorem A, we may assume without loss of generality that

0 < η ? ν ? τ ? α. Choose n0 and γ so that 0 < 1/n0 ? γ ? η. Suppose that G is a

digraph on n ≥ n0 vertices satisfying (i) and (ii). Let

n
±

x
:= d

±

G
(x)− (α −

√
γ)n

for each x ∈ V (G). We apply Lemma 2.4.1 to G with ρ = ε =
√
γ and with Q = G (so

q = 1) to obtain a subdigraph H of G such that G̃ := G \ H is an (α −
√
γ)n-regular

digraph on n vertices. Note that for all x ∈ V (G) we have d
−

G̃
(x) ≥ d

−

G
(x)− (

√
γ− γ)n ≥

d
−

G
(x)− νn/2. So for all sets S of vertices,

RN
+

ν/2,G̃
(S) ⊇ RN

+

ν,G
(S).

Thus G̃ is a robust (ν/2, τ )-outexpander. Therefore we can apply Theorem A to G̃ with

parameter η? := η/2α to find (1− η?)(α−
√
γ)n > (α− η)n edge-disjoint Hamilton cycles

in G̃ and hence in G.
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CHAPTER 3

THE ROBUST COMPONENT STRUCTURE OF

DENSE REGULAR GRAPHS AND

APPLICATIONS

3.1 Introduction

3.1.1 The robust component structure of dense regular graphs

The main result of this chapter states that any dense regular graph G is the vertex-

disjoint union of a bounded number of ‘robust components’. Each such component has

a strong expansion property that is highly ‘resilient’ and almost all edges of G lie inside

these robust components. In other words, the result implies that the large scale structure

of dense regular graphs is remarkably simple. This can be applied e.g. to Hamiltonicity

problems in dense regular graphs. Note that the structural information obtained in this

way is quite different from that given by Szemerédi’s Regularity lemma.

The crucial notion in our partition is that of robust expansion. This is a structural

property which has close connections to Hamiltonicity. Recall the following definitions.

Given a graph G on n vertices, S ⊆ V (G) and 0 < ν ≤ τ < 1, we define the ν-robust

neighbourhood RNν,G(S) of S to be the set of all those vertices of G with at least νn

neighbours in S. We say G is a robust (ν, τ )-expander if, for every S ⊆ V (G) with

τn ≤ |S| ≤ (1− τ )n, we have that |RNν,G(S)| ≥ |S|+ νn.
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There is an analogous notion of robust outexpansion for digraphs. This was first intro-

duced in [86] and has been instrumental in proving several longstanding conjectures. For

example, Kühn and Osthus [81] recently settled a conjecture of Kelly from 1968 (for large

tournaments) by showing that every sufficiently large dense regular robust outexpander

has a Hamilton decomposition. This was discussed in more detail in Chapter 2. Another

example is the recent proof [78, 79] of Sumner’s universal tournament conjecture from

1971.

The main result of the current chapter is Theorem B. It allows us to harness the

useful consequences of robust expansion even if the graph itself is not a robust expander.

For this, we introduce the additional notion of ‘bipartite robust expanders’. Let G be a

bipartite graph with vertex classes A and B. Then clearly G is not a robust expander as

the larger class does not expand. However, we can obtain a bipartite analogue of robust

expansion by only considering sets S ⊆ A with τ |A| ≤ |S| ≤ (1 − τ )|A|. This notion

extends in a natural way to graphs which are ‘close to bipartite’.

Roughly speaking, our main result (Theorem B) implies the following.

(†) For all r ∈ N and all ε > 0, any sufficiently large D-regular graph on n vertices with

D ≥ (
1

r+1
+ ε)n has a vertex partition into at most r robust expander components

and bipartite robust expander components, so that the number of edges between

these is o(n2).

We give a formal statement of this in Section 3.3. In Section 3.5 we obtain a generalisation

to almost regular graphs. (Here, G is ‘almost regular’ if ∆(G)− δ(G) = o(n).)

In the special case of dense vertex-transitive graphs (which are always regular),

Christofides, Hladký and Máthé [32] introduced a partition into ‘iron connected com-

ponents’. (Iron connectivity is closely related to robust expansion.) They applied this

to resolve the dense case of a question of Lovász [90] on Hamilton paths (and cycles) in

vertex-transitive graphs. It would be very interesting to obtain a similar partition result

for further classes of graphs. In particular, it might be possible to generalise Theorem B

to sparser graphs.
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In this chapter, we apply Theorem B to give an approximate solution to a long-

standing conjecture on Hamilton cycles in regular graphs (Theorem 3.1.2) as well as an

asymptotically optimal result on the circumference of dense regular graphs of given con-

nectivity (Theorem 3.1.4). We are also confident that our robust partition result will

have applications to other problems.

Chapter 4 will be devoted to the proof of Theorem C, the exact version of Theo-

rem 3.1.2.

3.1.2 An application to Hamilton cycles in regular graphs

Consider the classical result of Dirac that every graph on n ≥ 3 vertices with minimum

degree at least n/2 contains a Hamilton cycle. Suppose we wish to strengthen this by

reducing the degree threshold at the expense of introducing some other condition(s).

The two extremal examples for Dirac’s theorem (i.e. the disjoint union of two cliques and

the almost balanced complete bipartite graph) make it natural to consider regular graphs

with some connectivity property, see e.g. the recent survey of Li [88] and handbook article

of Bondy [20].

In particular, Szekeres (see [63]) asked for which D every 2-connected D-regular graph

G on n vertices is Hamiltonian. Jackson [63] showed that D ≥ n/3 suffices. This improved

earlier results of Nash-Williams [94], Erdős and Hobbs [44] and Bollobás and Hobbs [15].

Hilbig [61] improved the degree condition to n/3 − 1, unless G is the Petersen graph

or another exceptional graph. As discussed later on in this section, this bound is best

possible.

Bollobás [13] as well as Häggkvist (see [63]) independently made the natural and far

more general conjecture that any t-connected regular graph on n vertices with degree at

least n/(t+1) is Hamiltonian. However, the following counterexample (see Figure 3.1(i)),

due to Jung [68] and independently Jackson, Li and Zhu [66], disproves this conjecture

for t > 3.

For m divisible by four, construct G as follows. Let C1, C2 be two disjoint copies
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of Km+1 and let A,B be two disjoint independent sets of orders m,m − 1 respectively.

Add every edge between A and B. Add a set of m/2 independent edges from each of

C1 and C2 to A so that together these edges form a matching of size m. Delete m/4

independent edges in each of C1, C2 so that G is m-regular. Then G has 4m+ 1 vertices

and is m/2-connected. However G is not Hamiltonian since G\A has |A|+1 components

(in other words, G is not 1-tough).

m− 1m

m+ 1

m+ 1

C1

C2

A B

(i)

a

b

(ii)

Figure 3.1: Extremal examples for Conjecture 3.1.1.

Jackson, Li and Zhu [66] believe that the conjecture of Bollobás and Häggkvist is true

in the remaining open case when t = 3.

Conjecture 3.1.1. Let G be a 3-connected D-regular graph on n ≥ 13 vertices such that

D ≥ n/4. Then G contains a Hamilton cycle.

The 3-regular graph obtained from the Petersen graph by replacing one vertex with a

triangle shows that the conjecture does not hold for n = 12. The graph in Figure 3.1(i)

is extremal and the bound on D is tight.

As mentioned earlier, there exist non-Hamiltonian 2-connected regular graphs on n

vertices with degree close to n/3 (see Figure 3.1(ii)). Indeed, we can construct such a

graph G as follows. Start with three disjoint cliques on 3m vertices each. In the ith clique

choose disjoint sets Ai and Bi with |Ai| = |Bi| and |A1| = |A3| = m and |A2| = m − 1.
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Remove a perfect matching between Ai and Bi for each i. Add two new vertices a and

b, where a is connected to all vertices in the sets Ai and b is connected to all vertices in

all the sets Bi. Then G is a (3m− 1)-regular 2-connected graph on n = 9m+ 2 vertices.

However, G is not Hamiltonian because G \ {a, b} has three components. Therefore none

of the conditions – degree, order or connectivity – of Conjecture 3.1.1 can be relaxed.

There have been several partial results in the direction of Conjecture 3.1.1. Fan [45]

and Jung [68] independently showed that every 3-connected D-regular graph contains a

cycle of length at least 3D, or a Hamilton cycle. Li and Zhu [89] proved Conjecture 3.1.1

in the case when D ≥ 7n/22 and Broersma, van den Heuvel, Jackson and Veldman [26]

proved it for D ≥ 2(n + 7)/7. In [66] it is proved that, if G satisfies the conditions of

the conjecture, any longest cycle in G is dominating provided that n is not too small.

(Here, a subgraph H of a graph G is dominating if G \ V (H) is an independent set.)

By considering robust partitions, we are able to prove an approximate version of the

conjecture.

Theorem 3.1.2. For all ε > 0, there exists n0 ∈ N such that every 3-connected D-regular

graph on n ≥ n0 vertices with D ≥ (1/4 + ε)n is Hamiltonian.

In fact, if D is at least a little larger than n/5 but G is not Hamiltonian we also

determine the approximate structure of G (see Theorem 3.7.11). In Chapter 4, we use

this to prove the exact version of Conjecture 3.1.1 for large n. Moreover, the proof in

Chapter 4 does not supersede the results established in the current chapter, but rather

uses them as an essential tool.

There are also natural analogues of the above results and questions for directed graphs.

Here, a D-regular directed graph is such that every vertex has both in- and outdegree

equal to D. An oriented graph is a digraph without 2-cycles.

Conjecture 3.1.3.

(a) For each D > 2, every D-regular oriented graph G on n vertices with D ≥ (n−1)/4

is Hamiltonian.
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(b) Every strongly 2-connected D-regular digraph on n vertices with D ≥ n/3 is Hamil-

tonian.

(c) For each D > 2, every D-regular strongly 2-connected oriented graph G on n vertices

with D ≥ n/6 is Hamiltonian.

(a) was conjectured by Jackson [64], (b) and (c) were raised in [80], which also contains

a more detailed discussion of these conjectures.

3.1.3 An application to the circumference of regular graphs

More generally, we also consider the circumference of dense regular graphs of given con-

nectivity. Bondy [19] conjectured that, for r ≥ 3, every sufficiently large 2-connected

D-regular graph G on n vertices with D ≥ n/r has circumference c(G) ≥ 2n/(r − 1).

(Here the circumference c(G) of G is the length of the longest cycle in G.) This was

confirmed by Wei [114], who proved the conjecture for all n and in fact showed that

c(G) ≥ 2n/(r − 1) + 2(r − 3)/(r − 1), which is best possible. We are able to extend this

(asymptotically) to t-connected dense regular graphs.

Theorem 3.1.4. Let t, r ∈ N. For all ε > 0 there exists n0 ∈ N such that the following

holds. Whenever G is a t-connected D-regular graph on n ≥ n0 vertices where D ≥

(1/r + ε)n, the circumference of G is at least min{t/(r − 1), 1− ε}n.

This is asymptotically best possible. Indeed, in Proposition 3.8.1 we show that, for

every t, r ∈ N, there are infinitely many n such that there exists a graph G on n vertices

which is ((n − t)/(r − 1) − 1)-regular and t-connected with c(G) ≤ tn/(r − 1) + t.

Moreover, as discussed above, the first extremal example in Figure 3.1 shows that in

general min{t/(r − 1), 1− ε}n cannot be replaced by min{t/(r − 1), 1}n.

Theorem 3.1.4 shows that the conjecture of Bollobás and Häggkvist is in fact close

to being true after all – any t-connected regular graph with degree slightly higher than

n/(t+ 1) contains an almost spanning cycle.
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3.1.4 An application to bipartite regular graphs

One can consider similar questions about dense regular bipartite graphs. Häggkvist [58]

conjectured that every 2-connected D-regular bipartite graph on n vertices with D ≥ n/6

is Hamiltonian. If true, this result would be best possible. Indeed, it was essentially

verified by Jackson and Li [65] who proved it in the case when D ≥ (n+38)/6. Recently,

Li [88] conjectured a bipartite analogue of Conjecture 3.1.1, i.e. that every 3-connected

D-regular bipartite graph on n vertices with D ≥ n/8 is Hamiltonian.

Restricting to bipartite graphs strengthens the structural information implied by our

main result Theorem B considerably. So it seems likely that one can use our partition

result to make progress towards these and other related conjectures.

One might ask if a bipartite analogue of the conjecture of Bollobás and Häggkvist

holds, i.e. whether every t-connected D-regular bipartite graph on n vertices with D ≥

n/2(t+1) contains a Hamilton cycle. However, as in the general case, it turns out that this

is false for t > 3. Indeed, for each t ≥ 2 and infinitely many D ∈ N, Proposition 3.8.2

guarantees a D-regular bipartite graph G on 8D + 2 vertices that is t-connected and

contains no Hamilton cycle. (This observation generalises one from [88], which considered

the case when t = 3.)

As in the general case, one may also consider the circumference of dense regular

bipartite graphs. Indeed, the argument for Theorem 3.1.4 yields the following bipartite

analogue. Again, it is asymptotically best possible (see Proposition 3.8.2(i)).

Theorem 3.1.5. Let t, r ∈ N, where r is even. For all ε > 0 there exists n0 ∈ N such that

the following holds. Whenever G is a t-connected D-regular bipartite graph on n ≥ n0

vertices where D ≥ (1/r+ε)n, the circumference of G is at least min{2tn/(r−2), n}−εn.
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3.1.5 Organisation of the chapter and sketch proof of Theo-

rem 3.1.2

This chapter is organised as follows. In the remainder of this section we sketch the proof

of Theorem 3.1.2. Section 4.4 lists some notation which will be used throughout. In

Section 3.3 we state our robust partition result (Theorem B) which formalises (†). We

prove it in Section 3.4, which also contains a sketch of the argument. In Section 3.5 we

derive a version of Theorem B for almost regular graphs. In Section 3.6 we show how

to find suitable path systems covering the robust components obtained from Theorem B.

These tools are then used in Section 3.7 to prove Theorem 3.1.2 and used in Section 3.8

to prove Theorems 3.1.4 and 3.1.5.

In order to see how our partition result Theorem B may be applied, we now briefly

outline the argument used to prove Theorem 3.1.2.

Let ε > 0 and suppose that G is a 3-connected D-regular graph on n vertices, where

D ≥ (1/4 + ε)n. Now (†) gives us a robust partition V of G containing exactly k robust

expander components and ? bipartite robust expander components, where k + ? ≤ 3.

However, Theorem B actually gives the stronger bound that k + 2? ≤ 3, so there are

only five possible choices of (k, ?) (see Proposition 3.3.1). Assume for simplicity that V

consists of three robust expander components G1, G2, G3. So (k, ?) = (3, 0). The result

of [86] mentioned in Section 3.1.1 implies that Gi contains a Hamilton cycle for i = 1, 2, 3.

In fact, it can be used to show (see Corollary 3.6.8) that Gi is Hamilton p-linked for each

bounded p. (Here a graph G is Hamilton p-linked if, whenever x1, y1, . . . , xp, yp are distinct

vertices, there exist vertex-disjoint paths P1, . . . , Pp such that Pj connects xj to yj , and

such that together the paths P1, . . . , Pp cover all vertices of G.) This means that the

problem of finding a Hamilton cycle in G can be reduced to finding only a suitable set of

external edges, where an edge is external if it has endpoints in different Gi. We use the

assumption of 3-connectivity to find these external edges (in Section 3.7).

The cases where ? > 0 are more difficult since a bipartite graph does not contain a

Hamilton cycle if it is not balanced. So as well as suitable external edges, we need to find
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some ‘balancing edges’ incident to the bipartite robust expander component. (Note that

if ? > 0 we must have ? = 1 and k ≤ 1.) Suppose for example that we have k = ? = 1

and that we have a bipartite robust expander component with vertex classes A,B where

|A| = |B| + 1, as well as a robust expander component X and an edge e joining A to

X and an edge f joining B to X , where e and f are disjoint (so e and f are external

edges). Then one possible set of balancing edges consists e.g. of two further external edges

incident to A. Another example would be one edge inside A. These balancing edges are

guaranteed by our assumption that G is regular. We construct them in Section 3.7.

3.2 Notation

For A ⊆ V (G), complements are always taken within the entire graph G, so that A :=

V (G)\A. Given A ⊆ V (G), we write N(A) :=
?

a∈A
N(a). For x ∈ V (G) and A ⊆ V (G)

we write dA(x) for the number of edges xy with y ∈ A. For A,B ⊆ V (G), we write

e(A,B) for the number of edges with exactly one endpoint in A and one endpoint in B.

(Note that A,B are not necessarily disjoint.) Define e?(A,B) := e(A,B) + e(A ∩ B). So

e?(A,B) =
?

a∈A
dB(a) =

?

b∈B
dA(b) and if A,B are disjoint then e?(A,B) = e(A,B).

For a digraph G, we write δ0(G) for the minimum of its minimum indegree and minimum

outdegree.

For distinct x, y ∈ V (G) and a path P with endpoints x and y, we sometimes write

P = xPy to emphasise this. Given disjoint subsets A,B of V (G), we say that P is an

AB-path if P has one endpoint in A and one endpoint in B. We call a vertex-disjoint

collection of paths a path system. We will often think of a path system P as a graph with

edge set
?

P∈P
E(P ), so that e.g. V (P) is the union of the vertex sets of each path in P .
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3.3 Robust partitions of regular graphs

In this section we list the definitions which are required to state the main result of this

chapter. For a graph G on n vertices, 0 < ν < 1 and S ⊆ V (G), recall that the ν-robust

neighbourhood RNν,G(S) of S to be the set of all those vertices with at least νn neighbours

in S. Also, recall that for 0 < ν ≤ τ < 1 we say that G is a robust (ν, τ )-expander if, for

all sets S of vertices satisfying τn ≤ |S| ≤ (1− τ )n, we have that |RNν,G(S)| ≥ |S|+ νn.

For S ⊆ X ⊆ V (G) we write RNν,X(S) := RNν,G[X](S).

We now introduce the concept of ‘bipartite robust expansion’. Let 0 < ν ≤ τ < 1.

Suppose that H is a (not necessarily bipartite) graph on n vertices and that A,B is a

partition of V (H). We say that H is a bipartite robust (ν, τ )-expander with bipartition

A,B if every S ⊆ A with τ |A| ≤ |S| ≤ (1 − τ )|A| satisfies |RNν,H(S) ∩ B| ≥ |S| + νn.

Note that the order of A and B matters here. We do not mention the bipartition if it is

clear from the context.

Note that for 0 < ν ? ≤ ν ≤ τ ≤ τ ? < 1, any robust (ν, τ )-expander is also a robust

(ν ?, τ ?)-expander (and the analogue holds in the bipartite case).

Given 0 < ρ < 1, we say that U ⊆ V (G) is a ρ-component of a graph G on n vertices

if |U | ≥
√
ρn and eG(U, U) ≤ ρn

2. Note that a ρ-component is not necessarily connected.

Let 0 < ρ ≤ ν ≤ 1. Let G be a graph containing a ρ-component U and let S ⊆ U .

We say that S is ν-expanding in U if |RNν,U (S)| ≥ |S| + ν|U |, and non-ν-expanding

otherwise. So if G[U ] is a robust (ν, τ )-expander for some τ , then all S ⊆ U satisfying

τ |U | ≤ |S| ≤ (1− τ )|U | are ν-expanding in U .

Recall that U1 = V (G) \ U1 and similarly for U2. Suppose that G is a graph on

n vertices and that U ⊆ V (G). We say that U is ρ-close to bipartite (with bipartition

U1, U2) if

(C1) U is the union of two disjoint sets U1 and U2 with |U1|, |U2| ≥
√
ρn;

(C2)

?
?
?|U1| − |U2|

?
?
? ≤ ρn;

(C3) e(U1, U2) + e(U2, U1) ≤ ρn
2.
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So U is close to bipartite if a balanced bipartite graph can be obtained from U by removing

a small number of vertices and edges.

Note that (C1) and (C3) together imply that U is a ρ-component. Suppose that G is a

graph on n vertices and that U ⊆ V (G). Let 0 < ρ ≤ ν ≤ τ < 1. We say that U is a

(ρ, ν, τ )-robust expander component of G if

(E1) U is a ρ-component;

(E2) G[U ] is a robust (ν, τ )-expander.

We say that U is a bipartite (ρ, ν, τ )-robust expander component (with bipartition A,B)

of G if

(B1) U is ρ-close to bipartite with bipartition A,B;

(B2) G[U ] is a bipartite robust (ν, τ )-expander with bipartition A,B.

We say that U is a (ρ, ν, τ )-robust component if it is either a (ρ, ν, τ )-robust expander

component or a bipartite (ρ, ν, τ )-robust expander component.

Our main result states that any sufficiently dense regular graph has a partition into

robust components. Let k, ?,D ∈ N and 0 < ρ ≤ ν ≤ τ < 1. Given a D-regular graph G

on n vertices, we say that V is a robust partition of G with parameters ρ, ν, τ, k, ? if the

following conditions hold.

(D1) V = {V1, . . . , Vk,W1, . . . ,W?} is a partition of V (G);

(D2) for all 1 ≤ i ≤ k, Vi is a (ρ, ν, τ )-robust expander component of G;

(D3) for all 1 ≤ j ≤ ?, there exists a partition Aj , Bj of Wj such that Wj is a bipartite

(ρ, ν, τ )-robust expander component with respect to Aj , Bj ;

(D4) for all X,X ? ∈ V and all x ∈ X , we have dX(x) ≥ dX ?(x). In particular, dX(x) ≥

D/m, where m := k + ?;

(D5) for all 1 ≤ j ≤ ? we have dBj
(u) ≥ dAj

(u) for all u ∈ Aj and dAj
(v) ≥ dBj

(v) for all

v ∈ Bj ; in particular, δ(G[Aj , Bj ]) ≥ D/2m;
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(D6) k + 2? ≤
?
(1 + ρ1/3)n/D

?
;

(D7) for all X ∈ V , all but at most ρn vertices x ∈ X satisfy dX(x) ≥ D − ρn.

As we shall see, (D6) can be derived from (D1)–(D5) but it is useful to state it

explicitly. Our main result is the following theorem, which we prove in the next section.

As mentioned in the introduction to the chapter, we can use Theorem B to derive a

version for almost regular graphs (see Section 3.5).

Theorem B. For all α, τ > 0 and every non-decreasing function f : (0, 1)→ (0, 1), there

exists n0 ∈ N such that the following holds. For all D-regular graphs G on n ≥ n0 vertices

where D ≥ αn, there exist ρ, ν with 1/n0 ≤ ρ ≤ ν ≤ τ ; ρ ≤ f(ν) and 1/n0 ≤ f(ρ), and

k, ? ∈ N such that G has a robust partition V with parameters ρ, ν, τ, k, ?.

The technical statement is necessary in order to apply Theorem B e.g. to prove The-

orem 3.1.2. One must ensure that the robust partition parameters ρ, ν, τ are sufficiently

small compared to the degree parameter ε, but also ‘well-spaced’ enough.

When the degree of G is large, (D6) implies that there are only a small number of

possible choices for k and ?.

Proposition 3.3.1. Let n,D ∈ N and suppose that 0 < 1/n ? ρ ? ν ? τ ? 1/r < 1

and ρ1/3 ≤ ε/2. Let G be a D-regular graph on n vertices where D ≥ (1/r + ε)n and

let V be a robust partition of G with parameters ρ, ν, τ, k, ?. Then k + 2? ≤ r − 1 and so

? ≤ ?(r − 1)/2? and k ≤ r − 1− 2?. In particular,

(i) if r = 4 then (k, ?) ∈ S, where S := {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1)};

(ii) if r = 5 then (k, ?) ∈ S ∪ {(4, 0), (2, 1), (0, 2)}.

Proof. It suffices to show that k+2? ≤ r−1. By (D6) and our assumption that ρ1/3 ≤ ε/2

we have

k + 2? ≤

?
1 + ε/2

1/r + ε

?

=

?
r + rε/2

1 + rε

?

= r − 1,

as required.
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We will prove Theorem 3.1.2 separately for each of these cases in Proposition 3.3.1(i).

Proposition 3.3.1 is the only point of the proof where we need the full strength of the

degree condition D ≥ (1/4 + ε)n. (Within each case, D ≥ εn will do.) Furthermore,

Proposition 3.3.1(ii) implies that a ?n/4?-regular graph could have any of the structures

specified by (i), as well as (k, ?) = (4, 0), (2, 1), (0, 2). Note also that Figure 3.1(i) has

(k, ?) = (2, 1) and Figure 3.1(ii) has (k, ?) = (3, 0).

3.4 The proof of Theorem B

We begin by giving a brief sketch of the argument.

3.4.1 Sketch proof of Theorem B

The basic proof strategy is to successively refine an appropriate partition of G. So let

G be a D-regular graph on n vertices, where D is linear in n. Suppose that G is not

a (bipartite) robust expander. Then V (G) contains a set S such that N is not much

larger than S, where N := RNν,G(S) for appropriate ν. Consider a minimal S with this

property. Since G is regular, N cannot be significantly smaller than S. One can use

this to show that there are very few edges between S ∪ N and X := V (G) \ (S ∪ N).

Moreover, one can show that S and N are either almost identical or almost disjoint. In

the former case, G[S ∪ N ] is close to a robust expander and in the latter G[S ∪ N ] is

close to a bipartite robust expander. So in both cases, S ∪ N is close to a (bipartite)

robust expander component. Similarly, if X is non-empty, it is either a (bipartite) robust

expander component or we can partition it further along the above lines. In this way, we

eventually arrive at the desired partition.

3.4.2 Preliminary observations

We will often use the following simple observation about ρ-components.
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Lemma 3.4.1. Let n,D ∈ N and ρ, ρ?, γ > 0 such that ρ ≤ ρ? and γ ≥ ρ + ρ?. Let G be

a D-regular graph on n vertices and let U be a ρ-component of G. Then

(i) |U | ≥ D −
√
ρn;

(ii) if W,W ? is a partition of U and W is a ρ?-component of G, then e(W ?,W ?) ≤ γn2;

(iii) if D ≥ 2
√
ρ?n, then U is a ρ?-component of G.

Let X ⊆ V (G) have bipartition X1, X2 such that X is ρ-close to bipartite with bipartition

X1, X2. Then

(iv) |X1|, |X2| ≥ D − 2
√
ρn;

(v) if D ≥ 3
√
ρ?n, then X is ρ?-close to bipartite.

Proof. To prove (i), note that

|U |D =

?

x∈U

dG(x) = 2eG(U) + eG(U, U) ≤ |U |
2
+ ρn

2
.

So |U | ≥ D − ρn2/|U | ≥ D −
√
ρn, as required. To see (ii), note that

e(W
?
,W ?) = e(W

?
,W ) + e(W

?
, U) ≤ e(W,W ) + e(U, U) ≤ (ρ+ ρ

?
)n

2
≤ γn

2
.

To see (iii), note first that e(U, U) ≤ ρn2 ≤ ρ?n2. Furthermore, (i) implies that |U | ≥

D −
√
ρn ≥

√
ρ?n.

We now prove (iv). Since e?(X1, X2) ≤ 2e(X1, X2) ≤ 2ρn2 and since G is D-regular,

we have that

|X1|D − 2ρn
2
≤ e

?
(X1, V (G))− e

?
(X1, X2) = e

?
(X1, X2) ≤ |X1||X2|. (3.4.1)

So |X2| ≥ D−2ρn2/|X1| ≥ D−2
√
ρn. A similar argument shows that |X1| ≥ D−2

√
ρn.

Finally, (v) holds since (C2) and (C3) are immediate, and (C1) follows from (iv).
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The following lemma implies that, for any regular graph G and any S ⊆ V (G) that

is not too small, the robust neighbourhood of S cannot be significantly smaller than S

itself.

Lemma 3.4.2. Let n,D ∈ N and suppose that 0 < 1/n ? ρ ? ν ? τ, α < 1. Let U be

a ρ-component of a D-regular graph G on n vertices, where D ≥ αn. Let S ⊆ U satisfy

|S| ≥ τ |U |. Write N := RNν,U (S) and let Y := S \N and W := V (G) \ (S ∪N). Then

(i) e(S, Y ) ≤ νn2 and e(S,W ) ≤ 2νn2;

(ii) |N | ≥ |S| −
√
νn;

(iii) |N | ≥ D −
√
νn.

Proof. To prove (i), note that e(S, Y ) = eG[U ](S, Y ) ≤ |Y |ν|U | ≤ νn2. Moreover, e?(S,N∩

U) =
?

x∈N∩U
dS(x) ≤ ν|U |2 ≤ νn2. Since U is a ρ-component of G, we have that

e(U, U) ≤ ρn2. Hence

e
?
(S,N) = e

?
(S,N ∩ U) + e(S, U) ≤ (ν + ρ)n

2
≤ 2νn

2
. (3.4.2)

This proves (i) as e(S,W ) ≤ e?(S,N).

We now prove (ii). Certainly e?(S,N) ≤
?

x∈N
d(x) = D|N |. Similarly

e
?
(S,N) = D|S| − e

?
(S,N)

(3.4.2)

≥ D|S| − 2νn
2
. (3.4.3)

Then |N | ≥ |S| − 2νn2/D ≥ |S| −
√
νn, which proves (ii). Finally, we prove (iii).

Lemma 3.4.1(i) implies that |U | ≥ D −
√
ρn, so

|S| ≥ τ |U | ≥ τD/2. (3.4.4)

Moreover, (3.4.3) implies that |S||N | ≥ e?(S,N) ≥ D|S| − 2νn2 and hence

|N | ≥ D −
2ν

|S|
n
2
(3.4.4)

≥ D −
4ν

τD
n
2
≥ D −

√
νn,
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as required.

The next lemma gives some sufficient conditions for U to be close to bipartite when

G is a regular graph and U ⊆ V (G).

Lemma 3.4.3. Let n,D ∈ N and suppose that 0 < 1/n ? γ ? ≤ γ ? α < 1 where

γ ? ≤ γ7/6. Suppose that G is a D-regular graph on n vertices where D ≥ αn. Let Y, Z be

disjoint subsets of V (G) such that

(i) |Y | ≥ γn;

(ii)

?
?
?|Y | − |Z|

?
?
? ≤ γn;

(iii) e(Y, Z) ≤ γ ?n2.

Then Y ∪ Z is γ1/3-close to bipartite with bipartition Y, Z.

Proof. First note that (C2) certainly holds with γ1/3 playing the role of ρ. Since e?(Y, Z) ≤

2e(Y, Z) ≤ 2γ ?n2 and G is D-regular, we have that

|Y |D − 2γ
?
n
2
≤ e

?
(Y, V (G))− e

?
(Y, Z) = e

?
(Y, Z) ≤ |Y ||Z|. (3.4.5)

So |Z| ≥ D− 2γ ?n2/|Y | ≥ 2γ1/6n and |Y | ≥ |Z| − γn ≥ γ1/6n. Thus (C1) holds. We also

have that

e(Z, Y ) ≤ e
?
(Z, Y ) = |Z|D − e

?
(Y, Z)

(3.4.5)

≤ (|Z| − |Y |)D + 2γ
?
n
2

(ii)

≤ Dγn + 2γ
?
n
2
≤ 3γn

2
.

So e(Y, Z) + e(Z, Y ) ≤ 4γn2 ≤ γ1/3n2 and therefore (C3) holds.

We now show that if a regular graph G contains a non-expanding set S whose in-

tersection with its robust neighbourhood is small, then G contains an induced subgraph

which is close to bipartite.
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Lemma 3.4.4. Let n,D ∈ N and suppose that 0 < 1/n ? ρ ? ν ? τ, α < 1. Suppose

that G is a D-regular graph on n vertices where D ≥ αn. Let U ⊆ V (G) be a ρ-component

of G. Suppose that S ⊆ U is non-ν-expanding in U and |S| ≥ τ |U |. Let N := RNν,U (S),

Y := S \N and Z := N \ S. Then

(i)

?
?
?|Y | − |Z|

?
?
? ≤

√
νn;

(ii) if also |Y | >
√
νn, then Y ∪ Z is ν1/6-close to bipartite with bipartition Y, Z.

Proof. Let X := S ∩ N . So S = X ∪ Y and N = X ∪ Z. Since S is non-ν-expanding in

U , we have that |N | < |S|+ ν|U |. By Lemma 3.4.2(ii) we have that

|S| −
√
νn ≤ |N | < |S|+ ν|U | ≤ |S|+

√
νn,

which proves (i). To prove (ii), let W := S ∪N = X ∪ Y ∪ Z. Note that Lemma 3.4.2(i)

implies that

e(Y, Z) = e(Y, S ∪W ) ≤ e(S, Y ) + e(S,W ) ≤ 3νn
2
. (3.4.6)

Set γ ? := 3ν and γ :=
√
ν. Then γ ? ≤ γ5/6. So we can apply Lemma 3.4.3 to see that

Y ∪ Z is ν1/6-close to bipartite with bipartition Y, Z.

The next proposition formalises the fact that, if a graph G contains a subset U that is

close to bipartite; we may add or remove any small set of vertices so that it is still close

to bipartite (with slightly weaker parameters).

Proposition 3.4.5. Let n,D ∈ N, 0 < 1/n ? ρ1, ρ2 ? α < 1 and let ρ ≥ ρ1 + 2ρ2.

Suppose that G is a D-regular graph on n vertices where D ≥ αn and let U ⊆ V (G) be

such that U is ρ1-close to bipartite, with bipartition A,B. Suppose that A
?, B? ⊆ V (G) are

disjoint and |A?A?| + |B?B ?| ≤ ρ2n. Let U
? := A? ∪ B ?. Then U ? is ρ-close to bipartite

with bipartition A?, B?.

Proof. We need to check that (C1)–(C3) hold. Lemma 3.4.1(iv) implies that

|A
?
| ≥ |A| − ρ2n ≥ D − (2

√
ρ1 + ρ2)n ≥

√
ρn,
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and similarly for |B ?|. So (C1) holds. Also

?
?
?|A

?
| − |B

?
|

?
?
? ≤ |A

?
?A|+

?
?
?|A| − |B|

?
?
?+ |B?B

?
| ≤ (ρ1 + ρ2)n ≤ ρn,

so (C2) holds. Moreover,

e(A
?
, B ?) + e(B

?
, A?) ≤ e(A,B) + e(B,A) + 2(|A

?
?A|+ |B

?
?B|)n

≤ (ρ1 + 2ρ2)n
2
≤ ρn

2
.

So (C3) holds, as required.

3.4.3 Properties of non-expanding subsets

In this subsection we prove that a ρ-component is either a robust expander component, a

bipartite robust expander component, or the union of two ρ?-components (where ρ? ρ?).

This forms the core of the proof of Theorem B.

For this, we first show that if U is a ρ-component in a regular graph G such that

G[U ] is not a robust expander, then either U is close to bipartite, or U can be decom-

posed into two ρ?-components. To prove this, we consider a non-expanding set S and its

robust neighbourhood N . We use our previous results to show that either S ∪N and its

complement in U are both ρ?-components or U is ρ?-close to bipartite.

Lemma 3.4.6. Let n ∈ N, suppose that 0 < 1/n ? ρ ? ν ? ρ? ? τ ? α < 1 and

let D ≥ αn be a natural number. Let U be a ρ-component of a D-regular graph G on

n vertices. Suppose that G[U ] is not a robust (ν, τ )-expander. Then at least one of the

following hold:

(i) U has a partition U1, U2 such that each of U1, U2 is a ρ
?-component of G;

(ii) U is ρ?-close to bipartite.
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Proof. Since G[U ] is not a robust (ν, τ )-expander, there exists S ⊆ U with

τ |U | ≤ |S| ≤ (1− τ )|U | (3.4.7)

and |RNν,U (S)| < |S|+ ν|U |. Let N := RNν,U (S), X := S ∩N , Y := S \N , Z := N \ S

and W := V (G) \ (S ∪N). We consider two cases, depending on the size of Y .

Case 1. |Y | ≤
√
νn.

In this case, we will show that (i) holds. Let U1 := S ∪N = S ∪Z so that U1 = W . Then

Lemma 3.4.2(iii) implies that |U1| ≥ |N | ≥ D −
√
νn ≥

√
ρ?n. By Lemma 3.4.4(i), we

have

|Z| ≤ |Y |+
√
νn ≤ 2

√
νn (3.4.8)

≤ τD/4 ≤ τ |U |/2, (3.4.9)

where the last inequality holds since |U | ≥ D −
√
ρn by Lemma 3.4.1(i).

Now Lemma 3.4.2(i) implies that

e(U1, U1) = e(S,W ) + e(Z,W ) ≤ 2νn
2
+ |Z|n

(3.4.8)

≤ 3
√
νn

2
.

So U1 is a 3
√
ν-component of G. Moreover, (3.4.9) and (3.4.7) together imply that

|U1| = |S|+ |Z| ≤ (1− τ/2) |U |.

Let U2 := U \ U1. Then |U2| ≥ τ |U |/2 ≥
√
ρ?n. Since U is a ρ-component, U1 is a

3
√
ν-component, and ρ+ 3

√
ν ≤ ρ?, we can apply Lemma 3.4.1(ii) with U1, U2, ρ, 3

√
ν, ρ?

playing the roles of W,W ?, ρ, ρ?, γ respectively to see that e(U2, U2) ≤ ρ
?n2. Thus U2 is a

ρ?-component of G and so (i) holds.

Case 2. |Y | >
√
νn.

Let U1 := Y ∪ Z = S?N . Lemma 3.4.4(ii) implies that U1 is ν
1/6-close to bipartite with
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bipartition Y, Z. Therefore (C1) and (C3) imply that U1 is a ν
1/6-component. Moreover,

|U1| ≥ 2(D − 2ν1/12n) ≥ 2(D − 2
√
ρ?n) by Lemma 3.4.1(iv). Let U2 := U \ U1. Now

Lemma 3.4.1(ii) with U1, U2, ρ, ν
1/6, (ρ?/3)2 playing the roles of W,W ?, ρ, ρ?, γ implies that

e(U2, U2) ≤ (ρ?/3)2n2. If |U2| ≥ ρ
?n/3 then U2 is a (ρ

?/3)2-component. So Lemma 3.4.1(i)

implies that |U2| ≥ D − ρ?n/3 and thus U2 is actually a ρ
?-component of G. So (i) holds

in this case.

Thus we may assume that |U2| < ρ?n/3. Let Y ? := Y ∪ U2 and Z
? := Z. Then

Y ?, Z ? are disjoint subsets whose union is U . Note that |Y ??Y | + |Z ??Z| = |U2| <

ρ?n/3. Now Proposition 3.4.5 with U1, U, Y, Z, Y
?, Z ?, ν1/6, ρ?/3, ρ? playing the roles of

U, U ?, A, B,A?, B?, ρ1, ρ2, ρ implies that U is ρ?-close to bipartite with bipartition Y ?, Z ?.

So (ii) holds.

The following lemma is a bipartite analogue of Lemma 3.4.6. It states that if G is a

regular graph and U ⊆ V (G) such that U is close to bipartite and G[U ] is not a bipartite

robust expander, then U can be decomposed into two components. The proof is similar

to that of Lemma 3.4.6 – we find the partition by considering a non-expanding set and

its robust neighbourhood.

Lemma 3.4.7. Let n,D ∈ N and suppose that 0 < 1/n ? ρ ? ν ? ρ? ? τ ? α < 1.

Let G be a D-regular graph on n vertices where D ≥ αn. Suppose that U ⊆ V (G) is

such that U is ρ-close to bipartite with bipartition A,B and G[U ] is not a bipartite robust

(ν, τ )-expander with bipartition A,B. Then there is a partition U1, U2 of U such that

U1, U2 are ρ
?-components.

Proof. Since U is ρ-close to bipartite with bipartition A,B, Lemma 3.4.1(iv) and (C2)

imply that

|A|, |B| ≥ D − 2
√
ρn ≥ D/2, (3.4.10)

?
?
?|A| − |B|

?
?
? ≤ ρn. (3.4.11)

103



Since G[U ] is not a bipartite robust (ν, τ )-expander with bipartition A,B, there exists

S ⊆ A with

τ |A| ≤ |S| ≤ (1− τ )|A| (3.4.12)

and such that

|N ∩ B| < |S|+ ν|U |, (3.4.13)

where N := RNν,U (S). We claim that

|N ∩ A| ≤
√
ρn. (3.4.14)

To see this, note that (C3) implies that

ρn
2
≥ e(A) =

1

2

?

x∈A

dA(x) ≥
1

2

?

x∈N∩A

dS(x) ≥
1

2
ν|U ||N ∩ A|.

So

|N ∩ A| ≤ 2ρn
2
/ν|U |

(3.4.10)

≤ 2ρn
2
/νD ≤

√
ρn, (3.4.15)

proving the claim. Therefore

|S|+ νn ≥ |S|+ ν|U |
(3.4.13)

> |N ∩ B| = |N | − |N ∩ A|
(3.4.14)

≥ |N | −
√
ρn.

Let ν0 := 2ν/α. Then

|RNν0,U (S)| ≤ |N | ≤ |S|+ (ν +
√
ρ)n < |S|+ 2νn

(3.4.10)

≤ |S|+ ν0|U |. (3.4.16)

That is, S is non-ν0-expanding in U . Let X := N ∩ S, Y := S \ N , Z := N \ S as in

Lemma 3.4.4.

Note that X ⊆ S ⊆ A and X ⊆ N , so (3.4.14) implies that |X | ≤
√
ρn. Moreover,

|Y | = |S| − |X | ≥ |S| −
√
ρn

(3.4.12)

≥ τ |A| −
√
ρn

(3.4.10)

≥ τD/3 >
√
ν0n. (3.4.17)

104



Let U1 := Y ∪ Z and U2 := U \ U1. Let ν
? := ν

1/6

0
. Now (3.4.11) and (3.4.12) imply

that |S| ≥ τ |U |/3. Then (3.4.16), (3.4.17) and Lemma 3.4.4(ii) with ρ, ν0, τ/3 playing

the roles of ρ, ν, τ imply that U1 is ν
?-close to bipartite and hence a ν ?-component, as

required. Now Lemma 3.4.1(ii) with U, U1, U2, ν
?, ρ? playing the roles of U,W,W ?, ρ?, γ

implies that e(U2, U2) ≤ ρ
?n2. Note that

|U2| ≥ |U | − |S| − |N |
(3.4.16)

≥ |U | − 2|S| − 2νn/α

(3.4.12)

≥ |B| − |A|+ 2τ |A| − 2
√
νn

(3.4.10),(3.4.11)

≥ τ |A| ≥
?
ρ?|U |.

Therefore U2 is a ρ
?-component.

3.4.4 Adjusting partitions

The results of this subsection will be needed to ensure (D4), (D5) and (D7) in the proof

of Theorem B.

The next two lemmas state that (bipartite) robust expanders are indeed robust, in

the sense that the expansion property cannot be destroyed by adding or removing a small

number of vertices.

Lemma 3.4.8. Let 0 < ν ? τ ? 1. Suppose that G is a graph and U, U ? ⊆ V (G) are

such that G[U ] is a robust (ν, τ )-expander and |U?U ?| ≤ ν|U |/4. Then G[U ?] is a robust

(ν/2, 2τ )-expander.

Proof. Let S ⊆ U ? be such that 2τ |U ?| ≤ |S| ≤ (1 − 2τ )|U ?|. Then τ |U | ≤ |S ∩ U | ≤

(1 − τ )|U |. Observe that RNν/2,U ?(S) ⊇ RNν,U (S ∩ U) ∩ U ?. Since G[U ] is a robust

(ν, τ )-expander, we have that

|RNν/2,U ?(S)| ≥ |RNν,U (S ∩ U)| − |U \ U
?
| ≥ |S ∩ U |+ ν|U | − |U \ U

?
|

≥ |S|+ ν|U | − |U?U
?
| ≥ |S|+ 3ν|U |/4 ≥ |S|+ ν|U

?
|/2,

as required.

105



Lemma 3.4.9. Let 0 < ν ? τ ? 1. Suppose that U ⊆ V (G) and that G[U ] is a

bipartite robust (ν, τ )-expander with bipartition A,B. Let W,A?, B? ⊆ V (G) be such that

|W | ≤ ν|A|/4; A? and B ? are disjoint; and |A?A?|+ |B?B ?| ≤ ν|A|/4. Then

(i) G[U \W ] is a bipartite robust (ν/2, 2τ )-expander with bipartition A \W,B \W ;

(ii) G[A? ∪ B ?] is a bipartite robust (ν/2, 2τ )-expander with bipartition A?, B?.

Proof. To prove (i), let S ⊆ A \W be such that 2τ |A \W | ≤ |S| ≤ (1 − 2τ )|A \W |.

Then τ |A| ≤ |S| ≤ (1− τ )|A|. Observe that RNν/2,B\W (S) ⊇ RNν,B(S) \W . So

|RNν/2,B\W (S)| ≥ |RNν,B(S)| − |W | ≥ |S|+ 3ν|U |/4 ≥ |S|+ ν|U \W |/2,

as required.

To prove (ii), let S ⊆ A? be such that 2τ |A?| ≤ |S| ≤ (1 − 2τ )|A?|. Then τ |A| ≤

|S ∩ A| ≤ (1− τ )|A|. Observe that RNν/2,B?(S) ⊇ RNν,B(S ∩ A) ∩ B ?. Therefore

|RNν/2,B?(S)| ≥ |RNν,B(S ∩ A)| − |B \ B
?
| ≥ |S ∩ A|+ ν|A ∪ B| − |B \ B

?
|

≥ |S|+ ν|A ∪ B| − |B \ B
?
| − |A

?
\ A| ≥ |S|+ ν|A

?
∪ B

?
|/2,

as required.

We now extend Lemma 3.4.9 by showing that, after adding and removing a small

number of vertices, a bipartite robust component is still a bipartite robust component,

with slightly weaker parameters.

Lemma 3.4.10. Let 0 < 1/n ? ρ ≤ γ ? ν ? τ ? α < 1 and suppose that G is a

D-regular graph on n vertices where D ≥ αn.

(i) Suppose that A ∪ B is a bipartite (ρ, ν, τ )-robust expander component of G with

bipartition A,B. Let A?, B? ⊆ V (G) be disjoint such that |A?A?| + |B?B ?| ≤

γn. Then A? ∪ B ? is a bipartite (3γ, ν/2, 2τ )-robust expander component of G with

bipartition A?, B?.
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(ii) Suppose that U is a bipartite (ρ, ν, τ )-robust expander component of G. Let U ? ⊆

V (G) be such that |U?U ?| ≤ γn. Then U ? is a bipartite (3γ, ν/2, 2τ )-robust ex-

pander component of G.

Proof. We first prove (i). Observe that (B1) for A ∪ B and Lemma 3.4.1(iv) imply that

|A| ≥ D − 2
√
ρn ≥ D/2. Proposition 3.4.5 with ρ, γ, 3γ playing the roles of ρ1, ρ2, ρ

implies that A? ∪ B ? is 3γ-close to bipartite with bipartition A?, B?. So (B1) holds. Now

Lemma 3.4.9(ii) implies that G[A? ∪ B ?] is a bipartite robust (ν/2, 2τ )-expander with

bipartition A?, B?, so (B2) holds. This completes the proof of (i). It is easy to see that

(ii) follows from (i).

In any ρ-component, almost all vertices have very few neighbours outside the com-

ponent. In particular, most vertices have more neighbours within their own component

than in any other. The following lemma allows us to move a small number of vertices in

a partition into ρ-components so that this property holds for all vertices.

Lemma 3.4.11. Let m,n,D ∈ N and 0 < 1/n? ρ? α, 1/m ≤ 1. Let G be a D-regular

graph on n vertices where D ≥ αn. Suppose that U := {U1, . . . , Um} is a partition of

V (G) such that Ui is a ρ-component for each 1 ≤ i ≤ m. Then G has a vertex partition

V := {V1, . . . , Vm} such that

(i) |Ui?Vi| ≤ ρ
1/3n;

(ii) Vi is a ρ
1/3-component for each 1 ≤ i ≤ m;

(iii) if x ∈ Vi then dVi
(x) ≥ dVj

(x) for all 1 ≤ i, j ≤ m. In particular, dV (x) ≥ D/m for

all x ∈ V and all V ∈ V;

(iv) for all but at most ρ1/3n vertices x ∈ Vi we have dVi
(x) ≥ D − 2

√
ρn.

Proof. First note that the second part of (iii) follows from the first. For each 1 ≤ i ≤ m,

let Xi be the collection of vertices y ∈ Ui with dUi
(y) ≥

√
ρn. Since Ui is a ρ-component,
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we have |Xi| ≤
√
ρn. Let Wi := Ui \Xi. Then each x ∈ Wi satisfies

dWi
(x) = d(x)− d

Ui∪Xi
(x) ≥ d(x)−

√
ρn− |Xi| ≥ d(x)− 2

√
ρn. (3.4.18)

Let X :=
?

1≤i≤m
Xi. Among all partitions X

?
1
, . . . , X ?

m
of X , choose one such that

?

1≤i≤m
e(Vi, Vi) is minimal, where Vi := Wi ∪X

?
i
. It is easy to see that dVi

(x) ≥ dVj
(x)

for all x ∈ X ?
i
and all 1 ≤ i, j ≤ m. So (iii) holds for all x ∈ X ?

i
and i ≤ m. Moreover,

if x ∈ Wi, then (3.4.18) implies that dVi
(x) ≥ dWi

(x) ≥ d(x) − 2
√
ρn ≥ d(x)/2. So (iii)

also holds for each vertex in Wi. Furthermore, by minimality,

?

1≤i≤m

e(Vi, Vi) ≤

?

1≤i≤m

e(Ui, Ui) ≤ ρmn
2
≤ ρ

1/3
n
2

and hence each Vi is a ρ
1/3-component, so (ii) holds.

Note that Ui ∩ Vi ⊇ Wi, so

|Ui?Vi| ≤

?

1≤i≤m

|X
?

i
| = |X | ≤ m

√
ρn ≤ ρ

1/3
n, (3.4.19)

which proves (i). Finally, (3.4.18) and the fact that |Vi \Wi| ≤ |X | ≤ ρ1/3n by (3.4.19)

together imply (iv).

The next lemma shows that, in a bipartite robust expander component, we can adjust

the bipartition slightly so that any vertex has at least as many neighbours in the opposite

class as within its own class. The resulting graph will still be a bipartite robust expander

component. The proof is very similar to that of Lemma 3.4.11.

Lemma 3.4.12. Let 0 < 1/n? ρ? ν ? τ ? α < 1 and let G be a D-regular graph on

n vertices where D ≥ αn. Suppose that U is a bipartite (ρ, ν, τ )-robust component of G.

Then there exists a bipartition A,B of U such that

(i) U is a bipartite (3
√
ρ, ν/2, 2τ )-robust component with partition A,B;

(ii) dB(u) ≥ dA(u) for all u ∈ A, and dA(v) ≥ dB(v) for all v ∈ B;
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Proof. Let X, Y be a bipartition of U such that U is a bipartite (ρ, ν, τ )-robust expander

component of G with respect to X, Y . Let X0 be the collection of vertices x ∈ X with

d
Y
(x) ≥ 2

√
ρn. Let Y0 be the collection of vertices y ∈ Y with d

X
(y) ≥ 2

√
ρn. Then

(B1) implies that

ρn
2
≥ e(X, Y ) + e(Y,X) ≥

1

2

?
?

x∈X

d
Y
(x) +

?

y∈Y

d
X
(y)

?

≥
1

2

?
?

x∈X0

d
Y
(x) +

?

y∈Y0

d
X
(y)

?

≥ (|X0|+ |Y0|)
√
ρn,

and so |X0| + |Y0| ≤
√
ρn. Let X ? := X \ X0 and Y

? := Y \ Y0. So for all x ∈ X ?,

dY ?(x) ≥ d(x)− d
Y
(x)− |Y0| ≥ D− 3

√
ρn. An analogous statement holds for all vertices

y ∈ Y ?.

Among all partitions A0, B0 of X0 ∪ Y0, choose one such that e(A,B) + e(B,A) is

minimal, where A := X ? ∪ A0 and B := Y ? ∪ B0. We claim that A,B is the required

partition.

Indeed, our choice of A0, B0 implies that (ii) holds for all u ∈ A0 and all v ∈ B0.

Moreover, if u ∈ X ?, then dB(u) ≥ dY ?(u) ≥ D− 3
√
ρn ≥ dU (u)/2. So dB(u) ≥ dA(u) for

all u ∈ X ? and similarly dA(v) ≥ dB(v) for all v ∈ Y
?. This completes the proof of (ii).

To prove (i), note that A ∩ X ⊇ X ? and B ∩ Y ⊇ Y ?, so |A?X | + |B?Y | ≤

|X0| + |Y0| ≤
√
ρn. So Lemma 3.4.10(i) with ρ,

√
ρ, ν, τ,X, Y, A,B playing the roles

of ρ, γ, ν, τ, A,B,A?, B? implies that U is a bipartite (3
√
ρ, ν/2, 2τ )-robust component

with bipartition A,B. This completes the proof of (i).

3.4.5 Proof of Theorem B

We are now ready to prove Theorem B – that every sufficiently large dense regular graph

has a robust partition. The first part of the proof is an iteration of Lemmas 3.4.6 and 3.4.7

– we begin with the trivial partition of V (G) and successively refine it by applying

Lemma 3.4.7 to those components which are close to bipartite and Lemma 3.4.6 to the
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others, until we obtain a partition into robust components. We then use Lemma 3.4.11

to adjust the partition slightly and Lemma 3.4.12 to achieve an appropriate bipartition

of the bipartite robust expander components.

Proof of Theorem B. Let t := 3?2/α?. Define further constants satisfying

0 < 1/n0 ? ρ1 ? ν1 ? ρ2 ? ν2 ? . . .? ρt ? νt ? τ
?
? α, τ

so that 1/n0 ≤ f(ρ1) and 3
3/2ρ

1/6

i
≤ f(νi/4) for all 1 ≤ i ≤ t. We first prove the following

claim.

Claim. There is some 1 ≤ i < t and a partition U of V (G) such that U is a

(ρi, νi, τ
?)-robust component for each U ∈ U .

Proof. To see this, let U1 := {V (G)}. Note that V (G) is certainly a ρ1-component

of G, and |U1| = 1. Suppose, for some i with 1 ≤ i < t, we have inductively

defined a partition Ui of V (G) such that U is a ρi-component for each U ∈ Ui

and 2|Ui| + |Wi| ≥ i + 1, where Wi is the collection of all those U ∈ Ui which are

ρi-close to bipartite. If each U ∈ Ui is a (ρi, νi, τ
?)-robust component, then we are

done by setting U := Ui. Otherwise, we obtain Ui+1 from Ui as follows.

There is some U ∈ Ui which is not a (ρi, νi, τ
?)-robust component. If U ∈ Wi,

then apply Lemma 3.4.7 with ρi, νi, ρi+1, τ
? playing the roles of ρ, ν, ρ?, τ to obtain

a partition U1, U2 of U such that U1, U2 are ρi+1-components. Let Ui+1 := (Ui \

{U}) ∪ {U1, U2}. Lemma 3.4.1(v) implies that Wi \ {U} ⊆ Wi+1, where Wi+1

is the collection of all those U ∈ Ui+1 which are ρi+1-close to bipartite. Thus

|Ui+1| = |Ui|+ 1 and |Wi+1| ≥ |Wi| − 1.

So suppose next that U ∈ Ui \ Wi. Apply Lemma 3.4.6 with ρi, νi, ρi+1, τ
?

playing the roles of ρ, ν, ρ?, τ . If Lemma 3.4.6(i) holds, then U has a partition

U1, U2 such that U1, U2 are ρi+1-components. As before, we let Ui+1 := (Ui\{U})∪

{U1, U2}. So |Ui+1| = |Ui| + 1 and |Wi+1| ≥ |Wi|. Otherwise, Lemma 3.4.6(ii)

holds. Then U is ρi+1-close to bipartite. We let Ui+1 := Ui. Then |Ui+1| = |Ui|
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and |Wi+1| ≥ |Wi|+ 1.

Note that in each case we have 2|Ui+1|+|Wi+1| ≥ i+2. Moreover, Lemma 3.4.1(iii)

implies that each W ∈ Ui \ {U} is a ρi+1-component. Therefore each W ∈ Ui+1 is

a ρi+1-component.

It remains to show that this process must stop before we define Ut. Suppose

not, i.e. suppose we have defined Ut. Since each W ∈ Ut is a ρt-component,

Lemma 3.4.1(i) implies that |W | ≥ (α−
√
ρt)n for allW ∈ Ut. Moreover, |Ut| > t/3

since 3|Ut| ≥ 2|Ut|+ |Wt| ≥ t+ 1. Altogether, this implies that

|V (G)| ≥
t

3
(α −

√
ρt)n ≥

2

α
(α −

√
ρt)n > n,

a contradiction. This completes the proof of the claim. ?

Set ρ? := ρi, ν
? := νi, ρ := 3

3/2ρ?1/6 and ν := ν ?/4. So

ρ = 3
3/2
ρ
?1/6

≤ f(ν
?
/4) = f(ν) and 1/n0 ≤ f(ρ1) ≤ f(ρ) (3.4.20)

and every U ∈ U is a (ρ?, ν ?, τ ?)-robust component of G. So there exist k, ? ∈ N such that

U = {U1, . . . , Uk, Z1, . . . , Z?}, where Ui is a (ρ
?, ν ?, τ ?)-robust expander component for all

1 ≤ i ≤ k, and Zj is a bipartite (ρ
?, ν ?, τ ?)-robust expander component for all 1 ≤ j ≤ ?.

Letm := k+?. Note that for each 1 ≤ i ≤ k, we have |Ui| ≥ D−
√
ρ?n (by Lemma 3.4.1(i)

and since Ui is a ρ
?-component). Moreover, for each 1 ≤ j ≤ ?, |Zj | ≥ 2(D − 2

√
ρ?n) by

Lemma 3.4.1(iv). Thus

n =

?

1≤i≤k

|Ui|+

?

1≤j≤?

|Zj | ≥ (D − 2
?
ρ?n)(k + 2?)

and so

k + 2? ≤

?
n

D − 2
√
ρ?n

?

≤

?

(1 + ρ
?1/3
)
n

D

?

. (3.4.21)

In particular, 1/m ≥ α/2.
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To achieve (D4), we apply Lemma 3.4.11 with ρ? playing the role of ρ to U to obtain

a new partition V = {V1, . . . , Vk,W1, . . . ,W?} of V (G) satisfying (i)–(iv), so in particular

|Ui?Vi|, |Zj?Wj | ≤ ρ
?1/3
n (3.4.22)

for all 1 ≤ i ≤ k and all 1 ≤ j ≤ ?. We claim that V satisfies (D1)–(D7).

Now (D1) certainly holds, (D4) follows from Lemma 3.4.11(iii) and (D7) follows from

Lemma 3.4.11(iv). To prove (D2), note that Vi is a ρ
?1/3-component by Lemma 3.4.11(ii)

and |Vi| ≥ D/2 ≥
√
ρn. Thus Vi is a ρ-component, i.e. (E1) holds. Now, by (3.4.22)

and Lemma 3.4.8 with ν ?, τ ?, Ui, Vi playing the roles of ν, τ, U, U
?, we have that G[Vi] is a

robust (ν ?/2, 2τ ?)-expander and thus also a robust (ν, τ )-expander. So (E2) holds, proving

(D2).

To check (D3), recall that Zj is a bipartite (ρ
?, ν ?, τ ?)-robust expander component.

Then (3.4.22) and Lemma 3.4.10(ii) applied with ρ?, ρ?1/3, ν ?, τ ?, Zj ,Wj playing the roles of

ρ, γ, ν, τ, U, U ? imply that Wj is a bipartite (3ρ
?1/3, ν ?/2, 2τ ?)-robust expander component.

Now for each 1 ≤ j ≤ ?, apply Lemma 3.4.12 to Wj with 3ρ
?1/3, ν ?/2, 2τ ? playing the

roles of ρ, ν, τ to obtain a bipartition Aj , Bj of Wj satisfying (i) and (ii). Lemma 3.4.12(i)

implies thatWj is a bipartite (ρ, ν, τ )-robust expander component with bipartition Aj , Bj .

So (D3) holds. Lemma 3.4.12(ii) implies that (D5) holds. Finally, (D6) follows from

(3.4.21). ?

3.5 Extending Theorem B to almost regular graphs

In this section, we prove an extension of Theorem B which states that every dense almost

regular graph has a robust partition. We first extend the definition of a robust partition

to graphs which may not be regular. Let k, ?,D ∈ N and 0 < ρ ≤ ν ≤ τ < 1. Given a

graph G on n vertices, we say that V is a robust partition of G with parameters ρ, ν, τ, k, ?

if (D1)–(D7) hold with δ(G) playing the role of D. Note that, for D-regular graphs, this
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coincides with the definition given in Section 3.3.

Theorem 3.5.1. For all α, τ > 0 and every non-decreasing function f : (0, 1) → (0, 1),

there exist n0 ∈ N and γ > 0 such that the following holds. For all graphs G on n ≥ n0

vertices with αn ≤ δ(G) ≤ ∆(G) ≤ δ(G) + γn, there exist ρ, ν with 1/n0, γ ≤ ρ ≤ ν ≤ τ ;

ρ ≤ f(ν) and 1/n0 ≤ f(ρ), and k, ? ∈ N such that G has a robust partition V with

parameters ρ, ν, τ, k, ?.

The proof proceeds by taking two copies of G and adding a small number of edges be-

tween them to obtain a regular graph G?, whose degree is only slightly higher than ∆(G).

We apply Theorem B to obtain a robust partition V of G?. The construction of G? implies

that every robust component in V lies entirely in one copy of G. So there is a partition

of V into two parts, one of which must be a robust partition of G. It seems highly likely

that one can prove Theorem 3.5.1 directly by adapting the proof of Theorem B, although

we did not attempt this.

In order to construct G? from G, we need some preliminaries. We say that a non-

decreasing sequence (di)1≤i≤n of positive integers is bipartite graphic if there exists a

bipartite graph G with vertex classes A and B with |A| = |B| = n such that the ith

vertex of each of A and B has degree di. The following theorem of Alon, Ben-Shimon

and Krivelevich [4] gives a sufficient condition for a sequence to be bipartite graphic.

(Note that their original statement was different, but the two forms are equivalent, as

observed in [27].)

Theorem 3.5.2. Suppose that (di)1≤i≤n is a non-decreasing sequence of positive integers.

Then (di)1≤i≤n is bipartite graphic if nd1 ≥ (d1 + dn)
2/4.

We also need the following result (Lemma 3.8 from [82]).

Lemma 3.5.3. Suppose that 0 < ν ≤ τ ≤ ε < 1 are such that ε ≥ 2ν/τ . Let G be

a graph on n vertices with minimum degree δ(G) ≥ (1/2 + ε)n. Then G is a robust

(ν, τ )-expander.
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We are now able to deduce Theorem 3.5.1 from Theorem B.

Proof that Theorem B implies Theorem 3.5.1. Define f ? : (0, 1) → (0, 1) by f ?(x) :=

min{f(x)/4, αx/2} and let τ ? := min{τ, α2/20}. Apply Theorem B with α, τ ?, f ? playing

the roles of α, τ, f to obtain n0 ∈ N. Let γ := 1/4n0. Let G be a graph on n ≥ n0 vertices

with αn ≤ δ(G) ≤ ∆(G) ≤ δ(G) + γn. Let D := δ(G). Order the vertices v1, . . . , vn of G

in order of increasing degree.

Obtain a graph G?? from G as follows. We let W1 := {w1, . . . , wn} and W2 :=

{x1, . . . , xn} be disjoint sets of vertices and let G
?? have vertex set W1 ∪ W2. We add

the edges wiwj and xixj whenever vivj ∈ E(G).

Choose a constant β such that γ = β(1 − β) and γ ≤ β ≤ 2γ. Let di := D + βn −

dG(vn+1−i). Then (di)1≤i≤n is a non-decreasing sequence and (β − γ)n ≤ d1 ≤ dn ≤ βn.

Observe that if (di)1≤i≤n is bipartite graphic, then we can add edges to G
?? betweenW1 and

W2 to obtain a (D+βn)-regular graph G
?. Since (d1+ dn)

2/4 ≤ β2n2 = (β− γ)n2 ≤ nd1,

Theorem 3.5.2 implies that such a G? exists. Note that

∆(G
?
[W1,W2]) = dn ≤ βn. (3.5.1)

Theorem B applied to G? implies that there exist ρ?, ν with 1/n0 ≤ ρ
? ≤ ν ≤ τ ?; ρ? ≤ f ?(ν)

and 1/n0 ≤ f
?(ρ?), and k?, ?? ∈ N such that G? has a robust partition V with parameters

ρ?, ν, τ ?, k?, ??. Note that β ≤ 2γ = 1/2n0 ≤ ν/2.

Claim. Let U ∈ V be arbitrary. Then U is contained entirely within one of

W1,W2.

Proof. Let Ui := U ∩Wi for i = 1, 2. Assume, for a contradiction, that U1, U2 ?= ∅.

Then

|Ui| ≥ δ(G
?
[Ui])

(D4),(3.5.1)

≥
D

k? + ??
− βn

(D6)

≥
D

2(1 + ρ1/3)n/D
− βn (3.5.2)

≥ (α
2
/4− β)n ≥ α

2
n/5.
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In particular this implies that τ ?|U | ≤ |Ui| ≤ (1 − τ ?)|U |. The fact that β ≤ ν/2

and (3.5.1) imply that RNν,U (Ui) ⊆ Ui. Then U cannot be a robust expander

component. So U is a bipartite robust expander component, with bipartition A,B,

say. Let Ai := A∩Ui for i = 1, 2 and define Bi analogously. Similarly as in (3.5.2),

using (D5) instead of (D4), one can show that |Ai|, |Bi| ≥ (α2/8− β)n ≥ α2n/10.

In particular, τ ?|A| ≤ |Ai| ≤ (1 − τ ?)|A|. Without loss of generality, suppose that

|A1| − |B1| ≥ |A2| − |B2|. Then (C2) implies that |A1| − |B1| ≥ −ρ?n and so

|RNν,U (A1)∩B| ≤ |B1| ≤ |A1|+ρ
?n < |A1|+ ν|U |, a contradiction. (Here we used

the fact that |U | > αn/2 and ρ? ≤ f ?(ν).) This completes the proof of the claim.

?

So there is a partition V1,V2 of V such that U ⊆ Wi for all U ∈ Vi. For i = 1, 2, let

ki be the number of robust expander components and ?i the number of bipartite robust

expander components in Vi. Let ρ := 4ρ
?. We claim that, for at least one of i = 1, 2, we

have that Vi is a robust partition of G with parameters ρ, ν, τ ?, ki, ?i. Suppose that, for

both i = 1, 2, we have ki + 2?i > ?(1 + ρ1/3)n/D?. Then

k
?
+ 2?

?
≥ 2

?
(1 + ρ1/3)n

D

?

+ 2 >

?
2(1 + ρ1/3)n

D

?

≥

?
2(1 + ρ?1/3)n

D + βn

?

,

contradicting (D6) for V . So without loss of generality, we have that V1 satisfies (D6).

It is easy to check that the remaining properties (D1)–(D5) and (D7) are also satisfied

by V1. Therefore V1 is a robust partition of G with parameters ρ, ν, τ ?, k1, ?1 and hence

also with parameters ρ, ν, τ, k1, ?1. ?

3.6 How to obtain a long cycle given a robust parti-

tion

The main result of this section is Lemma 3.6.2 which implies that, given a suitable set P

of paths joining up the robust components of a robust partition, one can extend P into
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a Hamilton cycle. Actually, in the proof of Theorem 3.1.4 we will need to consider the

more general notion of a weak robust subpartition, defined below.

3.6.1 Definitions and the main statement

Let k, ? ∈ N and 0 < ρ ≤ ν ≤ τ ≤ η < 1. Given a graph G on n vertices, we say that U is

a weak robust subpartition in G with parameters ρ, ν, τ, η, k, ? if the following conditions

hold.

(D1?) U = {U1, . . . , Uk, Z1, . . . , Z?} is a collection of disjoint subsets of V (G);

(D2?) for all 1 ≤ i ≤ k, Ui is a (ρ, ν, τ )-robust expander component of G;

(D3?) for all 1 ≤ j ≤ ?, there exists a partition Aj , Bj of Zj such that Zj is a bipartite

(ρ, ν, τ )-robust expander component with respect to Aj , Bj ;

(D4?) δ(G[X ]) ≥ ηn for all X ∈ U ;

(D5?) for all 1 ≤ j ≤ ?, we have δ(G[Aj , Bj ]) ≥ ηn/2.

A weak robust subpartition U is weaker than a robust partition in the sense that a non-

regular graph can have a weak robust (sub)partition, U need not involve the entire graph,

and we can make small adjustments to the partition while still maintaining (D1?)–(D5?)

with slightly worse parameters. This is formalised by the following statement.

Proposition 3.6.1. Let k, ?,D ∈ N and suppose that 0 < 1/n ? ρ ≤ ν ≤ τ ≤ η ≤

α2/2 < 1.

(i) Suppose that G is a D-regular graph on n vertices where D ≥ αn. Let V be a robust

partition of G with parameters ρ, ν, τ, k, ?. Then V is a weak robust subpartition in

G with parameters ρ, ν, τ, η, k, ?.

(ii) Suppose that H is a graph and U is a weak robust subpartition in H with parameters

ρ, ν, τ, η, k, ?. Let U ? ⊆ U be non-empty. Then U ? is a weak robust subpartition in

H with parameters ρ, ν, τ, η, k?, ?? for some k? ≤ k and ?? ≤ ?.
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Proof. We only prove (i) since (ii) is clear. Note that properties (D1?)–(D3?) are imme-

diate. Note (D6) implies that k + 2? ≤ ?(1 + ρ1/3)/α? ≤ 2/α. So D/(k + ?) ≥ α2n/2.

Together with (D4) and (D5) this shows that (D4?) and (D5?) hold. This completes the

proof.

For a path system P , we say that a vertex x is an endpoint of P if x is an endpoint of

some path in P . Define the internal vertices of P similarly. If every endpoint of a path

system P lies in some U ⊆ V (G), we say that P is U -anchored. When U is a collection

of disjoint subsets of V (G), we say that P is U -anchored if it is
?

U∈U
U -anchored. Given

a path P in G, we say that P ? is an extension of P if P ? is a path which contains P as

a subpath. An Euler tour in a (multi)graph is a closed walk that visits every vertex and

uses each edge exactly once.

Given a graph G with U ⊆ V (G) and a path system P in G, we write EndP(U) and

IntP(U) for, respectively, the number of endpoints/internal vertices of P which lie in U .

Given disjoint sets A,B ⊆ V (G), we say that P is (A,B)-balanced if

• EndP(A) = EndP(B) > 0; and

• |A| − IntP(A) = |B| − IntP(B).

Suppose that G is a graph and U is a collection of disjoint subsets of V (G). Let P be

a U -anchored path system in G (so all endpoints of the paths in P lie in
?

U∈U
U). We

define the reduced multigraph RU(P) of P with respect to U to be the multigraph with

vertex set U in which each edge between U and U ? corresponds to a path in P with one

endpoint in U and one endpoint in U ?. So RU(P) might contain loops.

Let k, ? ∈ N, let 0 < ρ ≤ ν ≤ τ ≤ η < 1 and let 0 < γ < 1. Suppose that G is a

graph on n vertices with a weak robust subpartition U = {U1, . . . , Uk, Z1, . . . , Z?} with

parameters ρ, ν, τ, η, k, ?, so that the bipartition of Zj specified by (D3
?) is Aj , Bj . We

say that P is a U -tour with parameter γ if

(T1) P is a U -anchored path system;
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(T2) RU(P) has an Euler tour;

(T3) for all U ∈ U we have |V (P) ∩ U | ≤ γn;

(T4) for all 1 ≤ j ≤ ?, P is (Aj , Bj)-balanced.

We will often think of RU(P) as a walk rather than a multigraph. So in particular,

we will often say that ‘RU(P) is an Euler tour’. The aim of this section is to prove

the following lemma, stating that every graph with a weak robust subpartition U and a

U -tour contains a cycle which covers every vertex within the components of U .

Lemma 3.6.2. Let k, ?, n ∈ N and suppose that 0 < 1/n ? ρ, γ ? ν ≤ τ ? η < 1.

Suppose that G is a graph on n vertices and that U is a weak robust subpartition in G with

parameters ρ, ν, τ, η, k, ?. Suppose further that G contains a U -tour P with parameter γ.

Then there is a cycle in G which contains P and every vertex in
?

U∈U
U .

Since by Proposition 3.6.1(i) every robust partition is also a weak robust subpartition,

Lemma 3.6.2 immediately implies the following result which will be used in the proof of

Theorem 3.1.2 while for the proof of Theorem 3.1.4 we will need Lemma 3.6.2 itself.

Corollary 3.6.3. Let k, ?, n,D ∈ N and suppose that 0 < 1/n? ρ, γ ? ν ≤ τ ? α < 1.

Suppose that G is a D-regular graph on n vertices where D ≥ αn, with a robust partition

V with parameters ρ, ν, τ, k, ?. Suppose further that G contains a V-tour with parameter

γ. Then G contains a Hamilton cycle.

The remainder of this section is devoted to the proof of Lemma 3.6.2.

3.6.2 Spanning path systems in robust expanders

In this subsection, we prove Corollary 3.6.8, which states that when p is not too large,

every robust expander G is Hamilton p-linked, i.e. given distinct vertices y1, y
?
1
, . . . , yp, y

?
p
,

there exist p vertex-disjoint paths joining yi to y
?
i
for all i ≤ p such that together these

paths cover all the vertices of G. This, combined with a bipartite analogue in the next
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subsection, will be the main tool in proving Lemma 3.6.2: the yi and y
?
i
will be suitable

endpoints of the paths in the U -tour P .

We now recall an analogue of robust expansion for digraphs (see Section 2.1). Let

0 < ν ≤ τ < 1. Given any digraph G on n vertices and S ⊆ V (G), the ν-robust

outneighbourhood RN
+

ν,G
(S) of S is the set of all those vertices of G which have at least

νn inneighbours in S. G is called a robust (ν, τ )-outexpander if |RN
+

ν,G
(S)| ≥ |S| + νn

for all S ⊆ V (G) with τn ≤ |S| ≤ (1− τ )n.

The next lemma is a directed analogue of Lemma 3.4.8. Its proof follows immediately

from the definition.

Lemma 3.6.4. Let 0 < ν ? τ ? 1. Suppose that G is a digraph and U ⊆ W ⊆ V (G)

are such that G[U ] is a robust (ν, τ )-outexpander and |U \W | ≤ ν|U |/2. Then G[W ] is

a robust (ν/2, 2τ )-outexpander.

The next lemma shows that the diameter of a robust outexpander is small.

Lemma 3.6.5. Let n ∈ N and 0 < 1/n ? ν ? τ ? η ≤ 1. Suppose that G is a robust

(ν, τ )-outexpander on n vertices with δ0(G) ≥ ηn. Then, given any distinct vertices

x, y ∈ V (G), there exists a path P in G from x to y such that |V (P )| ≤ 1/ν.

Proof. Let Xi be the set of vertices v for which there is a directed walk from x to v in

G of length at most i. So X0 = {x} and X1 = N
+(x) ∪ {x}. So |X1| ≥ ηn. Note that

RN
+

ν,G
(Xi) ⊆ Xi+1. Therefore, if |Xi| ≤ (1− τ )n, then |Xi+1| ≥ |RN

+

ν,G
(Xi)| ≥ |Xi|+ νn.

So certainly for i? := ?1/ν?−2 we have that |Xi? | ≥ (1− τ )n. But since δ0(G) ≥ ηn ≥ τn

we have that Xi?+1 = V (G). In particular, this implies that for any y ?= x there is a path

P of length at most 1/ν − 1 between x and y in G. Therefore |V (P )| ≤ 1/ν.

We will need the following result of Kühn, Osthus and Treglown [86], which states

that a robust outexpander whose minimum degree is not too small contains a (directed)

Hamilton cycle.
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Theorem 3.6.6 ([86]). Let n ∈ N and suppose that 0 < 1/n? ν ≤ τ ? η < 1. Let G be

a robust (ν, τ )-outexpander on n vertices with δ0(G) ≥ ηn. Then G contains a Hamilton

cycle.

We say that a digraph G is p-ordered Hamilton if, given x1, . . . , xp ∈ V (G), G contains

a Hamilton cycle which traverses x1, . . . , xp in this order.

Corollary 3.6.7. Let n, p ∈ N and suppose that 0 < 1/n? ν ? τ ? η < 1 and p ≤ ν3n.

Let G be a robust (ν, τ )-outexpander on n vertices with δ0(G) ≥ ηn. Then G is p-ordered

Hamilton.

Proof. Let x1, . . . , xp ∈ V (G). We claim that we can find a path P in G joining x1, xp

which traverses x1, . . . , xp in this order and such that |V (P )| ≤ νn/2. To see this,

suppose for some i ≤ p − 1 we have found a path Pi joining x1, xi with |V (Pi)| ≤ 2i/ν

which traverses x1, . . . , xi in this order and such that xi+1, . . . , xp do not lie in Pi. Let

Gi := G \ ((V (Pi) \ {xi}) ∪ {xi+2, . . . , xp}). Note that n − |V (Gi)| ≤ 2p/ν ≤ νn/2.

So Lemma 3.6.4 implies that Gi is a robust (ν/2, 2τ )-outexpander. Apply Lemma 3.6.5

with Gi, xi, xi+1 playing the roles of G, x, y to obtain a path, which, when appended to

Pi, gives a path Pi+1 joining x1, xi+1 which traverses x1, . . . , xi+1 in this order such that

xi+2, . . . , xp do not lie in Pi+1 and |V (Pi+1)| ≤ |V (Pi)| + 2/ν ≤ 2(i + 1)/ν. Set P := Pp.

This proves the claim.

Let G? be the graph obtained from G \ V (P ) by adding a new vertex z such that

N
−

G?(z) := N
−

G\V (P )
(x1) and N

+

G?(z) := N
+

G\V (P )
(xp). Then δ

0(G?) ≥ δ0(G) − νn/2 ≥

η|G?|/2 and G? is a robust (ν/2, 2τ )-outexpander. Therefore we can apply Theorem 3.6.6

to find a directed Hamilton cycle in G?. This corresponds to a Hamilton cycle in G which

traverses x1, . . . , xp in this order.

The following corollary states that robust (out)expanders are Hamilton p-linked pro-

vided that p is not too large.

Corollary 3.6.8. Let n, p ∈ N and suppose that 0 < 1/n ? ν ? τ ? η < 1 and let

p ≤ ν4n.
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(i) Let G be a robust (ν, τ )-outexpander on n vertices with δ0(G) ≥ ηn. Then G is

Hamilton p-linked.

(ii) Let H be a robust (ν, τ )-expander on n vertices with δ(H) ≥ ηn. Then H is Hamil-

ton p-linked.

Proof. To prove (i), let y1, . . . , yp, y
?
1
, . . . , y?

p
∈ V (G). Obtain G∗ from G as follows. For

each 1 ≤ i ≤ p (where indices are considered modulo p), replace the pair yi+1, y
?
i
with a

new vertex zi such that N
+

G∗(zi) := N
+

G
(yi+1) and N

−

G∗(zi) := N
−

G
(y?

i
). Then it is easy to

see that G∗ is a robust (ν/2, 2τ )-outexpander. Corollary 3.6.7 implies that G∗ contains a

Hamilton cycle which traverses z1, . . . , zp in this order. This corresponds to a collection

P1, . . . , Pp of vertex-disjoint paths such that Pi joins yi to y
?
i
and all the Pi together cover

V (G), proving (i).

To prove (ii), let G be the digraph obtained from H by replacing each edge xy with

directed edges
−→
xy and

−→
yx. Then G is a robust (ν, τ )-outexpander with δ0(G) ≥ ηn. Now

(i) implies that G is Hamilton p-linked. For each xy ∈ E(H), any path system in G uses

at most one of
−→
xy,

−→
yx. So H is Hamilton p-linked.

3.6.3 Spanning path systems in bipartite robust expanders

Given p ∈ N and a bipartite graph G with vertex classes A,B, we say that G is (A,B)-

Hamilton p-linked if, given any Y := {y1, y
?
1
, y2, y

?
2
, . . . , yp, y

?
p
} ⊆ V (G) with |Y ∩ A| =

|Y ∩ B| = p, we can find a set of vertex-disjoint paths joining yi to y
?
i
in G such that

together these paths cover all the vertices of G. Note that if G is (A,B)-Hamilton p-

linked then it is balanced. In this subsection we show that, for p not too large, G is

(A,B)-Hamilton p-linked when G is a balanced bipartite robust expander.

Given a balanced bipartite graph G with vertex classes A,B which contains a perfect

matching M , we denote by G∗ the M -auxiliary digraph of G obtained from G as follows.

Let G∗ have vertex set B. For each v ∈ B, we let v? be the unique vertex of A such that

vv? ∈ M . Then, for all x, v ∈ B, we let
−→
vx ∈ E(G∗) if and only if x ∈ NG(v

?) \ {v}. Note
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that the order of A and B matters here.

Lemma 3.6.9. Let n ∈ N and 0 < 1/n? ν ? τ ? η < 1. Let G be a balanced bipartite

graph with vertex classes A,B so that |A| = |B| = n and δ(G) ≥ ηn. Suppose further

that G is a bipartite robust (ν, τ )-expander (with bipartition A,B). Then

(i) G contains a perfect matching M ;

(ii) theM -auxiliary digraph G∗ of G is a robust (ν, τ )-outexpander with minimum degree

at least ηn/2.

Proof. Observe that (i) follows immediately from Hall’s Theorem. Indeed, by Hall’s

Theorem, it suffices to show that whenever S is a proper subset of A, we have that

|NG(S)| ≥ |S|. Suppose first that |S| ≤ τn. Then |NG(S)| ≥ δ(G) ≥ ηn ≥ τn ≥ |S|.

Suppose instead that τn ≤ |S| ≤ (1− τ )n. Then |NG(S)| ≥ |RNν,G(S)| ≥ |S|+ νn ≥ |S|.

Finally, suppose that |S| ≥ (1 − τ )n. Then NG(S) = B since τ ≤ η and δ(G) ≥ ηn. So

certainly |NG(S)| ≥ |S| in this case. Therefore G contains a perfect matchingM := {xx? :

x ∈ B, x? ∈ A}. To prove (ii), note that δ0(G∗) ≥ δ(G)− 1 ≥ ηn/2. Consider any S ⊆ B

with τn ≤ |S| ≤ (1−τ )n. Let SA := {x? : x ∈ S} and note that RN
+

ν,G∗(S) ⊇ RNν,G(SA).

Thus

|RN
+

ν,G∗(S)| ≥ |RNν,G(SA)| ≥ |SA|+ ν|V (G)| ≥ |S|+ ν|V (G
∗
)|,

and therefore G∗ is a robust (ν, τ )-outexpander, proving (ii).

We now prove an analogue of Lemma 3.6.5 for bipartite robust expanders.

Lemma 3.6.10. Let n ∈ N and 0 < 1/n ? ν ? τ ? η < 1. Suppose that G is a

bipartite graph on n vertices with vertex classes A,B, where

?
?
?|A| − |B|

?
?
? ≤ ν

2n. Suppose

further that δ(G) ≥ ηn and G is a bipartite robust (ν, τ )-expander (with bipartition A,B).

Then, given any distinct vertices x, y ∈ V (G) there exists a path P between x and y in G

such that |V (P )| ≤ 4/ν.
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Proof. Consider each u ∈ {x, y}. If u ∈ B, let u? be a neighbour of u which lies in A. If

u ∈ A, let u? := u. Make these choices so that x?, y? are distinct. So {x?, y?} ⊆ A. Remove

at most

?
?
?|A| − |B|

?
?
? ≤ ν|A|/4 vertices from A∪B to obtain A? ⊆ A and B ? ⊆ B such that

|A?| = |B ?| and {x?, y?} ⊆ A?. Lemma 3.4.9(i) implies that G? := G[A?, B?] is a bipartite

robust (ν/2, 2τ )-expander and that δ(G?) ≥ ηn?/2 where n? := |V (G?)|.

Let Xi be the set of vertices v ∈ A? of distance at most 2i to x? in G?. Now

Lemma 3.6.9(i) implies that G? contains a perfect matching M . So for all i ≥ 0 we

have Xi+1 ⊇ {a ∈ A? : ab ∈ M, b ∈ NG?(Xi)}. Thus |X1| ≥ ηn?/2 and whenever i ≥ 1

and |Xi| < (1− τ )n then

|Xi+1| ≥ |NG?(Xi)| ≥ |RNν/2,G?(Xi)| ≥ |Xi|+ νn
?
/2.

So certainly for i? := ?2/ν?− 4 we have that |Xi? | ≥ (1− τ )n?. But since δ(G?) ≥ ηn?/2 ≥

τn? we have that Xi?+1 = A
?. In particular, this implies that there is a path of length at

most 4/ν − 5 between x? and y? in G? and hence a path P with |V (P )| ≤ 4/ν between x

and y in G.

The following is a bipartite analogue of Corollary 3.6.8. To prove it, we iterate

Lemma 3.6.10 to find short paths between a small number of pairs of vertices. Then

the graph obtained by deleting these paths is still a bipartite robust expander.

Lemma 3.6.11. Let n, p ∈ N, 0 < 1/n? ν ? τ ? η ≤ 1 and p ≤ ν4n. Suppose that G

is a bipartite graph vertex classes A,B, so that |A| = |B| = n. Suppose further that G is

a bipartite robust (ν, τ )-expander with δ(G) ≥ ηn. Then G is (A,B)-Hamilton p-linked.

Proof. Let Y := {y1, y
?
1
, y2, y

?
2
, . . . , yp, y

?
p
} be a collection of distinct vertices in G such

that |Y ∩ A| = |Y ∩ B|. For each 1 ≤ i, j ≤ p, let Wi := {yi, y
?
i
} and let W≥j :=

?

j≤i≤p
Wi. Suppose, for some 0 ≤ ? ≤ p − 2, we have already obtained vertex-disjoint

paths R1, . . . , R?, where for each 1 ≤ i ≤ ?, Ri has endpoints yi, y
?
i
and |V (Ri)| ≤ 8/ν.
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We obtain R?+1 as follows. Let

G? := G \ (V (R1) ∪ . . . ∪ V (R?−1) ∪W≥?+1)

and let n? := |V (G?)|. Note that

|V (G) \ V (G?)| =

?

1≤i≤?

|V (Ri)|+ |W≥?+1| ≤ 8p/ν ≤ ν
2
n. (3.6.1)

Let A? := A∩V (G?) and define B? analogously. Then Lemma 3.4.9(i) implies that G? is a

bipartite robust (ν/2, 2τ )-expander with bipartition A?, B?, and δ(G?) ≥ ηn?/4. Moreover
?
?
?|A?| − |B?|

?
?
? ≤ |V (G) \V (G?)| ≤ ν

2n ≤ ν2n?. Therefore we can apply Lemma 3.6.10 with

A?, B?, ν/2, 2τ, η/4 playing the roles of A,B, ν, τ, η to see that G? contains a path R?+1

between y?+1 and y
?
?+1

such that |V (R?+1)| ≤ 8/ν.

Therefore we can obtain vertex-disjoint paths R1, . . . , Rp−1 in G \ {yp, y
?
p
} such that

|V (Ri)| ≤ 8/ν and Ri joins yi, y
?
i
for all 1 ≤ i ≤ p − 1. To obtain Rp, we now consider

three cases depending on the classes in which yp, y
?
p
lie. Let V ∗ :=

?

1≤i≤p−1
V (Ri).

Case 1. yp ∈ A and y?
p
∈ B.

Using our assumption that |Y ∩A| = |Y ∩B|, it is easy to see that |V ∗ ∩A| = |V ∗ ∩B|.

Let G? := G \
?
V ∗ ∪ {yp, y

?
p
}
?
. Also let A? := A ∩ V (G?) and define B ? analogously.

Then |A?| = |B ?| =: n?. As above, G? is a bipartite robust (ν/2, 2τ )-expander with

respect to A?, B?, and δ(G?) ≥ η(n? + 1)/2. Therefore G? contains a perfect matching

M ? by Lemma 3.6.9(i). Let M ?? := M ? ∪ {ypy
?
p
}. Then M ?? is a perfect matching in

the graph G− obtained from G \ V ∗ by adding the edge ypy
?
p
if necessary. Note that

|G−| = 2(n? + 1) and δ(G−) ≥ η(n? + 1)/2. Let G?? be the M ??-auxiliary digraph of G−.

Then Lemma 3.6.9(ii) implies that G?? is a robust (ν/2, 2τ )-outexpander with minimum

degree at least η(n? + 1)/4. By Theorem 3.6.6, G?? contains a Hamilton cycle C. Then C

corresponds to a Hamilton path Rp in G \ V ∗ which joins yp and y
?
p
. Thus R1, . . . , Rp are

vertex-disjoint from each other, join yi to y
?
i
, and together cover all the vertices of G. So
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G is (A,B)-Hamilton p-linked.

Case 2. yp, y
?
p
∈ A.

So it is easy to see that |V ∗ ∩A| = |V ∗ ∩B| − 1. Choose a neighbour zp of y
?
p
in B which

does not lie in V ∗. Now delete y?
p
from G and proceed as above with zp playing the role

of y?
p
.

Case 3. yp, y
?
p
∈ B.

This is analogous to Case 2.

3.6.4 Proof of Lemma 3.6.2

We are now ready to prove Lemma 3.6.2. Given a robust subpartition U in G and a

U -tour P , we apply Corollary 3.6.8 within each robust expander component U of U , with

the endpoints of P which lie in U suitably ordered. Similarly, we apply Lemma 3.6.11

within each bipartite robust expander component Z of U . In this way, we obtain a set R

of ‘joining paths’. Then together the paths in P ∪R form a cycle containing every vertex

of
?

U∈U
U .

Proof of Lemma 3.6.2. Note that if ν ? ≤ ν, then any (bipartite) robust (ν, τ )-expander is

also a (bipartite) robust (ν ?, τ )-expander. So without loss of generality, we may assume

that ν ? τ . Write U := {U1, . . . , Uk, Z1, . . . , Z?} so that (D1
?)–(D5?) are satisfied. Let

P be a U -tour with parameter γ, let q := |P| and R := RU(P). So for each path P ∈ P

there is a unique edge eP in R. Without loss of generality, eP1
. . . ePq

is the Euler tour

guaranteed by (T2). This corresponds to an ordering P1, . . . , Pq of the paths in P . Direct

the edges of R so that eP1
. . . ePq

is a directed tour. Direct the edges of (the paths in)

P correspondingly, so that for all 1 ≤ s ≤ q, if ePs
has startpoint U and endpoint W ,

then Ps is a directed path from some vertex x−
s
∈ U to some vertex x+

s
∈ W . We thus

obtain an ordering x
+

1
, x

−

2
, x

+

2
, . . . , x−

q
, x+

q
, x

−

1
of the endpoints of P . Note that for each

1 ≤ i ≤ q, x
+

i
, x

−

i+1
lie in the same X ∈ U , where the indices are considered modulo q.
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Fix some U ∈ U . Let p := EndP(U)/2. Thus p ∈ N. Then there exists a subsequence

i1, . . . , ip of 1, . . . , q such that

K := (x
+

i1
, x

−

i1+1
, x

+

i2
, x

−

i2+1
, . . . , x

+

ip
, x

−

ip+1
)

is the subsequence of ordered endpoints of P which lie in U (where x
−

q+1
:= x

−

1
). Let I be

the (unordered) collection of internal vertices of P which lie in U . Let U ? := U \ I . Note

that each element of K lies in U ?. Now (D4?) implies that δ(G[U ]) ≥ ηn. Furthermore,

(T3) implies that EndP(U) + IntP(U) ≤ γn. So

|U
?
|
(T3)

≥ |U | − γn ≥ (η − γ)n ≥ ηn/2 (3.6.2)

and hence

p = EndP(U)/2 ≤ γn/2 ≤ γ|U
?
|/η ≤

√
γ|U

?
|; (3.6.3)

and |I| = IntP(U) ≤ 2γn ≤ 4γ|U
?
|/η ≤ ν|U

?
|/10. (3.6.4)

Suppose first that U = Ui for some 1 ≤ i ≤ k. Then U is a (ρ, ν, τ )-robust expander

component. By (3.6.4), we may apply Lemma 3.4.8 with U, U \ I playing the roles of

U, U ? to see that G[U ?] is a robust (ν/2, 2τ )-expander and δ(G[U ?]) ≥ ηn/2. By (3.6.3)

and Corollary 3.6.8, G[U ?] is Hamilton p-linked. So there is an ordered collection RU of

p vertex-disjoint paths in G[U ?] spanning U ? such that the jth path in RU joins x
+

ij
and

x
−

ij+1
.

Suppose instead that U = Zi for some 1 ≤ i ≤ ?. Then there exists a bipartition

A,B of U such that U is a bipartite (ρ, ν, τ )-robust expander component with bipartition

A,B. Let A? := A \ I and B ? := B \ I . So A?, B? is a bipartition of U ?. Recall from (T4)

that P is (A,B)-balanced. Thus |A?| = |B ?| and EndP(A
?) = EndP(B

?) > 0.

Let n? := |A?|. Note that (D5?) implies that δ(G[A,B]) ≥ ηn/2. By (B1) and (C2)

we have that

?
?
?|A| − |B|

?
?
? ≤ ρn and hence (3.6.2) implies that |A| ≥ 2|U ?|/5. Now
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(3.6.4) implies that |I| ≤ ν|U ?|/10 ≤ ν|A|/4. So we may apply Lemma 3.4.9(i) to

see that G[U ?] is a bipartite robust (ν/2, 2τ )-expander with bipartition A?, B?, and that

δ(G[A?, B?]) ≥ ηn?/4. By (3.6.3) and Lemma 3.6.11, H is (A?, B?)-Hamilton p-linked. So

there is an ordered collection RU of p vertex-disjoint paths in H spanning U ? such that

the jth path in RU joins x
+

ij
and x

−

ij+1
.

Proceed in this way for each U ∈ U and let R :=
?

U∈U
RU . Then for each 1 ≤ i ≤ q,

there exists exactly one path Ri in R which joins x
+

i
and x

−

i+1
(with indices modulo q).

Let

C := x
−

1
P1x

+

1
R1x

−

2
P2x

+

2
. . . x

−

p
Ppx

+

p
Rpx

−

1
.

Then C is a cycle in G which covers
?

U∈U
U . ?

3.7 The proof of Theorem 3.1.2

Our aim is to prove Theorem 3.1.2, i.e. that every sufficiently large 3-connected D-regular

graph G on n vertices with D ≥ (1/4+ε)n contains a Hamilton cycle. By Theorem B and

Proposition 3.3.1(i), G has a robust partition V such that (k, ?) takes one of five values.

By Corollary 3.6.3, to find a Hamilton cycle it suffices to find a V-tour. We achieve this

for each case. In the first subsection we consider the case ? = 0 (so 1 ≤ k ≤ 3), i.e. when

G is a union of robust expander components. Then in Subsection 3.7.2 we prove some

lemmas which are useful for the case when ? ≥ 1. Finally in Subsections 3.7.3 and 3.7.4

we consider the cases (k, ?) = (0, 1), (1, 1) respectively.

3.7.1 Finding V-tours in a 3-connected graph with at most three

robust expander components

The main result of this section guarantees a V-tour in a 3-connected graph G which has

a robust partition V into at most three robust expander components.

To prove this, we use the fact that there is a matching of size 3 between any set A
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of vertices with 3 ≤ |A| ≤ |G| − 3, and its complement A in G. Applying this (possibly

more than once) and using a case analysis implies that we can find a path system P such

that RV(P) has an Euler tour with at most 4 edges. Since V contains no bipartite robust

components, P is a suitable V-tour.

Lemma 3.7.1. Let D, n ∈ N, let 0 < 1/n ? ρ ? ν ? τ ? α < 1 and let D ≥ αn.

Suppose that G is a D-regular 3-connected graph on n vertices and that V is a robust

partition of G with parameters ρ, ν, τ, k, 0 where k ≤ 3. Then G contains a V-tour with

parameter 4/n.

We will use the following proposition which is an immediate consequence of Menger’s

Theorem.

Proposition 3.7.2. Let k ∈ N and let G be a k-connected graph. Suppose that A is a

subset of G with |A|, |A| ≥ k. Then there is a matching of size k between A and A.

Lemma 3.7.1 is an immediate corollary of the following lemma. To see this, note that

(T4) is vacuous here.

Lemma 3.7.3. Let G be a 3-connected graph and let V be a partition of V (G) into at

most three parts, where |V | ≥ 3 for each V ∈ V. Then G contains a path system P such

that

(i) e(P) ≤ 4 and P ⊆
?

V ∈V
G[V, V ];

(ii) RV(P) is an Euler tour;

(iii) for each V ∈ V, if ci is the number of vertices in V with degree i in P (for i = 1, 2),

then c1 + 2c2 ∈ {2, 4} and c2 ≤ 1.

Proof. Suppose first that |V| = 1. Let P consist of a single arbitrary edge. So (i) and

(iii) are clear. Then RV(P) is a loop, so (ii) holds.

Suppose instead that |V| = 2 and write V := {V,W}. Then Proposition 3.7.2 implies

that G contains a matching P of size two between V and W . So (i) holds. In this case,
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RV(P) consists of exactly two V W -edges, so (ii) holds. Moreover, for each V ∈ V we

have (c1, c2) = (2, 0), implying (iii).

Suppose finally that |V| = 3 and write V := {V1, V2, V3}. We write Mij for a matching

between Vi and Vj . Given a path system P in G, we write c
j

i
for the number of vertices

in Vj with degree i in P . Proposition 3.7.2 implies that there is a matching of size three

between V1 and V2 ∪ V3. Without loss of generality, choose M12 such that |M12| = 2. By

Proposition 3.7.2 there is a matching of size three between V3 and V1∪V2. Therefore there

exist vertex-disjoint M13,M23 such that |M13|+ |M23| = 3. Throughout the remainder of

the proof, we will let u1, v1, w1, x1 be distinct vertices in V1 and we will label vertices in

other classes similarly.

Case 1. |M13| = 3.

If M13 contains two edges e, e
? that are vertex-disjoint from M12, then we let P have

edge-set {e, e?}∪M12. So (i) holds. Note that RV(P) consists of precisely two V1V2-edges

and two V1V3-edges. Therefore (ii) holds. Moreover, (c
1

1
, c1

2
) = (4, 0) and (c

j

1
, c

j

2
) = (2, 0)

for j = 2, 3, implying (iii).

Otherwise, M13 contains exactly two edges that share endpoints with edges in M12.

Without loss of generality, let M13 := {u1u3, v1v3, w1w3} and M12 := {u1u2, v1v2}. In

this case, let P := {u1u2, v2v1v3, w1w3}. (i) is immediate, and RV(P)
∼= C3 so (ii) holds.

Moreover, (c1
1
, c1

2
) = (2, 1) and (c

j

1
, c

j

2
) = (2, 0) for j = 2, 3, implying (iii).

Case 2. Without loss of generality, |M13| = 2 and |M23| = 1.

Let v2v3 be the edge in M23. Since |M12| = |M13| = 2 we can pick edges w1w2 ∈ M12

and x1x3 ∈ M13 so that w2 ?= v2 and x1 ?= w1. But M13 and M23 are vertex-disjoint, so

x3 ?= v3. In this case, we let P := {w1w2, v2v3, x3x1}. (i) is immediate, and RV(P)
∼= C3

so (ii) holds. Moreover, (c
j

1
, c

j

2
) = (2, 0) for all V ∈ V , implying (iii). This completes the

proof of the case |V| = 3.
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3.7.2 Finding an (A,B)-balanced path system in a bipartite ro-

bust expander

In Section 3.6 we showed that, given a robust partition V , ‘the balancing property’ (T4)

was sufficient to extend a V-tour into a Hamilton cycle. In this section we prove some

lemmas which will be useful in finding a path system which satisfies (T4).

Suppose that W is a bipartite robust component with bipartition A,B, where |A| ≥

|B|. We will show that if a path system P satisfies a particular condition (3.7.1) on

eP(A), eP(B), eP(W,W ), we can add AB-edges to P to obtain an (A,B)-balanced path

system. So to find a path system P ? which satisfies (T4), it suffices to find P which

satisfies (3.7.1) for all bipartite robust components.

We begin by observing the following crucial fact.

Proposition 3.7.4. Let G be a D-regular graph with vertex partition A, B, V . Then

(i) 2(e(A)− e(B)) + e(A, V )− e(B, V ) = (|A| − |B|)D.

In particular,

(ii) 2e(A) + e(A, V ) ≥ (|A| − |B|)D;

(iii) if V = ∅ then 2(e(A)− e(B)) = (|A| − |B|)D.

Proof. It suffices to prove (i) since (ii) and (iii) are then immediate. We have that

?

x∈A

dB(x) = e(A,B) =

?

y∈B

dA(y).

Moreover, by counting degrees,

2e(A) + e(A, V ) =

?

x∈A

(D − dB(x)) = D|A| −

?

x∈A

dB(x),

and similarly for B. So 2e(A)−2e(B)+e(A, V )−e(B, V ) = D(|A|− |B|), as desired.

The following proposition is an immediate consequence of Vizing’s Theorem on edge-

colourings.
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Proposition 3.7.5. Let H be a graph with ∆(H) ≤ ∆. Then H contains a matching of

size ?e(H)/(∆ + 1)?.

Given a graph G, a collection U of disjoint subsets of V (G) and a U -anchored path

system P in G, we say that a path system P ? is a U -extension of P if

• every edge which lies in a path of P ? but not a path of P lies in
?

U∈U
G[U ];

• for every P ? ∈ P ? there is at most one P ∈ P such that P ⊆ P ?.

If U ⊆ V (G) we will write U -extension for {U}-extension. The next lemma shows that

a U -extension P ? of P ‘behaves similarly’ to P in the reduced multigraph RU , and also

that RU is not affected by considering a slightly different partition.

Lemma 3.7.6. Let U be a collection of disjoint vertex-subsets of a graph G and let P be

a U -anchored path system in G.

(i) Suppose that P ? is a U -extension of P. Then P ? is a U -anchored path system.

(ii) Suppose that P ? is an X -extension of P for some X ⊆ U . Then P ? is a U -extension

of P.

(iii) Suppose that P ? is a U -extension of P. Then RU(P
?) is an Euler tour if and only

if RU(P) is an Euler tour.

(iv) Suppose that U := {U1, . . . , Ut}, X := {X1, . . . , Xt}, Xi ⊆ Ui for all 1 ≤ i ≤ t, and

P is X -anchored. Then RX (P)
∼= RU(P).

Proof. Note that (i), (ii) and (iv) are immediate. To prove (iii), let R be the subset of

P ? such that every R ∈ R contains some PR ∈ P . So |R| = |P|. Observe that PR has

endpoints in U, U ? ∈ U if and only if R has endpoints in U, U ?. So RU(R)
∼= RU(P). Let

Q := P ? \ R. Then every edge in a path in Q lies in
?

U∈U
G[U ]. So RU(Q) consists

entirely of loops. Therefore RU(P
?) = RU(R) ∪ RU(Q) is an Euler tour if and only if

RU(R) is, i.e. if and only if RU(P) is. This proves (iii).
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Suppose that A,B ⊆ V (G) are disjoint. The following lemma gives a sufficient condi-

tion which ensures that a path system P can be extended into an (A,B)-balanced path

system which does not cover too much of A ∪ B. Whenever we wish to find a balanced

path system we will find a collection of paths which satisfy this condition.

The idea is that, given an (A,B)-balanced path system P ?, removing every AB-edge

gives a path system P which satisfies (3.7.1) below. The lemma proceeds in the opposite

direction: one can add AB-edges to such a P to recover P ?.

Lemma 3.7.7. Let n ∈ N and 0 < 1/n ? ρ < 1 and suppose that G is a graph on n

vertices. Let U ⊆ V (G) have bipartition A,B where

?
?
?|A| − |B|

?
?
? ≤ ρn and δ(G[A,B]) >

9ρn. Let P be a path system in G such that |V (P) ∩ U | ≤ ρn,

2eP(A)− 2eP(B) + eP(A,U)− eP(B,U) = 2(|A| − |B|) (3.7.1)

and P has at least one endpoint in U . Then G contains a path system P ? such that

(α) P ? is a U -extension of P;

(β) P ? is (A,B)-balanced;

(γ) |V (P ?) ∩ U | ≤ 9ρn.

Proof. Without loss of generality, suppose that |A| ≥ |B|. Let A0 ⊆ A and B0 ⊆ B be

minimal such that V (P) ∩ U ⊆ A0 ∪ B0 and

|A0| − |B0| = |A| − |B|. (3.7.2)

Note that

|A0|+ |B0| = |A| − |B|+ 2|B0| ≤

?
?
?|A| − |B|

?
?
?+ 2|V (P) ∩ U | ≤ 3ρn. (3.7.3)

For each u ∈ A0, find a set Nu of 2− dP(u) neighbours of u in B \ B0. For each v ∈ B0,

find a set Nv of 2− dP(v) neighbours of v in A \A0. Choose these sets to be disjoint and
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such that (Nu∪Nv)∩V (P) = ∅. This is possible since for each u ∈ A and v ∈ B we have

dB(u), dA(v) > 3(|A0| + |B0|). Obtain P ? from P by adding the edges xx? to (the paths

in) P for each x ∈ A0 ∪ B0 and for each x
? ∈ Nx. It is clear that P

? is a U -extension of

P , so (α) holds.

Note that the set of internal vertices of P ? which lie in U is precisely A0 ∪ B0. Then

IntP ?(A)− IntP ?(B) = |A0| − |B0| = |A| − |B| by (3.7.2). So to show (β), it is enough to

check that EndP ?(A) = EndP ?(B) and that this value is non-zero. Since

?

u∈A

dP ?(u) = 2eP ?(A) + eP ?(A,B) + eP ?(A,U) = 2eP(A) + eP ?(A,B) + eP(A,U),

and similarly for B, we have that

?

u∈A

dP ?(u)−

?

v∈B

dP ?(v) = 2eP(A)− 2eP(B) + eP(A,U)− eP(B,U) (3.7.4)

(3.7.1)

= 2(|A| − |B|).

By construction,
?

u∈A
dP ?(u) = EndP ?(A) + 2|A0|, and similarly for B. So, by (3.7.4),

EndP ?(A)− EndP ?(B) = 2(|A| − |B|)− 2(|A0| − |B0|)
(3.7.2)

= 0. (3.7.5)

Recall that P has at least one endpoint x lying in U . Then |Nx| = 1 and the vertex in

Nx is an endpoint of a path in P ?. So EndP ?(A) = EndP ?(B) is non-zero, proving (β).

Finally, note that every vertex in V (P ?)∩U which does not lie in A0∪B0 is a neighbour

of some x ∈ A0 ∪ B0 in P ?. So (3.7.3) implies that

|V (P
?
) ∩ U | ≤ |A0 ∪ B0|+ |NP ?(A0 ∪ B0)| ≤ 3(|A0|+ |B0|) ≤ 9ρn,

proving (γ).

The next lemma is an iteration of Lemma 3.7.7. We will use it to successively extend

a path system into one that is (A,B)-balanced for all appropriate A,B.
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Lemma 3.7.8. Let n, k, ? ∈ N and 0 < 1/n? ρ? ν ? τ ? η < 1. Let G be a graph on

n vertices and suppose that U := {U1, . . . , Uk,W1, . . . ,W?} is a weak robust subpartition

in G with parameters ρ, ν, τ, η, k, ?. For each 1 ≤ j ≤ ?, let Aj , Bj be the bipartition of

Wj specified by (D3
?). Let P be a U -anchored path system such that for each 1 ≤ j ≤ ?,

2eP(Aj)− 2eP(Bj) + eP(Aj ,Wj)− eP(Bj ,Wj) = 2(|Aj | − |Bj |). (3.7.6)

Suppose further that |V (P) ∩ U | ≤ ρn for all U ∈ U , and that RU(P) is an Euler tour.

Then G contains a U -extension P ? of P that is a U -tour with parameter 9ρ.

Proof. Let P0 := P . Suppose that for some 0 ≤ i < ?, we have already defined a path

system Pi such that

(αi) Pi is a {W1, . . . ,Wi}-extension of P ;

(βi) for all 1 ≤ j ≤ i, Pi is (Aj , Bj)-balanced;

(γi) for all 1 ≤ j ≤ i, |V (Pi) ∩Wj | ≤ 9ρn.

Now we obtain Pi+1 from Pi as follows. Note that (D3
?) implies that (B1) and (C2) hold

and hence that

?
?
?|Ai+1| − |Bi+1|

?
?
? ≤ ρn. Moreover, by (D5

?) we have that δ(G[Aj , Bj ]) ≥

ηn/2 > 9ρn. Also (αi) implies that |V (Pi) ∩ Wi+1| = |V (P) ∩ Wi+1| ≤ ρn and that

(3.7.6) still holds with i + 1 and Pi playing the roles of j and P . Finally, RU(P) is

a non-empty Euler tour, so P contains at least one endpoint in Wi+1. Thus Pi con-

tains at least one endpoint in Wi+1 by (αi). Therefore we can apply Lemma 3.7.7 with

Wi+1, Ai+1, Bi+1,Pi, ρ playing the roles of U,A,B,P , ρ. We thus obtain a path system

Pi+1 satisfying Lemma 3.7.7(α)–(γ). Now (α) and (αi) imply that (αi+1) holds. We

obtain (βi+1) and (γi+1) in a similar way.

Therefore we can obtain P ? := P? that satisfies (α?)–(γ?). Now (α?) and Lemma 3.7.6(ii)

imply that P ? is a U -extension of P . It remains to show that (T1)–(T4) hold for P ? with

9ρ playing the role of γ. Indeed, (T1) follows from Lemma 3.7.6(i) and the fact that P ? is

a U -extension of P . Since RU(P) is an Euler tour, Lemma 3.7.6(iii) implies that RU(P
?)
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is an Euler tour, and hence (T2) holds. We have |V (P ?)∩Wj | ≤ 9ρn for all 1 ≤ j ≤ ? by

(γ?). Moreover, by (α?) we have that |V (P
?) ∩ Uj | = |V (P) ∩ Uj | ≤ ρn for all 1 ≤ j ≤ k.

So (T3) holds. Finally, (T4) is immediate from (β?).

3.7.3 Finding a V-tour in a regular bipartite robust expander

We now consider the case when G has a robust partition with (k, ?) = (0, 1), i.e. G is a

regular bipartite robust expander. By Corollary 3.6.3, in order to find a Hamilton cycle

in G it suffices to find a {V (G)}-tour with an appropriate parameter. This is guaranteed

by the following lemma.

Lemma 3.7.9. Let D, n ∈ N and let 0 < 1/n ? ρ ? ν ? τ ? α < 1. Let G be a

D-regular graph on n vertices where D ≥ αn. Suppose that G has a robust partition V

with parameters ρ, ν, τ, 0, 1. Then G contains a V-tour with parameter 18ρ.

Proof. Note (D3) implies that there exists a bipartition A,B of V (G) such that G is a

bipartite (ρ, ν, τ )-expander with bipartition A,B. By (D5) we have that δ(G[A,B]) ≥

D/2. Therefore

∆(G[A]),∆(G[B]) ≤ D/2. (3.7.7)

Moreover, (B1) (which follows from (D3)) implies that G is ρ-close to bipartite with

bipartition A,B. So (C2) holds, i.e.

?
?
?|A| − |B|

?
?
? ≤ ρn. (3.7.8)

Suppose first that |A| = |B|. Then let P consist of exactly one AB-edge. Note that

RV(P) is a loop and that P is (A,B)-balanced. All of (T1)–(T4) hold.

Without loss of generality, assume that |A| > |B|. Proposition 3.7.4(iii) implies that

e(A) ≥ e(A)− e(B) = (|A| − |B|)D/2. (3.7.9)
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Proposition 3.7.5 implies that G[A] contains a matching of size

?
e(A)

∆(A) + 1

?
(3.7.7),(3.7.9)

≥

?
(|A| − |B|)D/2

D/2 + 1

?

= |A| − |B| −

?
|A| − |B|

D/2 + 1

?

(3.7.8)

≥ |A| − |B| − ?2ρ/α? = |A| − |B|.

So we can choose a matching M of size |A| − |B| in G[A].

Now Proposition 3.6.1(i) implies that V is a weak robust subpartition in G with

parameters ρ, ν, τ, α2/2, 0, 1. Certainly M is V-anchored and

2eM (A)− 2eM (B) + eM (A, V (G))− eM (B, V (G)) = 2eM (A) = 2(|A| − |B|).

We also have that |V (M)| = 2(|A| − |B|) ≤ 2ρn. Moreover, M is non-empty since

|A| − |B| > 0. Thus RV(M) is a non-empty collection of loops and hence a non-empty

Euler tour. Therefore we can apply Lemma 3.7.8 with V , 0, 1, V (G),A,B,M, 2ρ, α2/2

playing the roles of U , k, ?,Wj , Aj , Bj ,P , ρ, η to obtain a path system P which is a V-tour

with parameter 18ρ.

3.7.4 Finding a V-tour when there is exactly one component of

each type

We would like to find a Hamilton cycle when G is the union of a robust expander compo-

nent V and a bipartite robust expander component W . By Corollary 3.6.3, it is sufficient

to find a V-tour for this robust partition V . This is guaranteed by the following lemma.

Lemma 3.7.10. Let n,D ∈ N, 0 < 1/n ? ρ ? ν ? τ ? α < 1 and let D ≥ αn.

Suppose that G is a 3-connected D-regular graph on n vertices and that V is a robust

partition of G with parameters ρ, ν, τ, 1, 1. Then G contains a V-tour with parameter

36ρ.

Let V,W be as above and let A,B be a bipartition of W such that W is a bipartite

robust expander with respect to A,B. Suppose that |A| ≥ |B|. To prove Lemma 3.7.10,
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our aim is to find a path system P to which we can apply Lemma 3.7.8 and hence obtain

a V-tour. Roughly speaking, P will consist of the union of two matchings, MA in G[A]

and MA,V in G[A, V ] which together have the right size to ‘balance’ W .

Proof of Lemma 3.7.10. Let V := {V,W}, where V is a (ρ, ν, τ )-robust expander com-

ponent and W has bipartition A,B so that W is a bipartite (ρ, ν, τ )-robust expander

component with respect to A,B. So (B1) and (C2) imply that

?
?
?|A| − |B|

?
?
? ≤ ρn. (3.7.10)

Moreover, (D4) implies that δ(G[V ]), δ(G[W ]) ≥ D/2 and therefore

D/2 ≥ ∆(G[W,V ]) ≥ ∆(G[A, V ]). (3.7.11)

By (D5) we have

∆(G[A]) ≤ D/2. (3.7.12)

Claim 1. It suffices to find a path system P in G such that the following hold:

(i) 2eP(A)− 2eP(B) + eP(A, V )− eP(B, V ) = 2(|A| − |B|);

(ii) e(P) ≤ 2ρn;

(iii) P has at least one V W -path.

Proof. Note that Proposition 3.6.1(i) implies that V is a weak robust subpartition

in G with parameters ρ, ν, τ, α2/2, 1, 1. Clearly, P is a V-anchored path system.

Observe that (D5) implies that δ(G[A,B]) ≥ D/4. Let p be the number of V W -

paths in P . Then RV(P) is an Euler tour if and only if p is positive and even. By

(iii) we have p > 0. Now (i) implies that

eP(W,V ) = eP(A, V ) + eP(B, V ) = 2(|A| − |B|)− 2eP(A) + 2eP(B) + 2eP(B, V )

is even. Note that any P ∈ P contains an odd number of V W -edges if P is a V W -
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path, and an even number otherwise. Therefore p is even and so RV(P) is a non-

empty Euler tour. Finally, for each X ∈ V we have |V (P)∩X | ≤ 2e(P) ≤ 4ρn by

(ii). Therefore we can apply Lemma 3.7.8 with V , 1, 1,W,A,B,P , 4ρ, α2/2 playing

the roles of U , k, ?,Wj , Aj , Bj ,P , ρ, η to find a V-extension P
? of P that is a V-tour

with parameter 36ρ, proving the claim. ?

So it remains to find a path system P as in Claim 1. Suppose first that |A| = |B|. Since G

is 3-connected, Proposition 3.7.2 implies that G[V,W ] contains a matching of size three.

We only consider the case when G[A, V ] contains a matching MA,V of size two. (The case

when this holds for G[B, V ] is similar.) Now Proposition 3.7.4(i) implies that

2e(B) + e(B, V ) = 2e(A) + e(A, V ) ≥ 2.

If e(B) ≥ 1, let P := MA,V ∪ {e}, where e is an edge in G[B]. Otherwise, e(B) = 0 and

hence e(B, V ) ≥ 2. In this case we let P consist of two vertex-disjoint edges e ∈ G[A, V ]

and e? ∈ G[B, V ]. In both cases, (i)–(iii) clearly hold for P and we are done.

Without loss of generality, assume that |A| > |B|. Proposition 3.7.4(ii) implies that

2e(A) + e(A, V ) ≥ (|A| − |B|)D. (3.7.13)

Suppose first that e(A) < D/5. Then (3.7.13) implies that e(A, V ) ≥ (|A| − |B|)D −

2D/5. Now Proposition 3.7.5 implies that G[A, V ] contains a matching of size at least

?
e(A, V )

∆(G[A, V ]) + 1

?
(3.7.11)

≥

?
(|A| − |B|)D − 2D/5

D/2 + 1

?

(3.7.14)

= 2(|A| − |B|)−

?
2(|A| − |B|) + 2D/5

D/2 + 1

?

(3.7.10)

≥ 2(|A| − |B|)−

?
D/2

D/2 + 1

?

= 2(|A| − |B|).

Let P be a matching of size 2(|A| − |B|) in G[A, V ]. Then P satisfies (i)–(iii) (indeed,

(ii) follows from (3.7.10)).
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Therefore we can assume that e(A) ≥ D/5. Let

? := min

??
e(A)

D/2 + 1

?

, |A| − |B|

?

. (3.7.15)

Note that ? ≥ 1. Clearly G[A] contains a matching of size ? by Proposition 3.7.5 and

(3.7.12). We now consider two cases, depending on the value of ?.

Case 1. ? = |A| − |B|.

Let M be a matching of size ? in G[A]. Since G is 3-connected, Proposition 3.7.2 implies

that G[V,W ] contains a matching of size three. Suppose first that G[A, V ] contains a

matching MA,V of size two. Write V (MA,V ) ∩ A := {u, u?}. If uu? is an edge in M ,

delete it to obtain M ?. Otherwise delete an arbitrary edge from M to obtain M ?. Let

P := M ? ∪MA,V . Then P is a path system satisfying (i). Also (ii) follows from (3.7.10).

Moreover, u lies in a V W -path in P , so (iii) holds.

So suppose that G[A, V ] does not contain a matching of size two. Then G[B, V ]

contains a matching MB,V of size two. Moreover, there is at most one vertex in A ∪ V

such that every edge in G[A, V ] is incident to this vertex. Therefore (3.7.11) implies that

e(A, V ) ≤ ∆(G[A, V ]) ≤ D/2. So

e(A)− |M |
(3.7.13)

≥ (|A| − |B|)D/2−D/4− |M | ≥ D/4− 1 > 0,

where the penultimate inequality follows from the fact that |M | = |A| − |B| > 0. So we

can find an edge e in G[A] that is not contained in M . Let P := MB,V ∪M ∪ {e}. Then

P is a path system satisfying (i)–(iii). This completes the proof of Case 1.

Case 2. ? < |A| − |B| and so ? = ?e(A)/(D/2 + 1)?.

Claim 2. Suppose that G[A] contains no matching of size ? + 1. Then G[A]

contains a matching M− of size ?−1 and a path P := xyz which is vertex-disjoint

from M−.

Proof. Suppose first that ∆(G[A]) ≤ D/8−1. Then Proposition 3.7.5 implies that

139



G[A] contains a matching of size

?
e(A)

D/8

?

=

?
e(A)

D/3
+
5e(A)

D

?

≥

?
e(A)

D/3
+ 1

?

≥ ?+ 1, (3.7.16)

a contradiction. So ∆(G[A]) > D/8 − 1 > 2? by (3.7.10) and (3.7.15). Recall

that G[A] contains a matching M of size ?. Since M must be maximal, there is

some y ∈ V (M) such that dA(y) > 2?. Let x ∈ A be a neighbour of y such that

x /∈ V (M). Let z be the neighbour of y in M . Let M− := M \{yz} and P := xyz.

?

Proposition 3.7.5 implies that G[A, V ] contains a matching of size

?
e(A, V )

∆(G[A, V ]) + 1

?
(3.7.11)

≥

?
e(A, V )

D/2 + 1

?

+ 2

?
e(A)

D/2 + 1

?

− 2?

≥

?
2e(A) + e(A, V )

D/2 + 1

?

− 2?

(3.7.13)

≥

?
(|A| − |B|)D

D/2 + 1

?

− 2? ≥ 2(|A| − |B| − ?),

where the final inequality follows in a similar way to (3.7.14). So we can choose a matching

MA,V in G[A, V ] of size 2(|A| − |B| − ?) > 0.

Let E be any collection of ? edges in G[A] and let H := E ∪MA,V . Then

2eH(A)− 2eH(B) + eH(A, V )− eH(B, V ) = 2|E|+ |MA,V | = 2(|A| − |B|). (3.7.17)

Moreover,

e(H) = |MA,V |+ |E| = 2(|A| − |B|)− ?
(3.7.10)

≤ 2ρn. (3.7.18)

Suppose that G[A] contains a matching M of size ?+1. Then P+ := M ∪MA,V is a path

system. If P+ contains a V W -path then obtain P from P+ by deleting an arbitrary edge

of M . Otherwise there is an edge e in M which is incident to some edge in MA,V . Let

P := P+ \ {e}. Then at least one endpoint of e is an endpoint of a V W -path in P . In

both cases, (iii) holds. Also (i) and (ii) hold by (3.7.17) and (3.7.18).
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Therefore we may assume that G[A] contains no matching of size ?+1. Let M−, P =

xyz be as guaranteed by Claim 2. Then M1 := M− ∪ {xy} and M2 := M− ∪ {yz}

are both matchings of size ? in G[A]. For i = 1, 2, let Pi := Mi ∪ MA,V . These are

both path systems. Now (3.7.17) and (3.7.18) imply that both of P1 and P2 satisfy

(i) and (ii). If, for some i = 1, 2, Pi also satisfies (iii) then we are done by setting

P := Pi, so suppose not. Then for each i = 1, 2 there exists M ?
i
⊆ Mi such that

V (M ?
i
) = V (MA,V ) ∩ A. In particular, this implies that M

?
1
,M ?

2
⊆ M−. Pick any edge

e ∈ M ?
1
and let P := P ∪ (M− \ {e}) ∪MA,V . Then both endpoints of e are endpoints of

a V W -path in P , so (3.7.17) and (3.7.18) imply that P satisfies (i)–(iii). ?

3.7.5 The proof of Theorem 3.1.2

As already indicated at the beginning of the section, Theorem 3.1.2 now follows easily.

Indeed, recall that we have a robust partition V with only five possible values of (k, ?).

But Lemmas 3.7.1, 3.7.9 and 3.7.10 guarantee a V-tour in each of these cases. Now

Corollary 3.6.3 implies that G contains a Hamilton cycle.

Actually, we even prove the following stronger stability result of which Theorem 3.1.2

is an immediate consequence: if the degree of G is close to n/4 and G is not Hamiltonian,

then G is either close to the union of four cliques, or the union of two complete bipartite

graphs, or the first extremal example discussed in Subsection 3.1.2. This result will be

very important in our proof of Theorem C in Chapter 4.

Theorem 3.7.11. For every ε, τ > 0 with 2τ 1/3 ≤ ε and every non-decreasing function

g : (0, 1) → (0, 1), there exists n0 ∈ N such that the following holds. For all 3-connected

D-regular graphs G on n ≥ n0 vertices where D ≥ (1/5+ε)n, at least one of the following

holds:

(i) G has a Hamilton cycle;

(ii) D < (1/4 + ε)n and there exist ρ, ν with 1/n0 ≤ ρ ≤ ν ≤ τ ; 1/n0 ≤ g(ρ); ρ ≤

g(ν), and (k, ?) ∈ {(4, 0), (2, 1), (0, 2)} such that G has a robust partition V with

141



parameters ρ, ν, τ, k, ?.

Proof. Let α := 1/5 + ε. Choose a non-decreasing function f : (0, 1) → (0, 1) with

f(x) ≤ min{x, g(x)} for all x ∈ (0, 1) such that the requirements of Proposition 3.3.1

(applied with r := 5), Corollary 3.6.3 and Lemmas 3.7.1, 3.7.9 and 3.7.10 (each applied

with τ ? playing the role of τ ) are satisfied whenever n, ρ, γ, ν, τ ? satisfy

1/n ≤ f(ρ), f(γ); ρ ≤ f(ν), ε
3
/8; γ ≤ f(ν); (3.7.19)

ν ≤ f(τ
?
); τ

?
≤ f(ε), f(1/5), τ

(and so τ ? ≤ f(α)). Choose τ ?, τ ?? such that 0 < τ ? ≤ f(ε), f(1/5), τ and let τ ?? := f(τ ?).

Apply Theorem B with f/36, α, τ ?? playing the roles of f, α, τ to obtain an integer n0.

Let G be a 3-connected D-regular graph on n ≥ n0 vertices where D ≥ αn. Theorem B

now guarantees ρ, ν, k, ? with 1/n0 ≤ ρ ≤ ν ≤ τ
??, 1/n0 ≤ f(ρ) and 36ρ ≤ f(ν) such that

G has a robust partition V with parameters ρ, ν, τ ??, k, ? (and thus also a robust partition

with parameters ρ, ν, τ ?, k, ?).

Let γ := 36ρ. Note that n, ρ, γ, ν, τ ? satisfy (3.7.19). So we can apply Proposi-

tion 3.3.1(ii) with τ ?, 5 playing the roles of τ, r to see that (k, ?) is equal to (a) (k, 0) for

1 ≤ k ≤ 3; (b) (0, 1); (c) (1, 1); or (d) (4, 0), (2, 1), (0, 2). Apply Lemmas 3.7.1, 3.7.9

and 3.7.10 (with τ ? playing the role of τ ) in the cases (a), (b), (c) respectively to obtain

a V-tour of G with parameter 36ρ = γ. Then Corollary 3.6.3 (with τ ? playing the role of

τ ) implies that G contains a Hamilton cycle so we are in case (i). If instead (d) holds,

Proposition 3.3.1(i) implies that D < (1/4+ ε)n. Since f ≤ g and V is a robust partition

with parameters ρ, ν, τ, k, ? (as τ ? ≤ τ ) we are in case (ii).

Proof of Theorem 3.1.2. Let ε > 0. Choose a positive constant τ such that 2τ 1/3 ≤ ε.

Apply Theorem 3.7.11 (with g(x) = x, say) to obtain an integer n0. Let G be a 3-

connected D-regular graph on n ≥ n0 vertices with D ≥ (1/4+ε)n. Then Theorem 3.7.11

implies that G has a Hamilton cycle. ?
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3.8 The proofs of Theorems 3.1.4 and 3.1.5

We first show that Theorem 3.1.4 is approximately best possible.

Proposition 3.8.1. Let t, r ∈ N be such that r ≥ 2. Then there are infinitely many

n ∈ N for which there exists a t-connected D-regular graph G on n vertices with D :=

(n− t)/(r − 1)− 1 and circumference c(G) ≤ tn/(r − 1) + t.

One can easily modify the construction to obtain a t-connected D-regular graph G

with the same bound on c(G) for smaller values of D (e.g. D = n/r).

Proof. We may suppose that t ≤ r − 1. Pick any k ∈ N with k ≥ 2t. Let

n := (r − 1)(2k(r − 1) + 1) + t and D :=
n− t

r − 1
− 1 = 2k(r − 1).

Construct a graph G on n vertices as follows. Let X,U1, . . . , Ur−1 be a partition of V (G),

where |X | = t and the |Ui| = D + 1. Add all edges within the Ui. So G[Ui] is D-regular.

Let Mi be a matching in G[Ui] with |V (Mi)| = tD/(r − 1). Note that Mi exists since

tD/(r − 1) is even, and at most D since t ≤ r − 1. Add exactly one edge from each

y ∈ V (Mi) to X so that each x ∈ X receives exactly D/(r − 1) edges from V (Mi).

Remove Mi from G.

Therefore G is t-connected (with vertex cut-set X) and D-regular. But any cycle in

G traverses at most t of the Ui, so

c(G) ≤ t|Ui|+ |X | ≤ tn/(r − 1) + |X | = tn/(r − 1) + t,

as required.

The first part of the following proposition shows that the bound on the circumference

in Theorem 3.1.5 is close to best possible. The second part of the proposition is a bipartite

analogue of the extremal example in Figure 3.1(i).

Proposition 3.8.2.
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(i) Let t, r ∈ N be such that r ≥ 4 is even and t ≥ 2. Then there are infinitely many

n ∈ N for which there exists a t-connected D-regular bipartite graph G on n vertices

with D := (n− 2)/(r − 2) and circumference c(G) ≤ 2tn/(r − 2) + t;

(ii) For every t ∈ N with t ≥ 2, there are infinitely many D ∈ N such that there exists a

bipartite graph on 8D + 2 vertices which is D-regular and t-connected but does not

contain a Hamilton cycle.

Proof. To prove (i), Consider any k ∈ N with k ≥ 2t. Let

n :=
k(r − 2)2

2
+ 2 and D :=

n− 2

r − 2
=
k(r − 2)

2
.

Let V be a set of n vertices and let {x, y}, A1, . . . , Ar/2−1, B1, . . . , Br/2−1 be a partition

of V , where |Ai| = |Bi| = D. Construct a D-regular graph G with V (G) = V as follows.

For each 1 ≤ i ≤ r/2 − 1, add all edges between Ai and Bi. For all 1 ≤ i ≤ r/2 − 1,

choose a matching Mi ∈ G[Ai, Bi] of size k.

For each i ≥ 2, partition Bi ∩ V (Mi) into a set B
?
i
of size k − t + 2 and a set B ??

i
of

size t − 2. Add an edge between x and every vertex in B ?
i
. Add an edge between y and

every vertex in Ai ∩ V (Mi). Remove Mi from G.

Choose U ⊆ A1 such that |U | = t − 2 and U ∩ V (M1) = ∅. For each u ∈ U , let

Nu ⊆ B1 \ V (M1) be a collection of r/2 − 2 distinct neighbours of u. Choose the Nu to

be disjoint. (This is possible since, for each u ∈ U , we have dB1\V (M1)
(u) = D − k =

k(r/2 − 2) ≥ (t − 2)(r/2 − 2).) For each u ∈ U and all i ≥ 2, add a single edge from

u to a vertex of B ??
i
such that every b ∈ B ??

i
has exactly one neighbour in U . For each

u ∈ U , remove every edge between u and every vertex in Nu. Add an edge between x

and every vertex in (B1∩V (M1))∪
?

u∈U
Nu. Add an edge between y and every vertex in

A1 ∩ V (M1). Remove M1 from G. This completes the construction of G (see Figure 3.2

for an illustration of the case when r = 10, t = 3 (and with U = {a})).

Note that G is bipartite and D-regular. It is not hard to see that U ∪{x, y} is a vertex

cut-set of minimal size. So G is t-connected. Let P be a path in G from vi ∈ (Ai∪Bi)\U
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to vj ∈ (Aj ∪ Bj) \ U , where i ?= j. Then there is a vertex w ∈ U ∪ {x, y} between

vi and vj on P . Therefore any cycle C in G traverses at most t of the Ai ∪ Bi, so

c(G) ≤ 2tD + t ≤ 2tn/(r − 2) + t, proving (i).

To obtain (ii), let r := 10 and consider G as in (i). Then G \ (A1 ∪ {x, y}) has

|B1| + 3 > |A1| + 2 components. So G is not 1-tough so does not contain a Hamilton

cycle.

One can easily modify the construction to obtain a t-connected D-regular graph G

with the same bound on c(G) for smaller values of D.

x

y

aaaa

k k kk

k+3 k−1 k−1k−1

A1 A2 A3 A4

B1 B2 B3 B4

Figure 3.2: The graph G in Proposition 3.8.2(i) in the case when r = 10 and t = 3.

The proof of Theorem 3.1.4 uses robust partitions as the main tool (Theorem B).

We show that, in a t-connected graph G with a robust partition, we can find a cycle

that contains every vertex in the t largest robust components of G (or at least almost

all the vertices in the case of bipartite robust components). When G has degree slightly

larger than n/r, its robust partition contains at most r− 1 components. So the t largest

components together contain at least tn/(r − 1) vertices, as required.

We let C1 denote a loop and C2 a double edge. The following result shows that, given
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any t-connected graph G and any collection U of t disjoint subsets of V (G), we can find

a path system P such that RU(P)
∼= Ct.

Proposition 3.8.3. Let t ∈ N, let G be a t-connected graph and let U := {U1, . . . , Ut} be

a collection of disjoint vertex-subsets of G with |Ui| ≥ 2t for each 1 ≤ i ≤ t. Then there

exists a U -anchored path system P in G such that RU(P)
∼= Ct.

Proof. For each i, let Ui := {U1, . . . , Ui}. Let P be a non-trivial path in G with both

endpoints in U1 and let P1 := {P}. Thus RU1
(P) ∼= C1. Now suppose, for some i < t,

we have obtained a Ui-anchored path system Pi in G such that RUi
(Pi)

∼= Ci. Without

loss of generality, we may assume that this cycle is U1U2 . . . Ui. So Pi consists of i paths

P1, . . . , Pi where Pj has endpoints xj ∈ Uj , yj+1 ∈ Uj+1 (with indices modulo i).

Suppose that there is some path Pj ∈ Pi with |V (Pj) ∩ Ui+1| ≥ 2. Let u, v ∈

V (Pj) ∩ Ui+1 be distinct such that u is closer than v to xj on Pj . Let Pi+1 be the path

system obtained from Pi be replacing Pj with the paths xjPju, vPjyj+1.

So we may assume that |V (Pi) ∩ Ui+1| =
?

1≤j≤i
|V (Pj) ∩ Ui+1| ≤ i. Let U ?

i+1
:=

Ui+1 \ V (Pi). Note that |U
?
i+1

| ≥ 2t − i > t. By Menger’s Theorem, there exists a path

systemR consisting of i+1 paths which join V (Pi) to U
?
i+1
and have no internal vertices in

V (Pi). By the pigeonhole principle, there exist j ≤ i and distinct paths xRy, x
?R?y? ∈ R

such that x, x? ∈ V (Pj). Without loss of generality, x is closer to xj on Pj than x
?. Obtain

Pi+1 from Pi by replacing Pj with xjPjxRy, y
?R?x?Pjyj+1.

In both cases, Pi+1 is a Ui+1-anchored path system, and

RUi+1
(Pi+1) = U1 . . . UjUi+1Uj+1 . . . Ui

is a cycle with vertex set Ui+1. The path system Pt obtained in this way is as required

in the proposition.

Now we show that, if RU(P) is an Euler tour, we can discard suitable subpaths of

each P ∈ P to ensure that |V (P) ∩ U | is small for each U ∈ U .
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Proposition 3.8.4. Let U be a collection of disjoint non-empty vertex-subsets of a graph

G and let P be a U -anchored path system in G containing t paths such that RU(P) is an

Euler tour. Then there exists a U -anchored path system P ? in G such that RU(P
?) is an

Euler tour, and for each U ∈ U we have that |V (P ?) ∩ U | ≤ 2t.

Proof. Let s := |U|. Clearly, the proposition holds if s = 1. So we may assume that

s ≥ 2 and that no P ∈ P has both endpoints in the same X ∈ U (otherwise we could

remove P from P). Fix a path P ∈ P with endpoints u ∈ U, v ∈ V where U, V ∈ U are

distinct. We will define a sequence of path systems R? with E(R?) ⊆ E(P ) as follows.

Let R0 := {P}. Suppose, for some 0 ≤ ? < s, we have already defined a path system R?

such that

(α?) R? is U -anchored;

(β?) if ? ≥ 1 then E(R?) ⊆ E(R?−1);

(γ?) E(RU(R?)) forms a walk from U to V ;

(δ?) for at least ? of the X in U , |X ∩ V (R?)| ≤ 2.

Now we obtain R?+1 from R? as follows. We are done if there are at least ? + 1

sets X in U such that |X ∩ V (R?)| ≤ 2, so suppose not. Let W ∈ U be such that

|W ∩ V (R?)| ≥ 3. By (γ?), there exists an integer p ≥ 1 such that RU(R?) equals the

walk U1U2 . . . Up+1 from U1 := U to Up+1 := V . So R? consists of p paths R1, . . . , Rp such

that Rj has endpoints xj ∈ Uj and yj+1 ∈ Uj+1. Choose j ≤ j
? such that W ∩ V (Rj) and

W ∩ V (Rj?) are both non-empty, and j
? − j is maximal with this property. Let w ∈ W

be the vertex on Rj which is closest to xj and let w
? ∈ W be the vertex on Rj? which is

closest to yj?+1. Let R?+1 := {R1, . . . , Rj−1, xjRjw,w
?Rj?yj?+1, Rj?+1, . . . , Rp}. Certainly

R?+1 satisfies (β?+1) and (δ?+1) from the construction. (α?+1) follows from (α?). Since

w,w? lie in the same set in U , (γ?+1) holds by (γ?).

Therefore we can obtain PP := Rs that satisfies (αs)–(δs). We can obtain PP in-

dependently for each P ∈ P . Since the P are vertex-disjoint and (βs) implies that
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E(PP ) ⊆ E(P ), it follows that P
? :=

?

P∈P
PP is a path system. Moreover P

? is certainly

U -anchored by (αs). We write R := RU(P) and R
? := RU(P

?). Note (γs) implies that one

can obtain R? from R by replacing each edge UV of R with a walk joining U, V . Since R

is an Euler tour we therefore have that R? is an Euler tour. Moreover, (δs) implies that

for each X ∈ U we have |V (P ?) ∩X | =
?

P∈P
|V (PP ) ∩X | ≤ 2t as required.

In the following proposition, we show that, given a weak robust subpartition U in a

t-connected graph G, we can adjust U slightly so that G contains a path system P which

is a U -tour. For this, we simply apply Propositions 3.8.3 and 3.8.4 to obtain a suitable U -

anchored path system and remove a small number of vertices from each bipartite robust

component.

Proposition 3.8.5. Let t, n ∈ N and let 0 < 1/n ? ρ ? ν ? τ ? η, 1/t ≤ 1. Suppose

that G is a regular t-connected graph on n vertices. Let U be a weak robust subpartition

in G with parameters ρ, ν, τ, η, k, ? where k + ? ≤ t. Then

(i) G has a weak robust subpartition X with parameters 6ρ, ν/2, 2τ, η/2, k, ?;

(ii) |
?

X∈X
X | ≥ |

?

U∈U
U | − 2ρ?n;

(iii) G contains an X -tour with parameter 54ρ.

Proof. Write U = {U1, . . . , Uk, Z1, . . . , Z?} satisfying (D1
?)–(D5?). Apply Proposition 3.8.3

to U with t? := k + ? playing the role of t to obtain a U -anchored path system P∗ such

that RU(P
∗) ∼= Ct? . Since P

∗ contains at most t paths, we may apply Proposition 3.8.4

to P∗ to obtain a U -anchored path system P such that RU(P) is an Euler tour and

|V (P) ∩ U | ≤ 2t for all U ∈ U .

Consider any 1 ≤ j ≤ ?. Let Aj , Bj be the bipartition of Zj guaranteed by (D3
?). So

Zj is a bipartite (ρ, ν, τ )-robust expander component with respect to Aj , Bj . Moreover,

2eP(Aj) + eP(Aj , Zj) ≤

?

x∈Zj

dP(Zj) ≤ 2|V (P) ∩ Zj | ≤ 4t.
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A similar inequality holds for Bj . Now

?
?
?|Aj | − |Bj |

?
?
? ≤ ρn by (D3?), (B1) and (C2).

Therefore we can remove at most ρn + 4t ≤ 2ρn vertices from Zj \ V (P) to obtain

A?
j
⊆ Aj , B

?
j
⊆ Bj and Z

?
j
:= A?

j
∪ B ?

j
such that

2eP(A
?

j
)− 2eP(B

?

j
) + eP(A

?

j
, Z ?

j
)− eP(B

?

j
, Z ?

j
) = 2(|A

?

j
| − |B

?

j
|). (3.8.1)

To see this, it suffices to check that eP(A
?
j
, Z ?

j
)− eP(B

?
j
, Z ?

j
) (and thus the left-hand side

of (3.8.1)) is even. To verify the latter note that, modulo two,

eP(Z
?

j
, Z ?

j
) ≡ EndP(Z

?

j
) = dRU (P)

(Z
?

j
).

So

eP(A
?

j
, Z ?

j
)− eP(B

?

j
, Z ?

j
) = eP(Z

?

j
, Z ?

j
)− 2eP(B

?

j
, Z ?

j
) ≡ dRU (P)

(Z
?

j
)− 2eP(B

?

j
, Z ?

j
) ≡ 0

where the final congruence follows since RU(P) is an Euler tour. Therefore (3.8.1) can

be satisfied.

Let X := {U1, . . . , Uk, Z
?
1
, . . . , Z ?

?
}. Clearly (ii) holds. To prove (i), first note that for

each 1 ≤ j ≤ ?, we have |A?
j
?Aj | + |B ?

j
?Bj | = |Zj \ Z

?
j
| ≤ 2ρn. Then Lemma 3.4.10(i)

implies that Z ?
j
is a bipartite (6ρ, ν/2, 2τ )-robust expander component of G with biparti-

tion A?
j
, B?

j
. So (D3?) holds. The remaining properties (D1?), (D2?), (D4?) and (D5?) are

clear.

Finally, by (3.8.1) and the properties of P stated above, we can apply Lemma 3.7.8

with X ,P , 6ρ, ν/2, 2τ, η/2, k, ? playing the roles of U ,P , ρ, ν, τ, η, k, ? to obtain an X -

extension P ? of P in G that is an X -tour with parameter 54ρ. This proves (iii).

We are now able to prove Theorem 3.1.4.

Proof of Theorem 3.1.4. Let α := 1/r + ε and η := 1/2r2 ≤ α2/2. Choose a non-

decreasing function f : (0, 1) → (0, 1) with f(x) ≤ x for all x ∈ (0, 1) such that the

requirements of Propositions 3.3.1, 3.6.1 and 3.8.5 as well as Lemma 3.6.2 are satisfied
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whenever n, ρ, γ, ν, τ satisfy the following:

1/n ≤ f(ρ); ρ ≤ f(ν), ε
3
/8; ν ≤ f(τ ); τ ≤ f(η), f(1/t), f(1/r); (3.8.2)

as well as 1/n ≤ f(γ) and γ ≤ f(ν). Choose τ, τ ? so that

0 < τ
?
≤ τ ≤

1

2r2
,
ε

2t
,
ε3

8
,
f(1/t)

2
,
f(η/2)

2
, f(1/r) and τ

?
≤ f(τ ). (3.8.3)

Choose a non-decreasing function f ? : (0, 1) → (0, 1) such that 54f ?(x) ≤ f(x/2) for

all x ∈ (0, 1). Apply Theorem B with f ?, α, τ ? playing the roles of f, α, τ to obtain an

integer n0. Let G be a t-connected D-regular graph on n ≥ n0 vertices where D ≥ αn.

Theorem B now guarantees ρ, ν, k?, ?? with

1/n0 ≤ ρ ≤ ν ≤ τ
?
, 1/n0 ≤ f

?
(ρ) and ρ ≤ f

?
(ν) (3.8.4)

such that G has a robust partition V with parameters ρ, ν, τ ?, k?, ?? (and thus also with

parameters ρ, ν, τ, k?, ??). Note that (3.8.3) and (3.8.4) together imply that (3.8.2) holds.

Moreover,

2ρ ≤ 1/r
2
and 2ρt ≤ ε. (3.8.5)

Claim. There are integers k, ? with k + ? ≤ t such that G has a weak robust

subpartition U with parameters ρ, ν, τ, η, k, ? where

?

U∈U

|U | ≥ min

?
t

r − 1
+
?

r2
, 1

?

n. (3.8.6)

Proof. Recall that V is a robust partition in G with parameters ρ, ν, τ, k?, ??. Let

m := k? + ??. Suppose first that m ≤ t. Since by Proposition 3.6.1(i), V is a weak

robust subpartition in G with parameters ρ, ν, τ, η, k?, ?? we can take U := V (and

so k = k? and ? = ??). Therefore we may assume that t ≤ m − 1. Order the
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members of V as X1, . . . , Xm so that |X1| ≥ . . . ≥ |Xm|. Let U := {X1, . . . , Xt}.

Now by Proposition 3.6.1(i) and (ii) there exist integers k, ? so that k + ? = t and

U is a weak robust subpartition in G with parameters ρ, ν, τ, η, k, ?.

By averaging, we have that
?

U∈U
|U | ≥ tn/m. Note also that m+? ≤ m+?? =

k?+2?? ≤ r−1 where the last inequality follows from Proposition 3.3.1. Therefore

?

U∈U

|U | ≥
tn

m
≥

tn

r − 1− ?
=

tn

r − 1

?

1 +
?

r − 1− ?

?

≥
tn

r − 1
+
?n

r2
,

proving the claim. ?

Apply Proposition 3.8.5 to G,U to obtain a weak robust subpartition X with parameters

6ρ, ν/2, 2τ, η/2, k, ? in G and an X -anchored path system P such that
?

X∈X
|X | ≥

?

U∈U
|U | − 2ρ?n and P is an X -tour with parameter γ := 54ρ. Now (3.8.3) and (3.8.4)

imply that

1/n ≤ f(6ρ), f(γ); 6ρ, γ ≤ f(ν/2); ν/2 ≤ f(2τ ); 2τ ≤ f(η/2). (3.8.7)

Then Lemma 3.6.2 with X ,P , 6ρ, γ, ν/2, 2τ, η/2 playing the roles of U ,P , ρ, γ, ν, τ, η im-

plies that there is a cycle C in G which contains every vertex in
?

X∈X
X . So

|V (C)| ≥

?

U∈U

|U | − 2ρ?n
(3.8.6)

≥ min

?
t

r − 1
+
?

r2
− 2ρ?, 1− 2ρ?

?

n

(3.8.5)

≥ min

?
t

r − 1
, 1− ε

?

n,

as required. ?

Proof of Theorem 3.1.5 (Sketch). The proof is almost the same as that of Theorem 3.1.4.

We proceed similarly as we did there to obtain a robust partition V with parameters

ρ, ν, τ ?, k?, ??. Since G is bipartite, it is easy to check that k? = 0. Thus ?? ≤ ?(r− 1)/2? =

(r − 2)/2 by Proposition 3.3.1. Instead of the claim in the proof of Theorem 3.1.4, we

now show that there exists an integer ? ≤ t such that G has a weak robust subpartition
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U with parameters ρ, ν, τ, η, 0, ? where
?

U∈U
|U | ≥ min {2tn/(r − 2), n} . (Using that

?? ≤ (r− 2)/2, this follows as in the claim.) The remainder of the proof is now similar to

that of Theorem 3.1.4. ?
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CHAPTER 4

SOLUTION TO A PROBLEM OF BOLLOBÁS

AND HÄGGKVIST ON HAMILTON CYCLES IN

REGULAR GRAPHS

4.1 Introduction

In this chapter we give an exact solution to a longstanding conjecture on Hamilton cycles

in regular graphs, posed independently by Bollobás and Häggkvist:

Theorem C. There exists n0 ∈ N such that every 3-connected D-regular graph on n ≥ n0

vertices with D ≥ n/4 is Hamiltonian.

The content of this chapter leads on from Chapter 3; the background to and motivation

for the problem were discussed in detail in Section 3.1.2, so we do not repeat this here.

In Chapter 3, we proved Theorem 3.1.2, an approximate version of Theorem C, namely

that for all ε > 0, whenever n is sufficiently large, any 3-connected D-regular graph on

n vertices with D ≥ (1/4 + ε)n is Hamiltonian. In fact we proved a stronger result

(Theorem 3.7.11), which we will use in this chapter to prove Theorem C. Recall that

the major tool in proving Theorems 3.1.2 and 3.7.11 was a structural decomposition

result (Theorem B) which holds for any dense regular graph: it gives a partition into

(bipartite) robust expanders with few edges between these (see Section 4.3). We proved

further applications of this partition result in Chapter 3.
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This chapter is organised as follows. In Section 4.2, we discuss the extremal examples

which show that Theorem C is best possible. Section 4.3 contains a sketch of the proof

of Theorem C. The proof of Theorem C is split into three cases, and these are considered

in Sections 4.5–4.7 respectively. Finally, we derive Theorem C in Section 4.8.

4.2 The extremal examples

In this section we show that Theorem C is best possible in the sense that neither the

degree condition nor the connectivity condition can be reduced. An example of Jung [68]

and Jackson, Li and Zhu [66] shows that the degree condition cannot be reduced for

graphs with n ≡ 1 mod 8 vertices; for completeness we extend this to all possible n in

the following proposition. An illustration of their example may be found in Figure 4.1(i).

Proposition 4.2.1. Let n ≥ 5 and let D be the largest integer such that D ≤ ?n/4? − 1

and nD is even. Then there is an (?n/8?−1)-connected D-regular graph Gn on n vertices

which does not contain a Hamilton cycle.

Proof. Recall that a D-regular graph on n vertices exists if and only if n ≥ D+1 and nD

is even. For each n ≥ 5, we define a graph Gn on n vertices as follows. Let V1, V2, A, B

be disjoint independent sets where |A| = D, |B| = D − 1, and the other classes have

sizes according to the table below. Let A1, A2 be a partition of A so that

?
?
?D/2− |A1|

?
?
? is

minimal subject to the parity conditions below being satisfied:
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n D |V1| |V2| |A1| |A2|

8k + 1 2k 2k + 1 2k + 1 even even

8k + 2 2k 2k + 2 2k + 1 even even

8k + 3 2k 2k + 2 2k + 2 even even

8k + 4 2k 2k + 3 2k + 2 even even

8k + 5 2k 2k + 3 2k + 3 even even

8k + 6 2k + 1 2k + 3 2k + 2 odd even

8k + 7 2k 2k + 4 2k + 4 even even

8k + 8 2k + 1 2k + 4 2k + 3 even odd

Note that |Vi| ≥ D+1 for i = 1, 2. Add every edge between A and B. First consider the

cases when D = 2k. Then |Ai| is even for i = 1, 2. For each i = 1, 2, add edges so that

Gn[Vi] is D-regular. Let Mi be a matching of size |Ai|/2 in Gn[Vi] and remove it. Let

V ?
i
:= V (Mi). So |V

?
i
| = |Ai|. Add a perfect matching between V

?
i
and Ai.

Now consider the case when D = 2k + 1. Then, by our choice of Ai and Vi we have

that |Ai| ≡ |Vi| mod 2. Fix V
?
i
⊆ Vi with |V ?

i
| := |Ai|. Define the edge set of Gn[Vi] so

that for all x ∈ V ?
i
we have dVi

(x) = D − 1 and for all y ∈ Vi \ V
?
i
we have dVi

(y) = D.

Add a perfect matching between V ?
i
and Ai.

Then Gn has n vertices, is D-regular and has connectivity min{|A1|, |A2|} ≥ ?n/8?−1.

Moreover, Gn does not contain a Hamilton cycle because it is not 1-tough (Gn\A contains

more than |A| components).

There also exist non-Hamiltonian 2-connected regular graphs on n vertices with degree

close to n/3 (see Figure 4.1(ii)). Indeed, we can construct such a graph G as follows.

Start with three disjoint cliques on 3k vertices each. In the ith clique choose disjoint

sets Ai and Bi with |Ai| = |Bi| and |A1| = |A3| = k and |A2| = k − 1. Remove a

perfect matching between Ai and Bi for each i. Add two new vertices a and b, where a

is connected to all vertices in the sets Ai and b is connected to all vertices in all the sets
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2k − 1
2k

2k + 1

2k + 1

V1

V2

A B

A1

A2

(i)

a

b

(ii)

Figure 4.1: Extremal examples for Theorem C. (i) is an illustration for the case n = 8k+1.

Here, each Vi is a clique of order 2k + 1 with a matching of size k removed.

Bi. Then G is a (3k − 1)-regular 2-connected graph on n = 9k + 2 vertices. However, G

is not Hamiltonian because G \ {a, b} has three components. One can construct similar

examples for all n ∈ N.

Altogether this shows that none of the conditions — degree or connectivity — of

Theorem C can be relaxed.

4.3 Sketch of the proof

4.3.1 Robust partitions of dense regular graphs

The main tool in our proof is Theorem B, a structural result on dense regular graphs

that was the main result of Chapter 3. Roughly speaking, this allows us to partition the

vertex set of such a graph G into a small number of ‘robust components’, each of which

has strong expansion properties and sends few edges to the rest of the graph.

Theorem B roughly says the following:

(♣) For all r ∈ N and ε > 0 and n sufficiently large, every D-regular graph G on n

vertices with D ≥ (
1

r+1
+ ε)n has a robust partition with parameters k, ?, where

k + 2? ≤ r.

In particular, the number of edges between robust components is o(n2).
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4.3.2 Finding a Hamilton cycle using a robust partition

Now suppose that G is a D-regular graph on n vertices with D ≥ n/4, where n is

sufficiently large. Then (♣) applied with r = 4 implies that G has a robust partition V

with parameters k, ?, where k+2? ≤ 4. This gives eight possible structures, parametrised

by (k, ?) ∈ S≤3 ∪ S4, where

S≤3 := {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1)} and S4 := {(4, 0), (0, 2), (2, 1)}.

Note that the extremal example in Figure 4.1(i) corresponds to the case (2, 1) and the

one in (ii) corresponds to the case (3, 0). Also note that when D ≥ (1/4 + ε)n, we have

k+ 2? ≤ 3 and so (k, ?) ∈ S≤3. In Chapter 3, we proved that if G is 3-connected and has

a robust partition V with parameters k, ? where (k, ?) ∈ S≤3, then G is Hamiltonian. In

particular, this implies an approximate version of Theorem C. The proof proceeded by

considering each possible structure separately. Therefore, to prove Theorem C, it remains

to show that if G is 3-connected and has a robust partition V with parameters k, ? where

(k, ?) ∈ S4, then G is Hamiltonian (see Theorem 3.7.11). So the current chapter uses

the result of Chapter 3 as an essential ingredient. Again, we consider each structure

separately in Sections 4.5, 4.6 and 4.7 respectively.

In each case we adopt the following strategy. Let V be a robust partition of G with

parameters k, ?. Kühn, Osthus and Treglown [86] proved that every large robust expander

H with linear minimum degree contains a Hamilton cycle. This can be strengthened (see

Corollary 3.6.8) to show that one can cover all the vertices of a robust expander with a

set of paths with prescribed endvertices. More precisely, one can show that each robust

expander component G[Vi] is Hamilton p-linked for each small p and all 1 ≤ i ≤ k. (Here

a graph H is Hamilton p-linked if, whenever X := {x1, y1, . . . , xp, yp} is a collection of

distinct vertices, there exist vertex-disjoint paths P1, . . . , Pp such that Pj connects xj

to yj , and such that together the paths P1, . . . , Pp cover all vertices of H .) Balanced

bipartite robust expanders have the same property, provided X is distributed equally
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between the bipartition classes. This means that we can hope to reduce the problem

of finding a Hamilton cycle in G to finding a suitable set of external edges Eext, where

an edge is external if it has endpoints in different members of V . We then apply the

Hamilton p-linked property to each robust component to join up the external edges into

a Hamilton cycle. The assumption of 3-connectivity is crucial for finding Eext.

However, several problems arise. When (k, ?) = (4, 0), we have four robust compo-

nents and only the assumption of 3-connectivity, which makes it difficult to find a suitable

set Eext joining all four components directly. However, we can appeal to the dominating

cycle result in [66] mentioned in the introduction to Chapter 3, giving us a fairly short

argument for this case. Note that the condition that D ≥ n/4 is essential in this case —

3-connectivity on its own is not sufficient.

Now suppose that ? ≥ 1, i.e. V contains a bipartite robust expander component.

These cases are challenging since a bipartite graph does not contain a Hamilton cycle if

it is not balanced. So as well as a suitable set Eext, we need to find a set Ebal of balancing

edges incident to the bipartite robust expander component. Suppose for example that

(k, ?) = (0, 2) and G consists of two bipartite robust expander components W1,W2 such

that Wi has vertex classes Ai, Bi where |A1| = |B1| and |A2| = |B2| + 1. Then we could

choose Ebal to be a single edge with both endpoints in A2. A second example would be

Ebal = {a1a2, b1a
?
2
} where a1 ∈ A1, b1 ∈ B1 and a2, a

?
2
∈ A2 are distinct. (Note that these

are also external edges and in this case we can actually take Eext ∪ Ebal = {a1a2, b1a
?
2
}.)

Observe that we need at least

?
?
?|A1| − |B1|

?
?
?+

?
?
?|A2| − |B2|

?
?
? balancing edges.

Our robust partition guarantees that the vertex classes of any bipartite robust ex-

pander component differ by at most o(n), so we must potentially find a similar number of

balancing edges. This must be done in such a way that P := Eext ∪Ebal can be extended

into a Hamilton cycle. So in particular P must be a collection of vertex-disjoint paths.

We use the Hamilton p-linkedness of the (bipartite) robust expander components to find

these edges which extend P into a Hamilton cycle. Consider the second example above,

with P = {a1a2, b1a
?
2
}. Choose a neighbour b2 of a2 in B2 and let P

? := {a1a2b2, b1a
?
2
}.
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Then the Hamilton 1-linkedness of W1,W2 implies that we can find a path P1 with end-

points a1, b1 which spans W1, and a path P2 with endpoints a
?
2
, b2 which spans W2 \ {a2}.

Then the edges of P1, P2,P
? together form a Hamilton cycle.

It turns out that the condition that D ≥ n/4 is crucial in the case when (k, ?) =

(2, 1) (see Section 4.2) but its full strength is not required in the case when (k, ?) =

(0, 2). A sketch of the proof in each of the three cases can be found at the beginning of

Sections 4.5, 4.6 and 4.7 respectively.

4.4 Notation and tools

4.4.1 General notation

All notation is as in Chapter 3. For general notation, we refer the reader to Section 3.2.

We will also need the following basic concepts:

If S, T are sets of vertices which are not necessarily disjoint and may not be subsets of

V (G), we write eG(S) for the number of edges of G with both endpoints in S, and eG(S, T )

for the number of ST -edges of G, i.e. for the number of all edges with one endpoint in S

and the other endpoint in T . We also set G[S] := G[S ∩ V (G)]. Moreover, when S, T are

disjoint, we write G[S, T ] for the bipartite graph with vertex classes S ∩ V (G), T ∩ V (G)

whose edge set consists of all the ST -edges of G. We omit the subscript G whenever the

graph G is clear from the context.

Given disjoint subsets X, Y of V (G), we say that P is an XY -path if P has one

endpoint in X and one endpoint in Y . We call a vertex-disjoint collection of non-trivial

paths a path system. We will often think of a path system P as a graph with edge set

?

P∈P
E(P ), so that e.g. V (P) is the union of the vertex sets of each path in P , and

eP(X) denotes the number of edges on the paths in P having both endpoints in X . By

slightly abusing notation, given two vertex sets S and T and a path system P , we write

P [S] for the graph obtained from P [S] by deleting isolated vertices and define P [S, T ]
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similarly. We say that a vertex x is an endpoint of P if x is an endpoint of some path in

P . An Euler tour in a (multi)graph is a closed walk that uses each edge exactly once.

We write N for the set of positive integers and write N0 := N ∪ {0}. R≥0 denotes the

set of non-negative reals.

Given 0 < ε < 1 and x ∈ R, we write ?x?ε := ?x− ε?.

In addition, we will need the following specialised notation that was defined in various

parts of Chapter 3. For convenience we list below the sections in which the relevant

definitions are stated.

Section 3.3: (ν, τ )-robust expander, bipartite (ν, τ )-robust expander (with bipartition

A,B), ρ-component, ρ-close to bipartite (with bipartition U1, U2), (C1)–(C3), (ρ, ν, τ )-

robust expander component, (E1), (E2), bipartite (ρ, ν, τ )-robust expander component

(with bipartition A,B), (B1), (B2), (ρ, ν, τ )-robust component, robust partition of G with

parameters ρ, ν, τ, k, ?, (D1)–(D7), the statement of Theorem B.

Section 3.6: weak robust subpartition with parameters ρ, ν, τ, η, k, ?, reduced multi-

graph RV(P) of P with respect to V , V-tour with parameter γ, (T1)–(T4).

4.5 (4,0): Four robust expander components

The aim of this section is to prove the following lemma.

Lemma 4.5.1. Let D, n ∈ N and 0 < 1/n ? ρ ? ν ? τ ? 1. Suppose that G is a

3-connected D-regular graph on n vertices with D ≥ n/4. Suppose further that G has a

robust partition V with parameters ρ, ν, τ, 4, 0. Then G contains a V-tour with parameter

33/n.

We will find a V-tour P as follows. Let V := {V1, . . . , V4}. Suppose that there are

1 ≤ i < j ≤ 4 such that G[Vi, Vj ] contains a large matchingM . We can use 3-connectivity

with the tripartition V ? := V ∪ {Vi ∪ Vj} \ {Vi, Vj} to obtain a path system P ? such that

RV ?(P ?) is a V ?-tour. Then P ? together with some suitable edges of M will form a V-tour.
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Suppose instead that for all 1 ≤ i < j ≤ 4, every matching in G[Vi, Vj ] is small. In this

case, we appeal to the result of Jackson, Li and Zhu [66] mentioned in the introduction

to Chapter 3: any longest cycle in G is dominating. Thus C visits all the Vi. Moreover,

since there are very few edges between the Vi it follows that most of the edges of C lie

within some Vi. If we remove all such edges, what remains is a V-tour.

Before proceeding, we make a small remark. The result of [66] allows us to avoid a

potentially intricate case analysis in the case when every matching between components is

small, but this could conceivably be done ‘by hand’. So it seems likely that Lemma 4.5.1

could be proved without appealing to [66].

Let V ? be a partition of V (G) into three parts such that V is a refinement of V ?. Then,

by Lemma 3.7.3, we can easily find a collection of paths P ? such that RV ?(P ?) is an Euler

tour. The following result will enable us to ‘extend’ P ? into P such that RV(P) is an

Euler tour.

Proposition 4.5.2. Let U be a partition of V (G). Let U, V ∈ U and let U ? := U ∪ {U ∪

V }\{U, V }. Suppose that G contains a path system P ? such that RU ?(P ?) is an Euler tour.

Suppose further that G[U, V ] contains a matching M of size at least |V (P ?)∩ (U ∪V )|+2.

Then G contains a path system P with E(P) ⊇ E(P ?) such that RU(P) is an Euler tour

and |V (P) ∩X | ≤ |V (P ?) ∩X |+ 2 for all X ∈ U .

Proof. Note that there are at least two edges e, e? of M which are vertex-disjoint from

P ?. Let R? := RU(P
?) and R?? := RU ?(P ?). We have that dR?(U) + dR?(V ) = dR??(U ∪ V )

is even since R?? is an Euler tour. Moreover, dR?(X) = dR??(X) for all X ∈ U ? ∩ U .

If both dR?(U) and dR?(V ) are odd, let P := P ? ∪ {e}. Otherwise, both dR?(U)

and dR?(V ) are even (but one could be zero). In this case, let P := P ? ∪ {e, e?}. It is

straightforward to check that in both cases RU(P) is an Euler tour.

A subgraph H of a graph G is said to be dominating if G \ V (H) is an independent

set. In our proof of Lemma 4.5.1 we will use the following theorem of Jackson, Li and

Zhu.
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Theorem 4.5.3. [66] Let G be a 3-connected D-regular graph on n vertices with D ≥ n/4.

Then any longest cycle in C is dominating.

Proof of Lemma 4.5.1. Let C be a longest cycle in G. Then Theorem 4.5.3 implies that

C is dominating. We consider two cases according to the number of edges in C between

classes of V .

Case 1. eC(U, V ) ≥ 12 for some distinct U, V ∈ V.

Since C is a cycle we have that ∆(C[U, V ]) ≤ 2. König’s theorem implies that C[U, V ] has

a proper edge-colouring with at most two colours, and thus C[U, V ] contains a matching

of size at least eC(U, V )/2 ≥ 6.

Let V ? := V ∪{U ∪V } \ {U, V }. So V ? is a tripartition of V (G), and certainly |V | ≥ 3

for each V ∈ V ?. Apply Lemma 3.7.3 to obtain a path system P ? in G such that (i)–(iii)

hold. Then RV ?(P ?) is an Euler tour and (iii) implies that |V (P ?)∩X | ≤ 4 for all X ∈ V ?.

Now Proposition 4.5.2 with V ,V ? playing the roles of U ,U ? implies that G contains a

path system P such that RV(P) is an Euler tour, and |V (P) ∩X | ≤ 6 for all X ∈ V . So

P is a V-tour with 6/n playing the role of γ.

Case 2. eC(U, V ) ≤ 11 for all distinct U, V ∈ V.

Let P be the collection of disjoint paths with edge set E(C) \
?

V ∈V
E(C[V ]). For each

V ∈ V , let PV :=
?

U∈V\{V }
P [U, V ]. Then

e (PV ) =

?

U∈V\{V }

eC(U, V ) ≤ 33. (4.5.1)

Suppose that |V (C) ∩ V | < D − 2ρ1/3n. Let X := V \ V (C). So X is an independent

set in G. Moreover, (D7) implies that, for all but at most ρn vertices in x ∈ V , we have

dV (x) ≥ D − ρn. In particular, |V | ≥ D − ρn and so |X | ≥ ρ1/3n. Thus there is some

x ∈ X such that dV (x) ≥ D − ρn. Therefore x has a neighbour in X , a contradiction.
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Thus |V (C) ∩ V | ≥ D − 2ρ1/3n for all V ∈ V . But

2|V (C) ∩ V | =

?

v∈V

dC(v) = 2eC(V ) + e(PV )

and hence

eC(V ) = |V (C) ∩ V | −
1

2
e(PV ) ≥ D − 2ρ

1/3
n− 33/2 > 0.

Thus E(C[V ]) ?= ∅ for all V ∈ V . It is straightforward to check that this implies that

RV(P) is an Euler tour. Finally, note that, for each V ∈ V , (4.5.1) implies that we have

|V (P) ∩ V | ≤ e(PV ) ≤ 33. So P is a V-tour with parameter 33/n. ?

4.6 (0,2): Two bipartite robust expander compo-

nents

The aim of this section is to prove the following lemma.

Lemma 4.6.1. Let D, n ∈ N, let 0 < 1/n ? ρ ? ν ? τ ? α < 1 and let D ≥ αn.

Suppose that G is a 3-connected D-regular graph on n vertices and that V is a robust

partition of G with parameters ρ, ν, τ, 0, 2. Then G contains a V-tour with parameter

ρ1/3.

We first give a brief outline of the argument.

4.6.1 Sketch of the proof of Lemma 4.6.1

Let V := {W1,W2} be as above and let Ai, Bi be a bipartition of Wi such that G[Wi]

is a bipartite robust expander component with bipartition Ai, Bi, where |Ai| ≥ |Bi|. To

prove Lemma 4.6.1, our aim is to find a ‘balancing’ path system P to which we can

apply Lemma 3.7.8 and hence obtain a V-tour. In other words, the path system has to

‘compensate for’ the differences in the sizes of the vertex classes Ai and Bi and has to

‘join up’ W1 and W2.
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One could try to first find a path system which balances W1, and then add additional

edges so that W2 is also balanced; however these additional edges may cause W1 to

become unbalanced. So one must find a path system P which simultaneously balances

both components.

This is not too difficult if both A1 and A2 contain sufficiently large matchings M1 and

M2 (see Lemma 4.6.5). In this case, the 3-connectivity of G guarantees a matching of

size two connecting W1 and W2, to which we can add suitable edges from M1 and M2 to

obtain P .

So suppose that this is not the case. Then (see Lemmas 4.6.4 and 4.6.12) we show that

we can choose Ci ∈ {Ai, Bi} for each i = 1, 2 such that König’s theorem on edge-colourings

guarantees the following: G[C1], G[C2], G[W1, A2] contain matchingsM1,M2,M1,2 respec-

tively, such that the union R of these matchings balances both W1 and W2. However,

two problems can arise: R may not connect W1 and W2 (it could contain no W1W2-path)

and it may contain cycles.

Therefore the bulk of the proof of Lemma 4.6.1 is devoted to choosing M1,M2 and

M1,2 carefully to avoid these problems. Observe that since we use König’s theorem to

find matchings, we can actually find much larger matchings in H ⊆ G when ∆(H) is

small, and choosing a ‘good’ matching is easier. So most of the difficulty in the proof

arises from the presence of vertices of high degree.

4.6.2 Balanced subgraphs with respect to a partition

Consider a graph G with vertex partition V := {W1,W2}, whereWi has bipartition Ai, Bi

for i = 1, 2. Write V∗ for the ordered partition (A1, B1, A2, B2). Given D ∈ N, we say

that G is D-balanced (with respect to V∗) if both of the following hold.

2e(A1)− 2e(B1) + e(A1,W2)− e(B1,W2) = D(|A1| − |B1|); (4.6.1)

2e(A2)− 2e(B2) + e(A2,W1)− e(B2,W1) = D(|A2| − |B2|).
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Proposition 3.7.4(i) easily implies that any D-regular graph with arbitrary ordered

partition V∗ is D-balanced.

Proposition 4.6.2. Suppose that G is a D-regular graph and let A1, B1, A2, B2 be a

partition of V (G). Then G is D-balanced with respect to (A1, B1, A2, B2). ?

The next proposition shows that, to prove Lemma 4.6.1, it suffices to find a path

system P which is 2-balanced with respect to V∗, contains a W1W2-path, and does not

have many edges.

Proposition 4.6.3. Let n,D ∈ N and 0 < 1/n ? ρ ≤ γ ? ν ? τ ? α < 1. Let G

be a D-regular graph on n vertices with D ≥ αn. Suppose further that G has a robust

partition V := {W1,W2} with parameters ρ, ν, τ, 0, 2. For each i = 1, 2, let Ai, Bi be the

bipartition of Wi guaranteed by (D3). Let P be a 2-balanced path system with respect to

(A1, B1, A2, B2) in G. Suppose that e(P) ≤ γn and that P contains at least one W1W2-

path. Then G contains a V-tour with parameter 18γ.

Proof. Let p be the number of W1W2-paths in P . Any W1W2-path in P contains an odd

number of W1W2-edges. Since P is 2-balanced with respect to (A1, B1, A2, B2), we have

that eP(W1,W2) = eP(A1,W2) − eP(B1,W2) + 2eP(B1,W2) is even. Hence p is even.

Since p > 0, we have that RV(P) is an Euler tour.

The hypothesis e(P) ≤ γn implies that |V (P) ∩ V | ≤ 2γn for all V ∈ V . Proposi-

tion 3.6.1 implies that V is a weak robust partition with parameters 2γ, ν, τ, α2/2, 0, 2.

Thus we can apply Lemma 3.7.8 with V , 0, 2,Wj , Aj , Bj ,P , 2γ playing the roles of U , k, ?,

Wj , Aj , Bj ,P , ρ to find a V-tour P
? with parameter 18γ.

The next lemma shows that we can find a D-balanced subgraph of G which only

contains edges in some of the parts of G. (Recall the definition of ?·?ε from the end of

Subsection 4.4.)

Lemma 4.6.4. Let D ∈ N be such that D ≥ 20. Let G be a graph and let V∗ :=

(A1, B1, A2, B2) be an ordered partition of V (G) with 0 ≤ |Ai| − |Bi| ≤ D/2 for i = 1, 2.
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Suppose that eG(A1, B2) ≤ eG(B1, A2) and ∆(G[Ai]) ≤ D/2 for i = 1, 2. Suppose further

that G is D-balanced with respect to V∗. Then one of the following holds:

(i) for i = 1, 2, G[Ai] contains a matching Mi of size |Ai| − |Bi| ≤ ?eG(Ai)/5?1/4;

(ii) there exists a spanning subgraph G? of G which is D-balanced with respect to V∗

and E(G?) ⊆ E(G[C1]) ∪ E(G[C2]) ∪ E(G[A1 ∪ B1, A2]), where C1 ∈ {A1, B1} and

C2 ∈ {A2, B2}.

Proof. Observe that the graph obtained by removing E(G[Ai, Bi]) from G for i = 1, 2 is

D-balanced. So we may assume that E(G[Ai, Bi]) = ∅ for i = 1, 2. Consider each of the

pairs

{G[A1], G[B1]}, {G[A2], G[B2]}, {G[A1, A2], G[B1, B2]}, {G[A1, B2], G[B1, A2]}

of induced subgraphs. For each such pair {J, J ?}, remove min{eG(J), eG(J
?)} arbitrary

edges from each of J, J ? in G. Let H be the subgraph obtained from G in this way.

Then H is D-balanced and for each pair {J, J ?}, we have that E(H [V (J)]) = ∅ whenever

eG(J) ≤ eG(J
?) (and vice versa). In particular, eH(A1, B2) = 0. Suppose that we cannot

take G? := H so that (ii) holds. Then H ⊆ G[C1] ∪ G[C2] ∪ G[B1, A2 ∪ B2] for some

C1 ∈ {A1, B1} and C2 ∈ {A2, B2} with eH(B1, B2) ≥ 1. So eH(A1, A2) = 0. Let

vi := D(|Ai| − |Bi|) ≥ 0. Since H is D-balanced we have that 2eH(A1) − 2eH(B1) −

eH(B1, A2 ∪ B2) = v1 ≥ 0. In particular, eH(A1) ≥ eH(B1). So eH(B1) = 0. Let

t := eH(B1, A2). Thus

2eH(A1) ≥ v1 + t+ 1 and similarly (4.6.2)

2eH(A2) ≥ v2 − t+ 1.

Suppose first that t ≥ v2. Then 2eH(A1) ≥ v1 + v2 + 1. Since G is D-balanced,

summing the two equations in (4.6.1) implies that v1+v2 is even. Let HB1A2
consist of v2

arbitrary edges in H [B1, A2] and let HA1
consist of (v1 + v2)/2 arbitrary edges in H [A1].
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In this case, we let G? := HA1
∪HB1A2

. So (ii) holds.

Suppose instead that t < v2. First consider the case when t = 0. Then (4.6.2) implies

that 2eG(Ai) ≥ 2eH(Ai) ≥ vi + 1 for i = 1, 2. Since ∆(G[Ai]) ≤ D/2, Vizing’s theorem

implies that G[Ai] contains a matching Mi of size

?
eG(Ai)

D/2 + 1

?

≥

?
D(|Ai| − |Bi|)/2

D/2 + 1

?

≥ |Ai| − |Bi| − ?D/(D + 2)? = |Ai| − |Bi|.

Note that the right hand side is at most ?e(Ai)/5?1/4. So (i) holds.

Therefore we may assume that t > 0. Recall that v1 ≡ v2 mod 2. We will choose

HB1A2
⊆ H [B1, A2] and HAi

⊆ H [Ai] for i = 1, 2 by arbitrarily choosing edges according

to the relative parities of v1 and t, such that the following hold:

• if v1 + t is even then choose e(HB1A2
) = t, 2e(HA1

) = v1 + t, 2e(HA2
) = v2 − t;

• if v1+t is odd then choose e(HB1A2
) = t−1, 2e(HA1

) = v1+t−1, 2e(HA2
) = v2−t+1.

These choices are possible by (4.6.2). We let G? := HA1
∪HA2

∪HB1A2
. Observe that G?

is D-balanced. So (ii) holds.

Observe that the subgraphM1∪M2 of G guaranteed by Lemma 4.6.4(i) is a 2-balanced

path system. The next lemma shows that, when G is 3-connected, one can modify such

a path system into one which also contains paths between A1 ∪ B1 and A2 ∪ B2.

Lemma 4.6.5. Let n,D ∈ N and 0 < 1/n ? γ ? 1. Let G be a 3-connected D-regular

graph on n vertices. Let W1,W2 be a partition of V (G) and let Ai, Bi be a partition of Wi

for i = 1, 2, where |Ai| ≥ |Bi|. Suppose that there exist matchings M1,M2 in G[A1], G[A2]

respectively so that |Ai| − |Bi| = e(Mi) ≤ ?e(Ai)/5?1/4 and e(Mi) ≤ γn for i = 1, 2.

Then G contains a path system P which is 2-balanced with respect to (A1, B1, A2, B2) and

contains a W1W2-path, and e(P) ≤ 3γn.

Proof. Proposition 4.6.2 implies that G is D-balanced with respect to (A1, B1, A2, B2).

Suppose that there exist edges e ∈ E(G[A1, A2]) and e
? ∈ E(G[B1, B2]). Then we can
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take P := M1 ∪M2 ∪ {e, e?}. We are similarly done if there exist edges f ∈ E(G[A1, B2])

and f ? ∈ E(G[B1, A2]). If either of these two hold then we say that G contains a balanced

matching. So we may assume that G does not contain a balanced matching. The 3-

connectivity of G implies that there is a matching N of size at least three in G[W1,W2].

Since G does not contain a balanced matching, eN (C1, C2) ≥ 2 for some Ci ∈ {Ai, Bi}.

So we can choose a matching N ? of size two in G[C1, C2]. Let Di be such that {Ci, Di} :=

{Ai, Bi}. Note that eG(D1, D2) = 0 or G would contain a balanced matching. Without

loss of generality, we may assume that e(M1) ≤ e(M2).

Case 1. e(M2) > 0.

Note that 1 ≤ e(M2) ≤ eG(A2)/5 + 3/4. Thus eG(A2) − e(M2) ≥ 4eG(A2)/5 − 3/4 > 0.

So we can always choose an edge e2 ∈ E(G[A2]) \ E(M2). If possible, let f2 be the edge

of M2 spanned by V (N
?) ∩ A2. If there is no such edge, let f2 be an arbitrary edge in

M2. Let

M
?

2
:=






M2 \ {f2} if C2 = A2

M2 ∪ {e2} if C2 = B2.

Case 1.a. e(M1) > 0.

Define e1, f1 and hence M
?
1
analogously to e2, f2,M

?
2
. It is straightforward to check that

P := N ? ∪M ?
1
∪M ?

2
is as required in the lemma.

Case 1.b. e(M1) = 0.

We have |A1| = |B1|. Without loss of generality we may suppose that C1 = A1 or

we can swap A1, B1. So eG(A1,W2) ≥ eN (C1, C2) ≥ 2. Since G is D-balanced and

eG(B1, C2) = eG(B1,W2), this in turn implies that 2eG(B1)+eG(B1, C2) ≥ 2. If eG(B1) >

0 let e ∈ E(G[B1]) be arbitrary and define P := N ? ∪ M ?
2
∪ {e}. Otherwise, there

exists e12 ∈ E(G[B1, C2]). Let e
?
12

∈ E(N ?) be vertex-disjoint from e12. If possible, let

f ?
2
∈ E(M2) be the edge spanning the endpoints of e12, e

?
12
which lie in A2; otherwise, let

f ?
2
∈ E(M2) be arbitrary. If C2 = A2, let P := M2 ∪ {e12, e

?
12
} \ {f ?

2
}. If C2 = B2, let
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P := M2 ∪ {e12, e
?
12
}. It is straightforward to check that in all cases P is as required in

the lemma.

Case 2. e(M2) = 0.

So e(M1) = 0 and |Ai| = |Bi| for i = 1, 2. Without loss of generality, we may assume

that Ci := Ai (and hence Di := Bi). Write {i, j} = {1, 2}. Since G is D-balanced we

have that

2eG(Ai)− 2eG(Bi) + eG(Ai, Aj) + eG(Ai, Bj)− eG(Bi, Aj) = 0.

So 2eG(Bi)+eG(Bi, Aj) ≥ eN (A1, A2) ≥ 2. Therefore either eG(Bi) > 0 or eG(Bi, Aj) > 0

(or both). So for i = 1, 2, either we can find ei ∈ E(G[Bi]) or eij ∈ E(G[Bi, Aj ]) (or

both). Note that not both eG(B1, A2), eG(A1, B2) can be positive since G does not contain

a balanced matching.

Suppose that eG(B1), eG(B2) > 0. Let P := N ? ∪ {e1, e2}, as required. Otherwise we

may assume without loss of generality that eG(B1) > 0 and eG(B2, A1) > 0. Let e
?
12
∈ N ?

be vertex-disjoint from e21. Let P := {e1, e
?
12
, e21}. It is straightforward to check that in

both cases P is as required in the lemma.

4.6.3 Tools for finding matchings

Given any bipartite graph G, König’s theorem on edge-colourings guarantees that we

can find a matching of size at least ?e(G)/∆(G)?. The following lemma shows that,

given any matching M in G, we can find a matching M ? of at least this size such that

V (M) ⊆ V (M ?).

Lemma 4.6.6. Let G be a bipartite graph with vertex classes V,W such that ∆(G) ≤ ∆.

Let M be a matching in G with e(M) ≤ ?e(G)/∆?. Then there exists a matching M ? in

G such that e(M ?) = ?e(G)/∆? and V (M) ⊆ V (M ?).

Proof. Let M ? be a matching in G such that V (M) ⊆ V (M ?) and e(M ?) ≤ ?e(G)/∆? is
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maximal with this property. Suppose that e(M ?) < ?e(G)/∆?. Since, by König’s theorem

on edge-colourings, G contains a matching of size ?e(G)/∆?, this means that M ? is not

a maximum matching. So, by Berge’s lemma, G contains an augmenting path P for M ?,

i.e. a path with endpoints not in V (M ?) which alternates between edges in E(M ?) and

edges outside of E(M ?). But then P \E(M ?) is a matching contradicting the maximality

of e(M ?).

We now show that given a bipartite graph G = (U,Z) and any partition V,W of Z,

we can find a large matching in G which has the ‘right’ density in each of G[U, V ] and

G[U,W ].

Lemma 4.6.7. Let G be a bipartite graph with vertex classes U, V ∪ W , where V,W

are disjoint. Suppose that ∆(G) ≤ ∆. Let bV , bW be non-negative integers such that

bV + bW ≤ ?e(G)/∆?, bV ≤ ?eG(U, V )/∆? and bW ≤ ?eG(U,W )/∆?. Then G contains a

matching M such that eM (U, V ) = bV and eM (U,W ) = bW .

Proof. By increasing bV , bW if necessary, we may assume that bV + bW = ?e(G)/∆?. Note

that either bV = ?eG(U, V )/∆?, or bW = ?eG(U,W )/∆?, or both. Suppose without loss

of generality that bV = ?eG(U, V )/∆?. Choose a matching M
? in G of size ?e(G)/∆?. Let

mV := eM ?(U, V ) and let mW := eM ?(U,W ). Let k := bV −mV . Then

mW = ?e(G)/∆? −mV = bV + bW −mV = bW + k.

If k = 0 we are done, so suppose first that k > 0. Apply Lemma 4.6.6 to obtain a

matching JV in G[U, V ] such that e(JV ) = bV and V (JV ) ⊇ V (M
?[U, V ]). So |(V (JV ) \

V (M ?[U, V ])) ∩ U | = k. Thus we can choose a submatching JW of M ?[U,W ] of size

mW − k = bW that is vertex-disjoint from JV . Let M := JV ∪ JW .

Otherwise, k < 0. Apply Lemma 4.6.6 to obtain a matching JW in G[U,W ] such that

e(JW ) = bW and V (JW ) ⊇ V (M
?[U,W ]). As above, we can choose a submatching JV of

M ?[U, V ] of size bV that is vertex-disjoint from JW . Let M := JV ∪ JW .
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4.6.4 Acyclic unions of matchings

The next lemma shows that, in a graph with low maximum degree, we can find a large

matching that does not completely span a given set of vertices.

Proposition 4.6.8. Let 0 < 1/∆ ? η ? 1. Let G be a graph with ∆(G) ≤ η∆ and

suppose that e(G) ≥ 2η∆. Suppose that K ⊆ V (G). Then there exists a matching M in

G such that e(M) = ?e(G)/∆? and M [K] is not a perfect matching.

Proof. By Vizing’s theorem, G contains a matching M ? of size

?
e(G)

∆(G) + 1

?

≥

?
e(G)

3η∆/2

?

≥

?
e(G)

∆

?

+ 1.

Delete edges so thatM ? has size ?e(G)/∆?+1. IfM ? contains an edge with both endpoints

in K, remove this edge to obtain M . Otherwise, obtain M from M ? by removing an

arbitrary edge.

Proposition 4.6.8 and the following observation will be used to guarantee that, given

a matching M in G[W1, A2], we can find a suitable matching N in G[A2] such that the

path system M ∪N contains a W1A2-path.

Fact 4.6.9. Let G be a graph with vertex partition U, V and let M be a non-empty

matching between U and V . Let K := V (M) ∩ V and let M ? be a matching in G[V ]

such that M ?[K] is not a perfect matching. Then M ∪M ? is a path system containing a

UV -path.

Given a graph G with low maximum degree, vertex partition U, V and a non-empty

matching M in G[U, V ], the next lemma shows that we can find matchings in G[U ], G[V ]

which extend M into a path system P containing a UV -path.

Lemma 4.6.10. Let 0 < 1/∆ ? η ? 1. Let G be a graph with partition U, V and

suppose that ∆(G) ≤ η∆. Let M be a matching between U and V . Suppose further that

eG(U) ≤ eG(V ) ≤ η∆2. Then there exist matchings MU ,MV in G[U ], G[V ] respectively

such that
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(i) P := M ∪MU ∪MV is a path system;

(ii) e(MU ) ≤ ?eG(U)/∆? with equality if eG(U) ≥
√
η∆; and e(MV ) ≤ ?eG(V )/∆? with

equality if eG(V ) ≥
√
η∆;

(iii) if M ?= ∅, then P contains a UV -path.

Proof. IfM = ∅ then Vizing’s theorem implies that we can find matchingsMU ,MV of size

?eG(U)/∆?, ?eG(V )/∆? respectively. Then (i)–(iii) hold. So we may assume that M ?= ∅.

If eG(U) ≤ eG(V ) <
√
η∆, then we are done by taking MU ,MV := ∅. Suppose instead

that eG(U) <
√
η∆ ≤ eG(V ). Apply Proposition 4.6.8 with G[V ], V (M) ∩ V playing

the roles of G,K to obtain a matching MV in G[V ] such that e(MV ) = ?eG(V )/∆? and

MV [V (M) ∩ V ] is not a perfect matching. Fact 4.6.9 implies that we are done by taking

MU = ∅.

Therefore we may assume that
√
η∆ ≤ eG(U) ≤ eG(V ). Apply Proposition 4.6.8

with G[U ], V (M) ∩ U playing the roles of G,K to obtain a matching MU in G[U ] of size

?eG(U)/∆? such that MU [V (M) ∩ U ] is not a perfect matching. Let PU be the path

system with edge set E(M)∪E(MU ). So Fact 4.6.9 implies that PU contains at least one

UV -path P . Let u0 ∈ U and v0 ∈ V be the endpoints of P . Let Y be the set of all those

vertices in V which are endpoints of a V V -path in PU . Now

|Y | ≤ 2e(MU ) = 2?eG(U)/∆? ≤ 2?eG(V )/∆?. (4.6.3)

Obtain G? from G[V ] by removing every edge incident with Y ∪ {v0}. So

e(G
?
) ≥ eG(V )− η∆(|Y |+ 1)

(4.6.3)

≥ (1− 4
√
η)eG(V ) ≥ eG(V )/2.

So G? contains a matching of size

?e(G
?
)/(η∆+ 1)? ≥ ?e(G

?
)/2η∆? ≥ ?eG(V )/4η∆? ≥ ?eG(V )/∆?.
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Let MV be an arbitrary submatching of this matching of size ?eG(V )/∆?. Let P :=

M ∪MU ∪MV .

Clearly (ii) holds. Observe that P has a UV -path, namely P . Hence (iii) holds. To

show (i), it is enough to show that P is acyclic. Suppose not and let C be a cycle in P .

Now C contains at least one edge e ∈ E(MV ). Then both endpoints of this edge belong

to Y , and hence e /∈ E(G?), a contradiction.

The following is a version of Lemma 4.6.10 for sparse graphs which may have a small

number of vertices with high degree.

Lemma 4.6.11. Let 0 < 1/∆ ? ρ ? 1. Let G be a graph with vertex partition U, V

and suppose that ∆(G[U ]),∆(G[V ]) ≤ ∆. Let M be a matching between U and V such

that e(M) ≤ ρ∆. Suppose further that eG(U), eG(V ) ≤ ρ∆2. Then, for any integers

0 ≤ aU ≤ ?eG(U)/∆?1/4 and 0 ≤ aV ≤ ?eG(V )/∆?1/4, G contains a path system P such

that

(i) P [U, V ] = M and both of P [U ],P [V ] are matchings;

(ii) eP(U) = aU , eP(V ) = aV ;

(iii) if M ?= ∅, then P contains a UV -path.

Proof. By removing edges in G[U ] and G[V ] we may assume without loss of generality

that aU = ?eG(U)/∆?1/4 and aV = ?eG(V )/∆?1/4. Choose η with ρ? η ? 1. Let U ? :=

{u ∈ U : dU (u) ≥ η∆} and define V
? analogously. Then 2eG(U) ≥

?

u∈U ? dU (u) ≥ |U ?|η∆

and similarly for V ?, so

|U
?
|, |V

?
| ≤

√
ρ∆. (4.6.4)

Let U0 := U \ U ? and V0 := V \ V ?. Let H be the graph with vertex set V (G) and edge

set E(G[U0]) ∪ E(G[V0]) ∪M . So EH(U) = EG(U0) and EH(V ) = EG(V0). Moreover,

∆(H) ≤ 2η∆. Note that

eG(U0) ≥ eG(U)−∆|U
?
| and eG(V0) ≥ eG(V )−∆|V

?
|. (4.6.5)
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Assume without loss of generality that eG(U0) ≤ eG(V0). Apply Lemma 4.6.10 with

H,M,U, V, 2η playing the roles of G,M,U, V, η to obtain matchings MU0
,MV0

in H [U0] =

G[U0], H [V0] = G[V0] respectively such that P0 := M ∪ MU0
∪ MV0

is a path system

satisfying Lemma 4.6.10(i)–(iii). So P0 contains a UV -path if M ?= ∅. Moreover,

e(MU0
) ≤ ?eG(U0)/∆? with equality if eG(U0) ≥

√
2η∆, and e(MV0

) ≤ ?eG(V0)/∆?

with equality if eG(V0) ≥
√
2η∆. Thus

|V (P0)| ≤ 2e(P0) ≤ 2 (e(M) + ?eG(U)/∆? + ?eG(V )/∆?) ≤
√
ρ∆. (4.6.6)

For every u ∈ U ? and v ∈ V ? we have that

dU0\V (P0)
(u), dV0\V (P0)

(v)
(4.6.6)

≥ η∆/2
(4.6.4)

> |U
?
|, |V

?
|.

So for each u ∈ U ?, we may choose a distinct neighbour wu ∈ U0 \ V (P0) of u. Let

MU ? := {uwu : u ∈ U
?} ⊆ G[U ?, U0 \ V (P0)]. Define a matching MV ? in G[V ?, V0 \ V (P0)]

(which covers V ?) similarly.

Let P := P0 ∪ MU ? ∪ MV ? . Note that P is a path system since P0 is. Certainly

P [U, V ] = P0[U, V ] = M , so (i) holds. Suppose that eG(U0) ≥
√
2η∆. Then

eP(U) = e(MU0
) + e(MU ?) = ?eG(U0)/∆? + |U

?
|
(4.6.5)

≥ ?eG(U)/∆− |U
?
|? + |U

?
|

= ?eG(U)/∆? ≥ ?eG(U)/∆?1/4.

Suppose instead that eG(U0) <
√
2η∆. Then

eP(U) ≥ |U
?
|
(4.6.5)

≥ ?eG(U)/∆−
?
2η? ≥ ?eG(U)/∆?1/4

since
√
2η < 1/4. Analogous statements are true for eP(V ). So by removing edges in

eP(U), eP(V ) if necessary, we may assume that (ii) holds. Note that P has a UV -path

if P0 does (there is a one-to-one correspondence between the UV -paths in P and the
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UV -paths in P0).

4.6.5 Rounding

Given a small collection of reals which sum to an integer, the following lemma shows

that we can suitably round these reals so that their sum is unchanged. Lemmas 4.6.7

and 4.6.11 together enable us to find three matchings, one in each of G[W1], G[W2] and

G[W1,W2], each of which is not too large, such that their union is a path system P .

Lemma 4.6.12 will allow us to choose the size of each matching correctly, so that P is

2-balanced.

Lemma 4.6.12. Let 0 < ε < 1/2. Let a1, a2, b, c ∈ R with b, c ≥ 0 and let x1, x2 ∈ N0.

Suppose that

2a1 + b− c = 2x1 and 2a2 + b+ c = 2x2.

Then there exist integers a?
1
, a?

2
, b?, c? such that

2a
?

1
+ b

?
− c

?
= 2x1 and 2a

?

2
+ b

?
+ c

?
= 2x2,

where 0 ≤ b? ≤ ?b?, 0 ≤ c? ≤ ?c?, b? + c? ≤ ?b + c?; and for i = 1, 2, |a?
i
| ≤ ?|ai|?ε; and

finally a?
i
≥ 0 if and only if ai ≥ 0.

Proof. Note that

?2a1? + ?b− c? = 2x1 and ?2a2? + ?b+ c? = 2x2. (4.6.7)

In particular, either ?2a1?, ?b− c? are both odd, or both even. The same is true for the

pair ?2a2?, ?b+ c?. Let Ai := ?2ai?/2 for i = 1, 2. Let also

B :=
?b+ c? + ?b− c?

2
and C :=

?b+ c? − ?b− c?

2
.

Observe that {A1, A2, B, C} ⊆ Z ∪ (Z + 1/2). Let i ∈ {1, 2}. Suppose first that ai ≥ 0
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(and so Ai ≥ 0). If ai− ?ai? ≤ ε then 2?ai?ε = 2?ai? = ?2ai? = 2Ai. If ai− ?ai? > ε then

2?ai?ε = 2?ai? ≥ ?2ai? = 2Ai. Therefore ?Ai? ≤ ?ai?ε. Suppose now that ai < 0 (and so

Ai < 0). If ai−?ai? < 1−ε then 2?ai+ε? = 2?ai? ≤ ?2ai? = 2Ai. If ai−?ai? ≥ 1−ε then

2?ai + ε? = 2?ai?+ 2 = ?2ai?+ 1 = 2Ai + 1 since 1− ε ≥ 1/2. Since −?−ai?ε = ?ai + ε?,

this shows that −?−ai?ε ≤ ?Ai?. Altogether this implies that

|Ai| ≤ ?|ai|?ε when Ai ∈ Z, and (4.6.8)

|Ai + 1/2| ≤ ?|ai|?ε when Ai ∈ Z + 1/2.

We also have that

B + C = ?b+ c? and B − C = ?b− c?. (4.6.9)

Note that

?2b? = ?b+ c+ b− c? ≤ 2B ≤ ?b+ c+ (b− c)? + 1 = ?2b? + 1 ≤ 2?b? + 1; (4.6.10)

?2c? − 1 = ?b+ c− (b− c)? − 1 ≤ 2C ≤ ?b+ c− (b− c)? = ?2c? ≤ 2?c?.

It is straightforward to check that these equations (together with the definition of C)

imply the following:

0 ≤ B ≤ ?b? when B ∈ Z (4.6.11)

0 ≤ B − 1/2 ≤ ?b? when B ∈ Z + 1/2

0 ≤ C ≤ ?c? when C ∈ Z

0 ≤ C − 1/2 < C + 1/2 ≤ ?c? when C ∈ Z + 1/2.

Finally, note that (4.6.7) and (4.6.9) together imply that

2A1 + B − C = 2x1 and 2A2 + B + C = 2x2. (4.6.12)
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We choose a?
1
, a?

2
, b?, c? as follows:

a?
1

a?
2

b? c?

(i) A1 A2 B C if ?b+ c?, ?b− c? both even;

(ii) A1 + 1/2 A2 B − 1/2 C + 1/2 if ?b+ c? even, ?b− c? odd;

(iii) A1 A2 + 1/2 B − 1/2 C − 1/2 if ?b+ c? odd, ?b− c? even;

(iv) A1 + 1/2 A2 + 1/2 B − 1 C if b > 0 and ?b+ c?, ?b− c? both odd;

(v) A1 − 1/2 A2 + 1/2 B C − 1 if b = 0 and ?b+ c?, ?b− c? both odd.

By the definition of Ai we have for each i = 1, 2 that a
?
i
≥ 0 if and only if ai ≥ 0. Then

{a?
1
, a?

2
, b?, c?} ⊆ Z and (4.6.12) implies that

2a
?

1
+ b

?
− c

?
= 2x1 and 2a

?

2
+ b

?
+ c

?
= 2x2.

Moreover, b? + c? ≤ B + C = ?b + c?. We claim that 0 ≤ b? ≤ ?b? and 0 ≤ c? ≤ ?c? and

|a?
i
| ≤ ?|ai|?ε for i = 1, 2 respectively in all cases (i)–(v). To see this, suppose first that

we are in case (iv). Since b > 0, (4.6.10) implies that B ≥ ?2b?/2 > 0, so, since B ∈ Z,

B − 1 ≥ 0 in this case.

Suppose now that we are in case (v). Then ?c?, ?−c? = −?c? are both odd. Therefore

?c?, ?c? are both odd so ?c? = ?c? = c. So c ∈ N0 is odd, B = 0 and C = c. Thus

C − 1 ≥ 0. Moreover c = 2A1 − 2x1, so 2A1 is odd and positive, which implies that

A1 − 1/2 ≥ 0. Then (4.6.8) implies that |A1 − 1/2| ≤ ?|ai|?ε.

In all cases (i)–(v), these last deductions together with (4.6.8)–(4.6.11) complete the

proof of the lemma.

4.6.6 Proof of Lemma 4.6.1

Before we can prove Lemma 4.6.1, we need one more preliminary result which guarantees

a path system P that can balance out the vertex class sizes of the bipartite graphs
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induced by the Wi. If eP(W1,W2) = 0, then we will use 3-connectivity (via Lemma 4.6.5)

to modify P into a balanced path system which also links up the Wi.

Lemma 4.6.13. Let 0 < 1/n ? ρ ? ν ? τ ? α < 1 and let G be a D-regular graph

on n vertices with D ≥ αn. Suppose that G has a robust partition V := {W1,W2} with

parameters ρ, ν, τ, 0, 2. For each i = 1, 2, let Ai, Bi be the bipartition of Wi guaranteed by

(D3), and suppose that |Ai| ≥ |Bi|. Then

(i) G contains a path system P which is 2-balanced with respect to (A1, B1, A2, B2) such

that e(P) ≤
√
ρn;

(ii) if eP(W1,W2) > 0 then P contains a W1W2-path;

(iii) for i = 1, 2, P [Wi] consists either of a matching in G[Ai] of size at most ?eG(Ai)/5?1/4,

or a matching in G[Bi] of size at most ?eG(Bi)/5?1/4.

Proof. Write V∗ := (A1, B1, A2, B2). Let ∆ := D/2 and note that

∆(G[Ai]),∆(G[Bi]),∆(G[W1,W2]) ≤ ∆

for i = 1, 2 by (D4) and (D5). Without loss of generality, we may suppose that eG(A1, B2) ≤

eG(B1, A2). Note that G is D-balanced with respect to V∗ by Proposition 4.6.2. Apply

Lemma 4.6.4 to G. Suppose that Lemma 4.6.4(i) holds. Then G[Ai] contains a matching

Mi of size |Ai| − |Bi| ≤ ?eG(Ai)/5?1/4 for i = 1, 2. Set P := M1 ∪M2. So (iii) holds, (D3)

and (C2) imply that (i) holds, and (ii) is vacuous.

So we may assume that Lemma 4.6.4(ii) holds. Let H be a spanning subgraph of

G which is D-balanced with respect to V∗ such that E(H) ⊆ E(G[C1]) ∪ E(G[C2]) ∪

E(G[W1, A2]) for some C1 ∈ {A1, B1} and C2 ∈ {A2, B2}. Observe that

e(H) ≤

?

i=1,2

?
eG(Ai, Bi) + eG(Bi, Ai)

? (D3),(C3)

≤ 2ρn
2
. (4.6.13)
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For each H ? ⊆ H and i = 1, 2, define

fi(H
?
) = eH ?(Ai)− eH ?(Bi). (4.6.14)

Now (4.6.1) implies that, for any t ∈ N0, H
? is t-balanced if

2fi(H
?
) + eH ?(Ai,Wj)− eH ?(Bi,Wj) = t(|Ai| − |Bi|) (4.6.15)

for {i, j} = {1, 2}. Observe that eH(Ci) = eH(Wi) = |fi(H)|. For i = 1, 2, let

ai := fi(H)/∆. (4.6.16)

Then the D-balancedness of H and (4.6.15) imply that

2a1 +
eH(A1, A2)

∆
−
eH(B1, A2)

∆
= 2(|A1| − |B1|)

and 2a2 +
eH(A1, A2)

∆
+
eH(B1, A2)

∆
= 2(|A2| − |B2|).

Apply Lemma 4.6.12 with a1, a2, eH(A1, A2)/∆, eH(B1, A2)/∆, |A1|−|B1|, |A2|−|B2|, 1/4

playing the roles of a1, a2, b, c, x1, x2, ε to obtain integers a
?
1
, a?

2
, b?, c? with

|a
?

i
| ≤ ?|ai|?1/4 = ?eH(Ci)/∆?1/4 for i = 1, 2; (4.6.17)

a
?

i
≥ 0 if and only if ai ≥ 0; (4.6.18)

0 ≤ b? ≤ ?eH(A1, A2)/∆?; 0 ≤ c
? ≤ ?eH(B1, A2)/∆? and

b
?
+ c

?
≤ ?eH(W1, A2)/∆?; (4.6.19)

2a
?

1
+ b

?
− c

?
= 2(|A1| − |B1|) and 2a

?

2
+ b

?
+ c

?
= 2(|A2| − |B2|). (4.6.20)
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Apply Lemma 4.6.7 with H [W2,W1],W2, A1, B1 playing the roles of G,U, V,W to obtain

a matching M in H [W2,W1] such that

eM (A1, A2) = eM (A1,W2) = b
?
, eM (B1, A2) = eM (B1,W2) = c

?
(4.6.21)

and eM (W1, B2) = 0.

Then (4.6.13) and (4.6.19) imply that e(M) = b? + c? ≤ ?e(H)/∆? ≤
√
ρ∆. By (4.6.13)

and (4.6.17), we can apply Lemma 4.6.11 to H with
√
ρ,M,∆,W1,W2, |a

?
1
|, |a?

2
| playing

the roles of ρ,M,∆, U, V, aU , aV to obtain a path system P such that

P [W1,W2] = M ; (4.6.22)

eP(Wi) = eP(Ci) = |a
?

i
| for i = 1, 2; (4.6.23)

P [Ci] is a matching for i = 1, 2, and if M ?= ∅, then P contains a W1W2-path. So

(ii) holds. (Note that (4.6.23) follows from the fact that H [Wi] = H [Ci].) Moreover,

(4.6.17) and (4.6.23) imply that the matching P [Ci] has size at most ?eH(Ci)/∆?1/4 ≤

?eG(Ci)/∆?1/4 ≤ ?eG(Ci)/5?1/4. So (iii) holds. Equations (4.6.14), (4.6.16), (4.6.18) and

(4.6.23) imply that

fi(P) = a
?

i
. (4.6.24)

Furthermore, by (4.6.21) and (4.6.22) we have

eP(A1,W2)− eP(B1,W2) = b
?
− c

?
and eP(W1, A2)− eP(W1, B2) = b

?
+ c

?
.

Together with (4.6.15), (4.6.20) and (4.6.24), this implies that P is 2-balanced with

respect to V∗. Finally,

e(P) = |a
?

1
|+ |a

?

2
|+ b

?
+ c

?
(4.6.17),(4.6.19)

≤ e(H)/∆+ 3
(4.6.13)

≤
√
ρn,

as required.
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Proof of Lemma 4.6.1. Let V := {W1,W2} and for i = 1, 2, let Ai, Bi be the partition

of Wi guaranteed by (D3). Without loss of generality, we may suppose that |Ai| ≥ |Bi|.

Apply Lemma 4.6.13 to obtain a path system P which is 2-balanced with respect to

(A1, B1, A2, B2) such that e(P) ≤
√
ρn.

Suppose first that eP(W1,W2) > 0. Then P contains aW1W2-path by Lemma 4.6.13(ii).

So we are done by Proposition 4.6.3. Therefore we may assume that eP(W1,W2) = 0.

Lemma 4.6.13(iii) implies that, for each i = 1, 2, at least one of P [Ai],P [Bi] is empty,

and the other is a matching of size at most ?eG(Bi)/5?1/4, ?eG(Ai)/5?1/4 respectively. The

2-balancedness of P implies that eP(Ai)− eP(Bi) = |Ai| − |Bi| ≥ 0. So P = M1 ∪M2 for

some matchings Mi ⊆ G[Ai]. Apply Lemma 4.6.5 to obtain a path system P ? which is 2-

balanced with respect to (A1, B1, A2, B2) and contains a W1W2-path, and e(P) ≤ 3
√
ρn.

Again, we are done by Proposition 4.6.3. ?

4.7 (2,1) : Two robust expander components and

one bipartite robust expander component

The aim of this section is to prove the following lemma.

Lemma 4.7.1. Let 0 < 1/n ? ρ ? ν ? τ ? 1. Let G be a 3-connected D-regular

graph on n vertices where D ≥ n/4. Let X be a robust partition of G with parameters

ρ, ν, τ, 2, 1. Then G contains a Hamilton cycle.

This — the final case — is the longest and most difficult. This is perhaps unsurprising

given that the extremal example in Figure 4.1(i) has precisely this structure. Moreover,

the presence of a bipartite robust expander component means that the path system we

find to join the robust components needs to be balanced with respect to the bipartite

component – the regularity of G is essential to achieve this. On the other hand, since

we have to join up three components, the 3-connectivity of G is essential too. The main

challenge is to find a path system which satisfies both requirements simultaneously, i.e.
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one that is both balanced and joins up the three components. We need to invoke the

degree bound D ≥ n/4 for this. We begin by giving a brief outline of the argument.

4.7.1 Sketch of the proof of Lemma 4.7.1

Let X ? := {V ?
1
, V ?

2
,W ?}, where G[V ?

i
] is a robust expander component for i = 1, 2, and

G[W ?] is a bipartite robust expander component with bipartition A?, B?, where |A?| ≥ |B ?|.

One can hope to use the regularity of G to find a path system P ? consisting of a matching

in A?, together with a matching from A? to U ? := V ?
1
∪ V ?

2
, which balances (the sizes of

the vertex classes A?, B? of) G[W ?]. However, P ? may not connect W ? to each of V ?
1
and

V ?
2
in the right way. We could for example have that eP ?(W ?, V ?

1
) = 0 or that eP ?(W ?, V ?

1
)

is odd. In both cases, P ? requires modification. But if one adds an edge to P ? between

one of the V ?
i
and W ?, then P ? will no longer balance G[W ?], meaning that P ? must be

further adapted.

It turns out that it is better to begin with a small path system P0 for which RX ?(P0)

has an Euler tour, but which does not necessarily balance G[W ?]. If P0 also balances

G[W ?] then we are done. So suppose not. We then attempt to balance P0 by adding

edges of G[W ?] to P0. When such an attempt fails, we will slightly modify P0 using the

additional structural information about G that this failure implies. We then add edges

of G[W ?] to the modified path system.

To find P0 which corresponds to an Euler tour, one could simply use Lemma 3.7.3.

However, since the proof of the lemma uses the 3-connectivity of G, we have insufficient

control on the structure of P0 (i.e. it may not be possible to extend it into a balancing path

system). Instead, we will construct P0 by first finding a large matching M in G[A?,W ?].

Typically this matching will be obtained using König’s theorem on edge-colourings, so

e(M) ≥ eG(A
?,W ?)/∆(G[A?,W ?]). Since X ? is a robust partition, (D4) implies that

∆(G[A?,W ?]) ≤ 2D/3. This would give e(M) ≥ 3eG(A
?,W ?)/2D, which is insufficient for

our purposes. To improve on this, we alter the partition X ? very slightly to obtain a weak

robust partition V = {V1, V2,W} so that ∆(G[W,W ]) ≤ D/2 (where G[V1] and G[V2]
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are robust expander components and G[W ] is a bipartite robust expander component

with bipartition A,B, where |A| ≥ |B|). By Lemma 3.6.2 it is still sufficient to find a

V-tour using the approach outlined above (see Lemma 4.7.3 and Subsection 4.7.3 for the

statement and proof of this reduction). Now the matching in G[A,W ] which will be used

to construct the initial path system P0 has size at least 2eG(A,W )/D.

We prove Lemma 4.7.1 separately in each of the following four cases:

• |A| − |B| ≥ 2 and eG(A,W ) is at least a little larger than 3D/2 (Subsection 4.7.5);

• |A| − |B| ≥ 2 and eG(A,W ) is at most a little larger than 3D/2 (Subsection 4.7.6);

• |A| − |B| = 1 (Subsection 4.7.7);

• |A| = |B| (Subsection 4.7.8).

The reason for these distinctions will be discussed at the end of Subsection 4.7.4. The

full strength of the minimum degree bound D ≥ n/4 is only used in the last two cases.

4.7.2 Notation

Throughout the remainder of the chapter, whenever we say that a graph G has vertex

partition V = {V1, V2,W := A ∪ B}, we assume that V (G) has a partition into parts

V1, V2,W , each of size at least |V (G)|/100 ≥ 100, that A and B are disjoint and |A| ≥ |B|.

Moreover, we will say that G has a weak robust partition V = {V1, V2,W := A ∪B} (for

some given parameters) if V satisfies the above properties and is a weak robust partition

of G such that G[V1], G[V2] are two robust expander components and G[W ] is a bipartite

robust expander component, and the bipartition of W as specified by (D3?) is A,B. We

will use a similar notation when V is a robust partition of G.

Given 0 < ε < 1 and ∆ > 0, consider any graph G with vertex partition U,A,B such

that ∆(G[A]),∆(G[A,U ]) ≤ ∆. We say that

char∆,ε(G) := (?,m) (4.7.1)
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when ? := ?eG(A)/∆?ε andm is the largest even integer less than or equal to ?eG(A,U)/∆?ε.

(Recall the definition of ?·?ε from the end of Subsection 4.4.) We think of ‘char’ as being

short for ‘character’. The character of G encodes what sort of V-tour P we can hope to

find. Typically, when G has character (?,m), a V-tour will closely resemble the union

of a matching of size ? in G[A], and a matching of size m is G[A,U ]. (Recall that, in a

V-tour P , we have that eP(W,U) is even.)

Given any path system P in G, we write

balAB(P) := eP(A)− eP(B) + (eP(A,U)− eP(B,U))/2. (4.7.2)

When V = {V1, V2,W := A ∪ B} is a vertex partition of G, we take U := V1 ∪ V2 in the

definitions of char∆,ε and balAB.

Given 0 < ε < 1, ∆ > 0 and a graph G with partition V = {V1, V2,W := A ∪B} and

char∆,ε(G) = (?,m), we will find a path system satisfying the following properties:

(P1) e(P) ≤ ?+m + 6;

(P2) balAB(P) = |A| − |B|;

(P3) RV(P) is an Euler tour.

4.7.3 Preliminaries and a reduction

In this subsection we show that, in order to prove Lemma 4.7.1, it is sufficient to prove

Lemma 4.7.3 below. We then state some tools which will be used in the next subsections

to do so. The following observation provides us with a convenient check for a path system

P to be such that RV(P) is an Euler tour.

Fact 4.7.2. Let G be a graph with vertex partition V into three parts. Then, for a path

system P in G, (P3) is equivalent to the following. For each X ∈ V, eP(X,X) is even

and there exists X ? ∈ V \ {X} such that P contains an XX ?-path.
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The remainder of Section 4.7 is devoted to the proof of the following lemma, which

states that G contains a path system satisfying (P1)–(P3) (when the partition V and the

parameters involved are suitably defined).

Lemma 4.7.3. Let n,D ∈ N and ?,m ∈ N0. Let 0 < 1/n ? ρ ? ν ? τ ? ε ? 1. Let

G be a 3-connected D-regular graph on n vertices where D ≥ n/4. Suppose that G has

a weak robust partition V = {V1, V2,W := A ∪ B} with parameters ρ, ν, τ, 1/16, 2, 1 such

that |V1|, |V2| ≥ D/2. Suppose further that ∆(G[A, V1 ∪ V2]) ≤ D/2, dVi
(xi) ≥ dVj

(xi) for

all xi ∈ Vi and all {i, j} = {1, 2}, and dA(a) ≤ dB(a) for all a ∈ A. Let charD/2,ε(G) =

(?,m). Then G contains a path system P satisfying (P1)–(P3).

The following proposition gives bounds on ? and m when char∆,ε(G) = (?,m).

Proposition 4.7.4. Let n,D ∈ N and ?,m ∈ N0. Let 0 < 1/n ? ρ ? ν ? τ ?

ε, η ? 1 and suppose D ≥ n/4. Let G be a graph on n vertices with weak robust par-

tition V = {V1, V2,W := A ∪ B} with parameters ρ, ν, τ, η, 2, 1. Suppose further that

∆(G[A]),∆(G[A, V1 ∪ V2]) ≤ D/2 and that charD/2,ε(G) = (?,m). Then ?,m ≤ 12ρn.

Proof. (D3?) implies that G[W ] is ρ-close to bipartite with bipartition A,B. So eG(A) +

eG(A, V1 ∪ V2) ≤ ρn2. Thus ? = ?2eG(A)/D?ε ≤ 3ρn2/D ≤ 12ρn. An almost identical

calculation gives the same bound for m.

We now show that, to prove Lemma 4.7.1, it suffices to prove Lemma 4.7.3.

Proof of Lemma 4.7.1 (assuming Lemma 4.7.3). Choose ε with τ ? ε ? 1. Let X =

{U1, U2,W
? := A? ∪ B ?} be a robust partition of G with parameters ρ, ν, τ, 2, 1, where

G[U1], G[U2] are (ρ, ν, τ )-robust expander components and G[W
?] is a bipartite (ρ, ν, τ )-

robust expander component with bipartition A?, B? as guaranteed by (D3). We will alter

X slightly so that it is a weak robust partition and that additionally the degree conditions

of Lemma 4.7.3 hold.

Claim. There exists a weak robust partition V = {V1, V2,W := A ∪ B} of G with

parameters ρ1/3, ν/2, 2τ, 1/16, 2, 1 such that |V1|, |V2| ≥ D/2, ∆(G[A, V1 ∪ V2]) ≤
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D/2, dVi
(xi) ≥ dVj

(xi) for all xi ∈ Vi and {i, j} = {1, 2}, and dA(a) ≤ dB(a) for

all a ∈ A.

Proof. For i = 1, 2, let Xi be the collection of vertices x ∈ Ui with dUi
(x) > ρn.

Then (D7) implies that |Xi| ≤ ρn. Let Yi := Ui \Xi. Then each y ∈ Yi satisfies

dYi(y) = d(y)− dUi∪Xi
(y) ≥ d(y)− ρn− |Xi| ≥ d(y)− 2ρn. (4.7.3)

Let A0 be the collection of vertices a ∈ A? such that d
B?(a) ≥

√
ρn. Let A1 :=

A? \ A0. Define B0, B1 analogously. By (D3), G[W
?] is ρ-close to bipartite with

bipartition A?, B?. Therefore (C3) holds, from which one can easily derive that

|A0|, |B0| ≤ 2
√
ρn. Similarly as in (4.7.3), for each a ∈ A1 and b ∈ B1 we have

dB1
(a) ≥ d(a)− 3

√
ρn and dA1

(b) ≥ d(b)− 3
√
ρn. (4.7.4)

Let V0 := X1 ∪X2 ∪ A0 ∪ B0. Then

|V0| ≤ 5
√
ρn. (4.7.5)

Among all partitions X ?
1
, X ?

2
, A?

0
, B?

0
of V0, choose one such that e(A ∪ B, V1 ∪

V2) is minimised; and subject to e(A ∪ B, V1 ∪ V2) being minimal we have that

e(V1, V2) + e(A) + e(B) is minimal, where Vi := Yi ∪ X
?
i
, A := A1 ∪ A

?
0
and

B := B1 ∪ B
?
0
. It is easy to see that dA∪B(w) ≥ dV1∪V2

(w) for all w ∈ A?
0
∪ B ?

0
;

dV1∪V2
(v) ≥ dA∪B(v) for all v ∈ X ?

1
∪ X ?

2
; dVi

(vi) ≥ dVj
(vi) for all vi ∈ X

?
i
and

{i, j} = {1, 2}; dA(a) ≤ dB(a) for all a ∈ A?
0
; and dB(b) ≤ dA(b) for all b ∈ B

?
0
.

If vi ∈ Yi, then (4.7.3) implies that dVi
(vi) ≥ dYi(vi) ≥ d(vi) − 2ρn ≥ d(vi)/2. So

dVi
(vi) ≥ dA∪B(vi), dVj

(vi) for {i, j} = {1, 2}. Similarly, (4.7.4) implies that, for all

w ∈ A1 ∪ B1 we have dA∪B(w) ≥ dV1∪V2
(w); for all a ∈ A1 we have dA(a) ≤ dB(a)

and for all b ∈ B1 we have dB(b) ≤ dA(b). Observe that (4.7.3), (4.7.4) imply

that |Vi| ≥ D − 2ρn and |A|, |B| ≥ D − 3
√
ρn respectively. It remains to prove
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that V := {V1, V2,W := A ∪ B} is a weak robust partition with parameters

ρ1/3, ν/2, 2τ, 1/16, 2, 1. Property (D1?) is clear. By relabelling if necessary, we

may assume that |A| ≥ |B|. We now prove (D2?). Observe that

e(Vi, Vi) ≤ e(Ui, Ui) +D|Xi|+D|X
?

i
| ≤ (ρ+ 6

√
ρ)n

2
≤ ρ

1/3
n
2
.

Therefore each Vi is a ρ
1/3-robust component of G. Note also that

|Vi?Ui| ≤ |V0|
(4.7.5)

≤ 5
√
ρn ≤ ν|Ui|/2.

Lemma 3.4.8 implies that G[Vi] is a (ν/2, 2τ )-robust expander. Therefore G[Vi] is

a (ρ1/3, ν/2, 2τ )-robust expander component for i = 1, 2, so (D2?) holds. To prove

(D3?), note that |A?A?| + |B?B ?| ≤ 2|V0| ≤ ρ1/3n/3 where the final inequality

follows from (4.7.5). Now Lemma 3.4.10 implies that G[A ∪ B] is a bipartite

(ρ1/3, ν/2, 2τ )-robust expander component of G with bipartition A,B. Thus (D3?)

holds. Finally, (D4?) and (D5?) are clear from the degree conditions we have already

obtained. ?

Given the partition V of V (G), let ?,m satisfy charD/2,ε(G) = (?,m). Let P be a path

system in G guaranteed by Lemma 4.7.3, i.e. P satisfies (P1)–(P3). Note that V is also a

weak robust partition with parameters ρ1/3, ν/2, 2τ, ε, 2, 1. So (P1) and Proposition 4.7.4

with ρ1/3, ε playing the roles of ρ, η imply that e(P) ≤ 25ρ1/3n. Then, for each X ∈ V

we have that |V (P) ∩ X | ≤ |V (P)| ≤ 2e(P) ≤ 50ρ1/3n ≤ ρ1/4n/9. So Lemma 3.7.8

applied with 2, 1,W,A,B,P , ρ1/4/9 playing the roles of k, ?,Wj , Aj , Bj ,P , ρ implies that

G contains a path system P ? that is a V-tour with parameter ρ1/4. Now Lemma 3.6.2

with P ?, ρ1/3, ρ1/4, ν/2, 2τ, 1/16, 2, 1 playing the roles of P , ρ, γ, ν, τ, η, k, ? implies that G

contains a cycle whose vertex set includes every vertex in
?

V ∈V
V , i.e. a Hamilton cycle.

?
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4.7.4 Tools

In this section we gather some useful tools which will be used repeatedly in the sections

to come. We will often use the following lower bounds for eG(A), eG(A,U) implied by

char∆,ε(G).

Proposition 4.7.5. Let ∆,∆? ∈ N and ?,m ∈ N0. Let ∆?/∆ ≤ ε < 1. Suppose

that G is a graph with vertex partition U,A,B such that ∆(G[A]),∆(G[A,U ]) ≤ ∆ and

char∆,ε(G) = (?,m). Then eG(A) ≥ (?− 1)∆ + ∆? and eG(A,U) ≥ (m− 1)∆ + ∆?.

Proof. We have that ? = ?eG(A)/∆?ε = ?eG(A)/∆ − ε? so ? − 1 < eG(A)/∆ − ε ≤

(eG(A)−∆
?)/∆, as required. A near identical calculation proves the second assertion.

The path system we require will contain edges in G[A] and G[V1 ∪ V2, A], and will

‘roughly look like’ a matching within each of these subgraphs. The following lemma allows

us to find a structure which in turn contains a large matching even if certain vertices need

to be avoided.

Lemma 4.7.6. Let ∆,∆? ∈ N and ? ∈ N0 be such that ?/∆
?,∆?/∆, 1/∆? ? 1. Let G

be a graph with ∆(G) ≤ ∆, and let e(G) ≥ (? − 1)∆ + ∆?. Then G contains one of the

following:

(i) a matching M of size ?+ 1 and uv ∈ E(G) with u /∈ V (M);

(ii) ? vertices each with degree at least ∆?.

Moreover, if ? ≥ 1 and e(G) ≥ ?∆+ 1; or ? = 0 and e(G) ≥ 2, then (i) holds.

Proof. We will use induction on ? in order to show that either (i) or (ii) holds. The cases

? = 0, 1 are trivial. Suppose now that ? ≥ 2. Suppose first that ∆(G) ≤ ∆?. Then, by

Vizing’s theorem, E(G) can be properly coloured with at most ∆?+1 colours. Therefore

G contains a matching of size

?
e(G)

∆? + 1

?

≥

?
(?− 1)∆ + ∆?

∆? + 1

?

≥ ?+ 2.
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So (i) holds. Thus we may assume that there exists x ∈ V (G) with d(x) ≥ ∆?. Let

G− := G \ {x}. Then e(G−) ≥ e(G)−∆ ≥ (?− 2)∆+∆?. By induction, e(G−) contains

either a matching M− of size ? and uv ∈ E(G−) with u /∈ V (M−), or ? − 1 vertices

of degree at least ∆?. In the first case, choose y ∈ N(x) \ V (M−) with y ?= u and let

M := M− ∪ {xy}. Then (i) holds. In the second case, x is our ?th vertex of degree at

least ∆? in G, so (ii) holds.

For the moreover part, suppose now that ? ≥ 1 and e(G) ≥ ?∆ + 1. Suppose that

(i) does not hold. Let x1, . . . , x? be ? distinct vertices of degree at least ∆
?. Then

e(G \ {x1, . . . , x?}) ≥ e(G) − ∆? ≥ 1. So G contains an edge e which is not incident to

{x1, . . . , x?}. We obtain a contradiction by considering {e, x1z1}∪{x1y1, . . . , x?y?}, where

z1 ∈ N(x1) avoids e and for 1 ≤ i ≤ ? the vertices yi ∈ N(xi) are distinct, and avoid e,

z1 and x1, . . . , x?.

Finally, if ? = 0, then any two edges of G satisfy (i).

Given an even matching M in G[A, V1 ∪ V2] and a lower bound on eG(A), we would

like to extend M into a path system P using edges from G[A] so that balAB(P) is large.

Lemma 4.7.6 gives us two useful structures in G[A] from which we can choose suitable

edges to add to M to form P . The following proposition does this in the case when

Lemma 4.7.6(i) holds.

Proposition 4.7.7. Let G be a graph with vertex partition X, Y . Suppose that G[Y ]

contains a matching M ? of size ? + 1 and an edge uv with u /∈ V (M ?). Let M be a

non-empty even matching of size m in G[X, Y ]. Then G contains a path system P such

that

(i) P [X, Y ] = M and P ⊆ M ∪M ? ∪ {uv};

(ii) eP(Y ) = ?+ 1;

(iii) P contains at least two XY -paths.
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Proof. We will extend M by adding edges from M ? ∪ {uv}, so (i) automatically holds.

Note that any path system P obtained in this way contains an even number of XY -paths.

So it suffices to find such a P with at least one XY -path. IfM∪M ? contains an XY -path,

then we are done by setting P := M ∪M ?. So suppose not. Then M ?[V (M) ∩ Y ] is a

perfect matching M ??. If v ∈ V (M ??), let f be the edge of M ?? containing v. Otherwise,

let f ∈ E(M ??) be arbitrary. We take P := M ∪M ? ∪ {uv} \ {f}. Now both of the two

edges in M which are incident to f lie in distinct XY -paths of P , so (iii) holds. Clearly

(ii) holds too.

Following on from the previous proposition, we now consider how to extend M into

P when instead Lemma 4.7.6(ii) holds in G[A].

Proposition 4.7.8. Let ∆? ∈ N and let ?,m, r ∈ N0 with ∆
? ≥ 3? + m. Let G be a

graph with vertex partition X, Y and let M be a matching in G[X, Y ] of size m. Let

{x1, . . . , x?} ⊆ Y such that dY (xi) ≥ ∆? and |{x1, . . . , x?} \V (M)| ≥ r. Then there exists

a path system P ⊆ G[X, Y ]∪G[Y ] such that eP(Y ) = ?+ r, P [X, Y ] = M and every edge

of M lies in a distinct XY -path in P.

Proof. Since ∆? ≥ 3?+m, G[Y ] contains a collection of ? vertex-disjoint paths P1, . . . , P?

of length two with midpoints x1, . . . , x? respectively, such that V (Pi) ∩ V (M) ⊆ {xi}.

For each xi ∈ V (M), delete one arbitrary edge from Pi. Let P consist of M together

with P1, . . . , P?. Then P is a path system, and every edge of M lies in a distinct XY -

path. Moreover, eP(Y ) ≥ 2? − (? − r) = ? + r. Delete additional edges from P [Y ] if

necessary.

Proposition 4.7.9. Let 0 < ε < 1/3. Let a, b ∈ R≥0 and let x ∈ N0. Suppose that

2a+ b ≥ 2x. Let a? := ?a?ε and let b
? be the largest even integer of size at most ?b?ε. Then

a?, b? ≥ 0 and 2a? + b? ≥ 2x.

Proof. Note that

2?a?ε + ?b?ε = 2?a− ε? + ?b− ε? ≥ ?2a− 2ε+ b− ε? ≥ ?2x− 3ε? ≥ 2x.
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This implies the proposition.

Proposition 4.7.10. Let D ∈ N and let 0 < ε < 1/3. Let G be a D-regular graph and let

U,A,B be a partition of V (G) where |A| ≥ |B|. Suppose that ∆(G[A,U ]),∆(G[A]) ≤ D/2

and that charD/2,ε(G) = (?,m). Then ?,m ≥ 0 and ?+m/2 ≥ |A| − |B|.

Proof. Proposition 3.7.4(ii) implies that 4e(A)/D + 2e(A,U)/D ≥ 2(|A| − |B|). Apply

Proposition 4.7.9 with 2e(A)/D, 2e(A,U)/D, |A|−|B| playing the roles of a, b, x to obtain

a?, b?. Note that a? = ? and b? = m.

We will first prove Lemma 4.7.3 in the case when |A| − |B| ≥ 2. This constraint

arises for the following reason. We will show that we can find a path system P such that

RV(P) is an Euler tour, but P is ‘overbalanced’. More precisely, balAB(P) = ? + m/2,

which is at least as large as |A| − |B| by Proposition 4.7.10. We would like to remove

edges from P so that (P2) holds, and RV(P) is still an Euler tour. However, there exist

path systems P0 such that balAB(P0) = 2, RV(P0) is an Euler tour, but any P ?
0
with

E(P ?
0
) ? E(P0) is such that RV(P

?
0
) is not an Euler tour. (For example, a matching of

size two in G[V1, A] together with a matching of size two in G[V2, A], such that these edges

are all vertex-disjoint.) So, if |A| − |B| < 2, we cannot guarantee, simply by removing

edges, that we will ever be able to find P ? with balAB(P
?) = |A| − |B| without violating

(P3).

We will split the case when |A| − |B| ≥ 2 further into the subcases m ≥ 4 and m ≤ 2,

i.e. when eG(A, V1 ∪ V2) is at least a little larger than 3D/2, and when it is not. We will

call these the dense and sparse cases respectively.

4.7.5 The proof of Lemma 4.7.3 in the case when |A| − |B| ≥ 2

and m ≥ 4

This subsection concerns the dense case when m ≥ 4, i.e. when eG(A, V1 ∪ V2) is at least

slightly larger than 3D/2. Now G[A, V1 ∪ V2] contains a matching M of size m. We will

add edges to M to obtain a path system P which satisfies (P1)–(P3). If M [A, Vi] is an
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even non-empty matching for both i = 1, 2, then M satisfies (P3). In every other case we

must modifyM by adding and/or subtracting edges. We do this separately depending on

the relative values of eM (A, V1) and eM (A, V2). We thus obtain a path system P0 which

satisfies (P1) and (P3). Then we obtain P by adding edges to P0 from G[A] so that (P2)

is also satisfied. We must pay attention to the way in which these sets of edges interact

to ensure that P still satisfies (P3).

We begin with the subcase when eM (V1, A), eM (V2, A) are both even and positive.

Lemma 4.7.11. Let ∆,∆? ∈ N, ? ∈ N0 and m ∈ 2N with ∆?/∆, m/∆?, ?/∆? ? 1. Let

G be a graph with vertex partition V = {V1, V2,W := A ∪ B}. Let M be a matching

in G[V1 ∪ V2, A] of size m, and let Mi := M [Vi, A] and mi := e(Mi). Suppose that

{m1, m2} ⊆ 2N. Let e(A) ≥ (? − 1)∆ + ∆? and ∆(G[A]) ≤ ∆. Then G contains a path

system P such that P ⊆ G[A] ∪G[A, V1 ∪ V2], P [A, V1 ∪ V2] = M , e(P) = ?+m, RV(P)

is an Euler tour and balAB(P) = ? +m/2. Moreover, P contains at least one ViA-path

for each i = 1, 2.

Proof. We will find P by adding suitable edges of G[A] to M such that P contains at

least one ViA-path for each i = 1, 2. Then by Fact 4.7.2 we have that RV(P) is an Euler

tour. Apply Lemma 4.7.6 to G[A]. Suppose first that Lemma 4.7.6(i) holds. Let M ? be

a matching of size ?+ 1 in G[A] and let uv ∈ E(G[A]) be such that u /∈ V (M ?). Then

balAB(M ∪M
?
) = ?+m/2 + 1 and e(M ∪M

?
) = ?+m + 1. (4.7.6)

IfM ∪M ? contains a ViA-path for both i = 1, 2 we are done by setting P := M ∪M ? \{e}

where e ∈ M ? is arbitrary. Suppose now that M ∪M ? contains a V1A-path but no V2A-

path. Then V (M2) ∩ A ⊆ V (M ?). Choose e2 ∈ E(M ?) with an endpoint in V (M2).

Then P := M ∪M ? \ {e2} contains a ViA-path for both i = 1, 2, and (4.7.6) implies that

balAB(P) = ? +m/2 and e(P) = ? +m, as required. The case when M ∪M ? contains a

V2A-path but no V1A-path is identical.

So we may assume that M ∪ M ? contains no ViA-path for both i = 1, 2. Suppose
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that there is a1a2 ∈ E(M ?) with ai ∈ V (Mi). Then P := M ∪ M ? \ {a1a2} contains

a ViA-path with endpoint ai for i = 1, 2. Moreover, (4.7.6) implies that P satisfies

the other conditions. Therefore we may assume that M ?
i
:= M ?[V (Mi) ∩ A] is a (non-

empty) perfect matching for i = 1, 2. Choose fi ∈ E(M
?
i
) for i = 1, 2 such that v ∈

V (f1) ∪ V (f2) if possible. We set P := M ∪ M ? ∪ {uv} \ {f1, f2}. Note that every

vertex in V (fi) \ {v} is the endpoint of a ViA-path in P . Then (4.7.6) implies that

balAB(P) = balAB(M ∪M ?) + 1− 2 = ?+m/2 and e(P) = ?+m, as required.

Suppose instead that Lemma 4.7.6(ii) holds and let x1, . . . , x? be ? distinct vertices in A

with dA(xi) ≥ ∆? for all 1 ≤ i ≤ ?. Apply Proposition 4.7.8 with G\B, V1∪V2, A,M, xi, 0

playing the roles of G,X, Y,M, xi, r to obtain a path system P ⊆ G[A] ∪ G[A, V1 ∪ V2]

with eP(A) = ?, P [A, V1 ∪ V2] = M and such that every edge in M lies in a distinct

AVi-path in P for some i ∈ {1, 2}. Therefore RV(P) is an Euler tour, e(P) = ?+m, and

since V (P) ∩ B = ∅ we have that balAB(P) = ?+m/2.

We now consider the case when eM (V1, A), eM (V2, A) are both odd and at least three.

Lemma 4.7.12. Let ∆,∆? ∈ N, ? ∈ N0 and m ∈ 2N with ∆?/∆, m/∆?, ?/∆? ? 1. Let

G be a graph with vertex partition V = {V1, V2,W := A ∪ B}. Let m < eG(V1 ∪ V2, A),

eG(A) ≥ (?− 1)∆ + ∆? and ∆(G[A]) ≤ ∆. Let M be a matching in G[V1 ∪ V2, A] of size

m, and let Mi := M [Vi, A], mi := e(Mi). Suppose {m1, m2} ⊆ 2N+1. Then G contains a

path system P such that e(P) ≤ ?+m, RV(P) is an Euler tour and balAB(P) = ?+m/2.

Proof. We will find P such that eP(Vi, A) = eP(Vi,W ) is even for i = 1, 2, eP(V1, V2) = 0

and such that for each X ∈ V , there exists X ? ∈ V \ {X} such that P contains an

XX ?-path. Then by Fact 4.7.2 we have that RV(P) is an Euler tour.

Let us first suppose that ? = 0. Since m < eG(V1 ∪ V2, A), there exists an edge

e+ ∈ G[V1 ∪ V2, A] \ E(M). Suppose, without loss of generality, that e
+ ∈ G[V1, A]. Let

e− be an arbitrary edge in M2. Let P := M ∪ {e+} \ {e−}. Then RV(P) is an Euler tour

and balAB(P) = (m1 + 1)/2 + (m2 − 1)/2 = m/2, as required.

Therefore we assume that ? ≥ 1. Apply Lemma 4.7.6 to G[A]. Suppose first that
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Lemma 4.7.6(i) holds. So G[A] contains a matching M ? of size ?+1. Note that it suffices

to find ei ∈ Mi for i = 1, 2 such that M ∪M ? \ {e1, e2} contains a ViA-path for i = 1, 2.

Then it is straightforward to check that we are done by setting P := M ∪M ? \ {e1, e2}.

We say that xy ∈ E(G[A]) is a connecting edge if x ∈ V (M1) and y ∈ V (M2). Suppose

that M ? contains no connecting edge. So M ∪M ? contains no V1V2-paths. But an even

number of edges in Mi lie in ViVi-paths of M ∪ M ?. Since mi is odd, there must be

a ViA-path Pi in M ∪ M ? for i = 1, 2. We are done by choosing ei ∈ E(Mi) \ E(Pi)

arbitrarily.

Therefore we may assume that there exists a connecting edge a1a2 ∈ M
?, with ai ∈

V (Mi). Suppose that there exists a second connecting edge a
?
1
a?
2
∈ M ?, with a?

i
∈ V (Mi).

Then we are done by choosing e1 ∈ M1 with endpoint a1 and e2 ∈ M2 with endpoint

a?
2
. Therefore we may suppose that a1a2 is the only connecting edge in G. Let P be the

V1V2-path containing a1a2. Let P
? := (M ∪M ?) \ {E(P )}. Then, for each i = 1, 2, either

P ? contains a ViA-path Pi,A, or a ViVi-path Pi,i. In the first case, let ei be an arbitrary

edge of Mi that does not lie in Pi,A. In the second case, let ei ∈ E(Pi,i) ∩ E(Mi) be

arbitrary.

Suppose instead that Lemma 4.7.6(ii) holds in G[A] and let x1, . . . , x? be ? distinct

vertices in A with dA(xi) ≥ ∆? for all 1 ≤ i ≤ ?. Since ? ≥ 1, we can choose e1 ∈ M1

and e2 ∈ M2 so that {x1, . . . , x?} ?⊆ V (M \ {e1, e2}). Apply Proposition 4.7.8 with

G \B, V1 ∪ V2, A,M \ {e1, e2}, xi, 1 playing the roles of G,X, Y,M, xi, r to obtain a path

system P ⊆ G[A] ∪ G[A, V1 ∪ V2] such that eP(A) = ? + 1, P [A, V1 ∪ V2] = M \ {e1, e2},

and every edge in M \ {e1, e2} lies in a distinct AVi-path in P for some i ∈ {1, 2}. Then

e(P) = ?+m− 1 and balAB(P) = ?+1+ (m− 2)/2 = ?+m/2. Since P [A, Vi] is an even

matching for i = 1, 2 and P [V1, V2] is empty, we have that RV(P) is an Euler tour and

we are done.

We now consider the case when eM (V2, A) is odd and at least three, and eM (V1, A) = 1.

Lemma 4.7.13. Let ∆,∆? ∈ N, ? ∈ N0 and m ∈ 2N with ∆?/∆, m/∆?, ?/∆? ? 1.

Let G be a 3-connected graph with vertex partition V = {V1, V2,W := A ∪ B}. Let
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eG(A) ≥ (?−1)∆+∆? and ∆(G[A]) ≤ ∆. Let M2 be a matching in G[V2, A] of size m−1

where 3 ≤ m − 1 < eG(V2, A) and let e1 ∈ G[V1, A] be an edge not incident to M2. Then

G contains a path system P such that e(P) ≤ ? + m + 2, RV(P) is an Euler tour and

balAB(P) = ?+m/2.

Proof. We will find a path system P such that, for each X ∈ V , eP(X,X) is even and

there exists X ? ∈ V \{X} such that P contains an XX ?-path. Then by Fact 4.7.2, RV(P)

is an Euler tour. We will choose P such that P [V1 ∪ V2,W ] is obtained from M2 ∪ {e1}

by adding/removing at most one edge. Since G is 3-connected, G contains an edge v1v

with v1 ∈ V1 and v ∈ V2 ∪ A ∪ B such that vv1 and e1 are vertex-disjoint. We consider

cases depending on the location of v.

Case 1. v ∈ A.

If possible, let e2 be the edge of M2 incident to v; otherwise, let e2 be an arbitrary edge

of M2. Then we are done by applying Lemma 4.7.11 with M2 ∪ {e1, v1v} \ {e2} playing

the role of M .

Case 2. v ∈ V2.

If possible, choose e2 ∈ E(M2) whose endpoint v2 ∈ V2 satisfies v2 = v, otherwise let

e2 ∈ E(M2) be arbitrary. Set V
?
1
:= V1 ∪ {v, v2} and V

?
2
:= V2 \ {v, v2}. Observe that

eM2∪{e1}(A, V
?
i
) ∈ 2N for i = 1, 2. Let V ? := {V ?

1
, V ?

2
,W}. Apply Lemma 4.7.11 with

G \ {v1}, V
?
1
, V ?

2
, A, B,M2 ∪ {e1} playing the roles of G, V1, V2, A, B,M to obtain a path

system P ? such that P ? ⊆ G[A]∪G[A, V ?
1
∪V ?

2
], P ?[A, V ?

1
∪V ?

2
] = M2∪{e1}, e(P

?) = ?+m,

RV ?(P ?) is an Euler tour and balAB(P
?) = ? + m/2. Moreover, P ? contains at least one

V ?
i
A-path for each i = 1, 2. Let Pi be such a path.

Let P := P ?∪{vv1}. Then e(P) = ?+m+1 and balAB(P) = ?+m/2. Moreover, each

of eP(V1, V1) = eP ?(V ?
1
, V ?

1
) = 2, eP(V2, V2) = eP ?(V ?

2
, V ?

2
) + 2 and eP(W,W ) = eP ?(W,W )

is even. Now P2 is a V2A-path in P . Similarly, if P1 avoids e2, then P1 is a V1A-path in

P . If P1 contains e2 and v2 = v, then v1vP1 is a V1A-path in P . If v2 ?= v then v1v is a

V1V2-path in P . Therefore, by Fact 4.7.2, RV(P) is an Euler tour, as required.
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Case 3. v ∈ B.

Apply Lemma 4.7.6 to G[A]. Suppose first that Lemma 4.7.6(i) holds. Let M ? be a

matching of size ? + 1 in G[A] and let uw ∈ E(G[A]) with u /∈ V (M ?). Apply Proposi-

tion 4.7.7 with G\B, V1∪V2, A,M2∪{e1},M
?, u, w playing the roles of G,X, Y,M,M ?, u, v

to obtain a path system P0 such that P0[V1 ∪ V2, A] = M2 ∪ {e1}; eP0
(A) = ? + 1; and

P0 contains at least two (V1 ∪ V2)A-paths. But P0 contains at most one V1A-path, and

hence at least one V2A-path P . Now Proposition 4.7.7(i) implies that eP (V2, A) = 1. So

we can choose e ∈ E(P0[V2, A]) \ E(P ). Let P := P0 ∪ {v1v} \ {e}. Then eP(X,X)

is even for all X ∈ {V1, V2,W} and P contains a V1B-path and a V2A-path. Moreover,

balAB(P) = eP0
(A) + eP0

(A, V1 ∪ V2)/2− 1 = ?+m/2, as required.

Suppose instead that Lemma 4.7.6(ii) holds. Then G[A] contains ? distinct vertices

x1, . . . , x? such that dA(xi) ≥ ∆? for all 1 ≤ i ≤ ?. Choose e ∈ E(G[V2, A]) \ E(M2).

If ? = 0 then P := M2 ∪ {e1, v1v, e} is as required. Suppose now that ? = 1. Let

w1, y1 ∈ NA(x1) \ V (M2 ∪ {e1}) be distinct. Suppose that x1 /∈ V (e1). If possible, choose

e2 to be the edge of M2 that contains x1; otherwise, let e2 be an arbitrary edge of M2.

In this case we let P := M2 ∪ {e1, v1v, w1x1y1} \ {e2}. Suppose now that x1 ∈ V (e1). In

this case we let P := M2 ∪ {e1, v1v, e} ∪ {x1y1}. In all cases, we have that RV(P) is an

Euler tour, e(P) ≤ ?+m + 2 and balAB(P) = m/2 + 1, as required.

Suppose finally that ? ≥ 2. Then we can choose e2 ∈ M2 so that {x1, . . . , x?} ?⊆

V (M2∪{e1}\{e2}). Apply Proposition 4.7.8 with G\B, V1∪V2, A,M2∪{e1}\{e2}, xi, 1

playing the roles of G,X, Y,M, xi, r to obtain a path system P0 in G[A]∪G[A, V1∪V2] such

that eP0
(A) = ?+1, P0[A, V1∪V2] = M2∪{e1} \ {e2}, and every edge in M2∪{e1} \ {e2}

lies in a distinct AVi-path in P0 for some i ∈ {1, 2}. Let P := P0 ∪ {v1v}. Then

e(P) = ?+m + 1 and

balAB(P) = eP0
(A) + eP0

(A, V1 ∪ V2)/2− 1/2 = ?+ 1 + (m− 1)/2− 1/2 = ?+m/2.

Note finally that RV(P) is an Euler tour by Fact 4.7.2.
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We are now ready to prove a more general version of Lemmas 4.7.11–4.7.13 in which

G[A, V1 ∪ V2] contains an arbitrary even matching of size at least four.

Lemma 4.7.14. Let ∆,∆? ∈ N, ? ∈ N0 and m ∈ 2N with ∆?/∆, m/∆?, ?/∆? ? 1

and m ≥ 4. Let ∆?/∆ < ε < 1/3. Let G be a 3-connected graph with vertex partition

V = {V1, V2,W := A∪B}. Suppose that ∆(G[A]),∆(G[A, V1∪V2]) ≤ ∆ and char∆,ε(G) =

(?,m). Then G contains a path system P such that e(P) ≤ ?+m+4, RV(P) is an Euler

tour and balAB(P) = ?+m/2.

Proof. Write U := V1 ∪ V2. Proposition 4.7.5 implies that

eG(A) ≥ (?− 1)∆ + ∆
?
and eG(A,U) ≥ (m− 1)∆ + ∆

?
. (4.7.7)

Recall also that m ≤ ?eG(A,U)/∆? and m is even. Choose non-negative integers b1, b2

such that bi ≤ ?eG(A, Vi)/∆? for i = 1, 2 and b1 + b2 = m. Apply Lemma 4.6.7 with

G[A,U ], A, V1, V2 playing the roles of G,U, V,W to obtain a matching M in G[A,U ] such

that eM (A, Vi) = bi for i = 1, 2. Without loss of generality we assume that b1 ≤ b2.

Suppose first that b1, b2 are both even and positive. Then we are done by applying

Lemma 4.7.11. If b1, b2 are both odd and at least three, then we are done by applying

Lemma 4.7.12. Suppose that b1 = 1. Then ?eG(A, V2)/∆? ≥ b2 = m − 1 so m − 1 <

eG(A, V2). Therefore we can apply Lemma 4.7.13 with M playing the role of M2 ∪ {e1}.

So we can assume that b1 = 0, and hence thatM ⊆ G[A, V2]. Suppose that eG(A, V1) > 0.

Then there is an edge e ∈ E(G[A, V1]) and m− 1 edges in M which are not incident with

e. We are similarly done by applying Lemma 4.7.13. The only remaining case is when

eG(A, V1) = 0. Now (4.7.7) implies that

eG(A, V2) ≥ (m− 1)∆ + ∆
?
. (4.7.8)

Since G is 3-connected, G[V1, V1] contains a matching of size three. So G[V1, V2 ∪ B]

contains a matching of size three. Then at least one of G[V1, V2], G[V1, B] contains a
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matching of size two.

Case 1. G[V1, V2] contains a matching M
∗ of size two.

Choose two distinct edges e2, e
?
2
∈ E(M) such that |V (M ∗) ∩ {v2, v

?
2
}| is as large as

possible, where v2, v
?
2
are the endvertices of e2, e

?
2
in V2. Set V

?
1
:= V1 ∪ {v2, v

?
2
} and

V ?
2
:= V2 \ {v2, v

?
2
}. Observe that eM (A, V

?
i
) ∈ 2N for i = 1, 2 since m ≥ 4. Let

V ? := {V ?
1
, V ?

2
,W}. Apply Lemma 4.7.11 with G, V ?

1
, V ?

2
, A, B,M playing the roles of

G, V1, V2, A, B,M to obtain a path system P ? such that P ? ⊆ G[A] ∪ G[A, V ?
1
∪ V ?

2
],

P ?[A, V ?
1
∪ V ?

2
] = M , e(P ?) = ? +m, RV ?(P ?) is an Euler tour and balAB(P

?) = ? +m/2.

Moreover, P ? contains at least one V ?
i
A-path for each i = 1, 2. Let Pi be such a path.

Then P1 contains either e2 or e
?
2
. Without loss of generality we may assume that P1

contains e2.

Let P := P ? ∪M ∗. Then e(P) = ?+m+ 2 and balAB(P) = ?+m/2. Moreover, each

of eP(V1, V1) = eP ?(V ?
1
, V ?

1
) = 2, eP(V2, V2) = eP ?(V ?

2
, V ?

2
) + 4 and eP(W,W ) = eP ?(W,W )

is even. Now P2 is an V2A-path in P . If M ∗ contains an edge e which avoids both v2, v
?
2

(and thus is vertex-disjoint from all edges in M), then e is a V1V2-path in P . If there is

no such edge e, then M ∗ contains an edge e? whose endvertex in V2 is v2. Then e
? ∪ P1 is

a V1A-path in P . Therefore, by Fact 4.7.2, RV(P) is an Euler tour, as required.

Case 2. G[V1, B] contains a matching M
∗ of size two.

Apply Lemma 4.7.6 to G[A]. Suppose first that Lemma 4.7.6(i) holds. Then G[A] contains

a matching M ? of size ? + 1 and an edge uv with u /∈ V (M ?). Apply Proposition 4.7.7

with G \ B, V1 ∪ V2, A,M,M
?, u, v playing the roles of G,X, Y,M,M ?, u, v to obtain a

path system P0 such that P0[V1 ∪ V2, A] = M ; P0 ⊆ M ∪M ? ∪ {uv}; eP0
(A) = ? + 1;

and P0 contains at least two V2A-paths. Let P := P0 ∪M
∗. Then P contains at least

two V2A-paths and two V1B-paths (namely the edges of M
∗), so RV(P) is an Euler tour.

Moreover balAB(P) = ?+m/2 and e(P) = ?+m + 3, as required.

Suppose now that Lemma 4.7.6(ii) holds in G[A]. Assume first that ? ≥ 2. Let

x1, . . . , x? be ? distinct vertices in A such that dA(xi) ≥ ∆? for 1 ≤ i ≤ ?. Since m ≥ 4,
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we can choose distinct e1, e2 ∈ M such that |{x1, . . . , x?} \ V (M \ {e1, e2})| ≥ 2. Then

Proposition 4.7.8 applied with G \ B, V1 ∪ V2, A,M \ {e1, e2}, xi, 2 playing the roles of

G,X, Y,M, xi, r implies that there is a path system P ? ⊆ G[A] ∪G[A, V1 ∪ V2] such that

eP ?(A) = ?+2, P ?[A, V1∪V2] = M \ {e1, e2}, and such that every edge of M \ {e1, e2} lies

in a distinct AV2-path. Let P := P ?∪M ∗. Then RV(P) is an Euler tour, e(P) = ?+m+2,

and

balAB(P) = eP ?(A) + eP ?(A, V1 ∪ V2)/2− 1 = ?+ 2 + (m− 2)/2− 1 = ?+m/2.

Finally we consider the case when ? ≤ 1. Lemma 4.7.6 applied to G[A, V1 ∪ V2] and

(4.7.8) imply that G[A, V1∪V2] contains a matchingM
? of sizem together with a matching

M+ of size two which is edge-disjoint from M ?, such that both edges in M+ contain a

vertex outside of V (M ?). Since eG(A, V1) = 0 by our assumption, we have M ? ∪M+ ⊆

G[A, V2]. Suppose first that ? = 0. In this case we let P := M ? ∪M+ ∪M ∗. It is clear

that RV(P) is an Euler tour, e(P) = m + 4 and balAB(P) = m/2, as required. The final

case is when ? = 1. Choose e ∈ M+ and e? ∈ M ? such that |V (e) ∩ {x1}|+ |V (e?) ∩ {x1}|

is maximal. So P ? := M ?∪M+ \{e, e?} is a matching of size m−1 together with an extra

edge, and x1 /∈ V (P
?). In particular, P ? contains a V2A-path P2. Since m/∆

? ? 1, we can

choose distinct vertices w1, y1 in NA(x1) \V (P
?). Let P := P ? ∪M ∗ ∪{w1x1y1}. Then P2

is a V2A-path in P and each edge of M ∗ is a V1B-path in P . So Fact 4.7.2 implies that

P is an Euler tour. Moreover, balAB(P) = m/2 + 1, and e(P) = m + 4, as required.

The proof of Lemma 4.7.3 in the ‘dense’ case is now just a short step away.

Proof of Lemma 4.7.3 in the case when |A|−|B| ≥ 2 and m ≥ 4. Let ∆ := D/2. Observe

that dA(a) ≤ dB(a) for all a ∈ A implies that ∆(G[A]) ≤ ∆. Proposition 4.7.10 implies

that ? + m/2 ≥ |A| − |B|. Choose non-negative integers ?? ≤ ? and m? ≤ m such that

m? is even, ?? +m?/2 = |A| − |B| and m? ≥ 4. This is possible since |A| − |B| ≥ 2. Let

∆? := νn. Proposition 4.7.4 implies that ??, m? ≤ 12ρn. Then ∆?/∆ ? 1, m?/∆? ? 1,

??/∆? ? 1, ∆?/∆ < ε. Apply Lemma 4.7.14 with ??, m? playing the roles of ?,m to obtain
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a path system P such that e(P) ≤ ?? +m? + 4 ≤ ?+m+ 4, RV(P) is an Euler tour, and

bal(P) = ?? +m?/2 = |A| − |B|. So (P1)–(P3) hold. ?

4.7.6 The proof of Lemma 4.7.3 in the case when |A| − |B| ≥ 2

and m ≤ 2

We now deal with the sparse case, i.e. when the largest even matching we can guarantee

between A and V1∪V2 has size at most two. For this, we need to introduce some notation

which will be used in all of the remaining cases.

More notation and tools

The remaining cases are quite delicate and we are forced to now introduce some further

notation, which we will attempt to motivate.

Given a graph G containing a path system P , and A ⊆ V (G), we write

FP(A) := (a1, a2) (4.7.9)

when ai is the number of vertices in A of degree i in P for i = 1, 2. Note that, if eP(A) = 0,

then

eP(A,A) = a1 + 2a2. (4.7.10)

Before defining a ‘basic connector’, we give some motivation for this concept. Let P

be a path system such that RV(P) is an Euler tour. Let P0 be be a minimal subgraph

of P such that RV(P0) is an Euler tour. We will call such a path system P0 a ‘basic

connector’. So a basic connector satisfies (P1) and (P3), but not necessarily (P2). It

is not hard to see that −2 ≤ balAB(P0) ≤ 2 and e(P0) ≤ 4 (see Proposition 4.7.15).

So in the case when |A| − |B| ≥ 2, we can find an ‘overbalanced’ path system P (with

balAB(P) ≥ |A| − |B|) and simply remove edges to obtain a V-tour. We did this when

m ≥ 4 in the previous subsection. This extra condition guaranteed the presence of a
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large matching in G[A,U ] which we used to suitably connect the components.

In this section, however, we have m ≤ 2 (recall that m is even). So G[A,U ] may not

contain a large matching, and so connecting the components may be difficult. Therefore

we use a basic connector as the foundation of our V-tour.

The final two subsections concern the case when |A| − |B| ≤ 1. Now, as well as

satisfying (P1) and (P3), any basic connector P0 is very close to being balanced; in fact

|balAB(P0)−(|A|−|B|)| ≤ 3. So here we find the basic connector P0 in G which is closest

to what we want, and carefully modify it.

Formally, we say that P is a basic connector (for V = {V1, V2,W := A ∪ B}) if

(BC1) RV(P) is an Euler tour;

(BC2) e(P) ≤ 4 and |balAB(P)| ≤ 2;

(BC3) eP(A ∪ B) = 0;

(BC4) if FP(A) = (a1, a2) then balAB(P) ∈ {a1 + 2a2 − 2, a1 + 2a2 − 1} and a2 ≤ 1.

It can be shown that (BC1)–(BC3) imply (BC4) (cf. the proof of Proposition 4.7.15).

Observe (BC3) implies that if P is a basic connector, then

2balAB(P) = eP(A, V1 ∪ V2)− eP(B, V1 ∪ V2) = a1 + 2a2 − eP(B, V1 ∪ V2). (4.7.11)

Roughly speaking, the existence of a basic connector P follows from 3-connectivity. We

would like to modify/extend P into a path system P ? which balances the sizes of A,B,

i.e. for which balAB(P
?) = |A| − |B|. The following notion will be very useful for this.

Given a graph G, disjoint A1, A2 ⊆ V (G) and t ∈ N0, we say that

acc(G;A1, A2) ≥ t

if G contains a path system P such that

(A1) e(P) = t;
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(A2) dP(x2) = 0 for each x2 ∈ A2;

(A3) dP(x1) ≤ 1 for each x1 ∈ A1, and no path of P has both endpoints in A1.

We say that such a P accommodates A1, A2, where ‘acc’ is short for ‘accomodating’.

In a typical application of this notion, we have already constructed a path system P0.

We let A1 be the set of all those vertices in A which have degree one in P0 and A2 be the

set of all those vertices in A which have degree two in P0. Then, if acc(G[A];A1, A2) ≥ t,

we can find a path system P in G[A] with t edges such that P0∪P is also a path system.

We now collect some tools which will be used to prove Lemma 4.7.3 in the case when

|A|−|B| ≥ 2 and m ≤ 2. The next proposition uses Lemma 3.7.3 to show that G contains

a basic connector.

Proposition 4.7.15. Let G be a 3-connected graph with vertex partition V = {V1, V2,W :=

A ∪ B}. Then G contains a basic connector P.

Proof. Apply Lemma 3.7.3 to G and V to obtain a path system P satisfying the conditions

(i)–(iii). We claim that P is a basic connector. Write FP(A) = (a1, a2) and FP(B) =

(b1, b2). In particular, (iii) implies that

a1 + b1 + 2(a2 + b2) ∈ {2, 4} (4.7.12)

and a2+ b2 ≤ 1. Note that (BC1) and (BC3) are immediate from (ii) and (i) respectively.

Moreover, (i) implies eP(A ∪ B) = 0. So eP(A, V1 ∪ V2) = a1 + 2a2 and eP(B, V1 ∪ V2) =

b1 + 2b2. So (4.7.12) implies that

2balAB(P) = a1 + 2a2 − b1 − 2b2 ∈ {2a1 + 4a2 − 4, 2a1 + 4a2 − 2}

and |2balAB(P)| ≤ 4, so (BC2) and (BC4) hold.

By Proposition 4.7.15, we can find a basic connector P0 in G, which may not satisfy

(P2). Our aim now is to find a suitable path system PA in G[A] so that P0 ∪PA satisfies
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(P1)–(P3). Let Ai be the collection of all those vertices of A with degree i in P0. The

next result shows that it suffices to show that acc(G[A];A1, A2) ≥ |A| − |B| − balAB(P0).

Proposition 4.7.16. Let G be a graph with vertex partition V = {V1, V2,W := A ∪ B}.

Let P0 be a basic connector in G and for i = 1, 2 let Ai be the collection of all those vertices

of A with degree i in P0. Then, for any integer 0 ≤ t ≤ acc(G[A];A1, A2), we have that

G contains a path system P such that RV(P) is an Euler tour, balAB(P) = balAB(P0)+ t

and e(P) ≤ t+ 4.

Proof. Let PA be a path system in G[A] which accommodates A1, A2 such that e(PA) = t.

Let P := P0 ∪ PA. Properties (A2) and (A3) imply that P is a path system. It is

straightforward to check that (BC1) implies that RV(P) is an Euler tour. Moreover,

balAB(P) = balAB(P0) + e(PA), as required. Finally, (BC2) gives the required bound on

e(P).

Building a basic connector from a matching

The next lemma shows that in the case when G[A, V1 ∪ V2] contains a matching of size

at least three, we can obtain a basic connector with additional useful properties.

Lemma 4.7.17. Let G be a 3-connected graph with vertex partition V = {V1, V2,W :=

A ∪ B}. Suppose that G[A, V1 ∪ V2] contains a matching M of size three. Then one of

the following holds:

(i) G contains a basic connector P with balAB(P) ≥ 1, and if FP(A) = (a1, a2), then

a1 ≥ 2;

(ii) eG(A, Vi) = 0 for some i ∈ {1, 2}, and for each a ∈ A, G contains matchings

Ma,A,Ma,B in G[A \ {a}, Vj ], G[B, Vi] respectively, where j ∈ {1, 2} \ {i}, each of

which has size two. In particular, Pa := Ma,A ∪ Ma,B is a basic connector with

balAB(Pa) = 0, a /∈ V (Pa) and FP(A) = (2, 0).
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Proof. Without loss of generality we may assume that eM (A, V2) ≥ eM (A, V1). Suppose

first that eG(A, V1) > 0. We claim that G[A, V1 ∪ V2] contains a matching M
? of size

three such that eM ?(A, V1) = 1 and eM ?(A, V2) = 2. To see this, we may assume that we

cannot set M ? := M , so M ⊆ G[A, V2]. Let e1 ∈ E(G[A, V1]). Then V (e1) ∩ V (M) ⊆ A.

If possible, let e? be the edge of M incident to e1, otherwise let e
? ∈ E(M) be arbitrary.

Let M ? := M ∪ {e1} \ {e
?}, proving the claim.

Since G is 3-connected, there exists e ∈ E(G[V1, V1]) that is not incident with the

unique edge e1 ∈ M
?[A, V1]. Let x be the endpoint of e that does not lie in V1. If x ∈ V2

then we can choose e2 ∈ M
?[A, V2] which is not incident with e and then P := {e, e1, e2}

is a path system with balAB(P) = 1 and FP(A) = (2, 0). It is easy to check that P is a

basic connector, so (i) holds. If x ∈ A ∪ B then similarly P := M ? ∪ {e} satisfies (i).

Suppose now that eG(A, V1) = 0. Thus eM (A, V2) = 3. Since G is 3-connected,

there is a matching M ? of size three in G[V1, V1]. Let E(M ?) = {e1, e2, e3} and let

x1, x2, x3 respectively be the endpoints of e1, e2, e3 which do not lie in V1. Note that

{x1, x2, x3} ⊆ B ∪ V2. Suppose first that |V (M
?) ∩ B| ≤ 1. Without loss of generality

we assume that {x1, x2} ⊆ V2. Let e, e
? ∈ E(M) be such that {x1, x2} ?⊆ V ({e, e?}).

Then P := {e, e?, e1, e2} is such that balAB(P) = 1 and FP(A) = (2, 0). Moreover, P

is a basic connector, so (i) holds. So without loss of generality we may assume that

|V (M ?) ∩ B| ≥ 2 and {x1, x2} ⊆ B. Given an arbitrary a ∈ A, choose e, e
? ∈ E(M) such

that a /∈ V ({e, e?}). Let Ma,A := {e, e?} and Ma,B := {e1, e2}. So (ii) holds.

We now show how this result implies that, whenever G[A, V1∪V2] contains a matching

of size two, we are again able to find a basic connector with additional useful properties

(though not as useful as those in Lemma 4.7.17).

Lemma 4.7.18. Let G be a 3-connected graph with vertex partition V = {V1, V2,W :=

A ∪ B}. Let M be a matching in G[A, V1 ∪ V2] of size two. Then G contains a basic

connector P with balAB(P) ≥ 0, and if FP(A) = (a1, a2), then a1 ≥ 1.

Proof. Write U := V1 ∪ V2. Since G is 3-connected, G[A ∪B,U ] contains a matching M ?
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of size three. We claim that M ∪M ? contains a matching M ∗ of size three such that at

least two of the edges in M ∗ lie in G[A,U ]. To see this, assume that eM ?(A,U) ≤ 1 (or

we could take M ∗ := M ?). Assume further that there is no edge e ∈ E(M ?) without an

endpoint in V (M) (or we could take M ∗ := M ∪ {e}). Then, if we write M := {au, a?u?}

where a, a? ∈ A and u, u? ∈ U , we have thatM ? consists of distinct edges eu, eu? , e incident

with u, u? and {a, a?} respectively. Suppose that a ∈ V (e). Then e ∈ E(G[A,U ]) and

so eu, eu? ∈ E(G[B,U ]). Moreover, neither e nor eu is incident with a
?u?. We can set

M ∗ := {a?u?, e, eu}. If instead a
? ∈ V (e), then we can set M ∗ := {au, e, eu?}. This proves

the claim.

If M ∗ ⊆ G[A,U ], we are done by Lemma 4.7.17. Otherwise, let bu be the unique

edge in M ∗[B,U ] with u ∈ U and b ∈ B. Let A? := A ∪ {b} and B ? := B \ {b}. Apply

Lemma 4.7.17 with G,M ∗, A?, B? playing the roles of G,M,A,B. Suppose first that (i)

holds. Then G contains a basic connector P with balA?B?(P) ≥ 1. But balAB(P) =

balA?B?(P) − dP(b) if b ∈ V (P) and balAB(P) = balA?B?(P) otherwise. If dP(b) = 1 then

balAB(P) ≥ 0, as required. Suppose that dP(b) = 2. Write FP(A
?) := (a?

1
, a?

2
). Thus a?

2
=

1 by (BC4). Moreover, Lemma 4.7.17(i) implies that a?
1
≥ 2. Now a?

1
+2a?

2
≤ balA?B?(P)+

2 ≤ 4 by (BC2) and (BC4), so (a?
1
, a?

2
) = (2, 1) and balA?B?(P) = 2. Then balAB(P) ≥ 0,

as required. Let FP(A) =: (a1, a2). As above, (a1, a2) ∈ {(a?
1
−1, a?

2
), (a?

1
, a?

2
−1), (a?

1
, a?

2
)}.

So a1 ≥ a?
1
− 1 ≥ 1 by Lemma 4.7.17(i). Suppose instead that Lemma 4.7.17(ii) holds.

The ‘in particular’ part implies that G contains a basic connector Pb with balA?B?(Pb) = 0,

FPb
(A) = (2, 0) and b /∈ V (Pb). Then balAB(Pb) = balA?B?(Pb), and FPb

(A) = FPb
(A?) as

required.

Accommodating path systems

The following proposition gives a lower bound for acc(G;A1, A2) whenever G contains

several vertices of degree much larger than |A1| + |A2| (i.e. when Lemma 4.7.6(ii) holds

in G).

Proposition 4.7.19. Let ∆? ∈ N and let ?, a1, a2 ∈ N0 be such that ∆
? ≥ 3? + a1 + a2.
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Let G be a graph and let X be a collection of ? vertices in G such that dG(x) ≥ ∆? for all

x ∈ X. Then for all disjoint A1, A2 ⊆ V (G) with |Ai| = ai for i = 1, 2, we have

acc(G;A1, A2) ≥ 2?− |X ∩ A1| − 2|X ∩ A2|.

Proof. Write X := {x1, . . . , x?}. Since ∆
? ≥ 3? + a1 + a2 we can choose distinct vertices

w1, . . . , w?, y1, . . . , y? such that {wi, yi} ⊆ N(xi) \ (A1 ∪ A2 ∪ X). For each 1 ≤ i ≤ ?,

define

Pi :=






xiyi if xi ∈ A1;

∅ if xi ∈ A2;

wixiyi otherwise.

(4.7.13)

Then P :=
?

1≤i≤?
Pi is a path system which accommodates A1, A2. Clearly

acc(G;A1, A2) ≥ e(P) = 2?− |X ∩ A1| − 2|X ∩ A2|, (4.7.14)

as required.

The following proposition shows that, if A contains a collection X of vertices of high

degree and G contains a basic connector P0 which does not interact too much with X ,

then we can extend P0 such that it still induces an Euler tour but balAB(P0) has increased.

Proposition 4.7.20. Let ∆? ∈ N and let ?, r ∈ N0 be such that ∆
? ≥ 3? + 4. Let G be a

graph with vertex partition V = {V1, V2,W := A ∪ B} and let P0 be a basic connector in

G. For i = 1, 2, let Ai be the collection of all those vertices in A with degree i in P0. Let

X := {x1, . . . , x?} ⊆ A where dA(xi) ≥ ∆? for all 1 ≤ i ≤ ?. Suppose that X ∩ A2 = ∅

and |X \ A1| ≥ r. Then G contains a path system P such that RV(P) is an Euler tour,

balAB(P) = balAB(P0) + ?+ r and e(P) ≤ ?+ r + 4.

Proof. Write FP0
(A) := (a1, a2). So |Ai| = ai and hence a1 + a2 = |V (P0) ∩ A| ≤ 4 by
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(BC2) and (BC3). Therefore we can apply Proposition 4.7.19 to see that

acc(G[A];A1, A2) ≥ 2?− |X ∩ A1| − 2|X ∩ A2| ≥ 2?− (?− r) = ?+ r.

Then Proposition 4.7.16 implies that there exists a path system P as required.

The following lemma gives lower bounds for acc(G[A];A1, A2). Together with Propo-

sition 4.7.16, this will enable us to see ‘how far’ we can extend a basic connector. We

show that acc(G[A];A1, A2) is ‘sufficiently large’ unless we are in one of two special cases.

Lemma 4.7.21. Let k ∈ {0, 1}, ∆,∆?, ? ∈ N be such that ? + k ≥ 2. Suppose that

∆?/∆, ?/∆? ? 1. Let G be a graph with vertex partition U,A and suppose that eG(A) ≥

(? − 1)∆ + ∆? and ∆(G[A]),∆(G[A,U ]) ≤ ∆. Let a1, a2 ∈ N0 with a1 ≥ k and ∆? ≥

3?+ a1 + a2. Let A1, A2 ⊆ A be disjoint such that |Ai| = ai for i = 1, 2. Then one of the

following holds.

(I) acc(G[A];A1, A2) ≥ ?− a1 − 2a2 + k + 2;

(II) k = 1, (a1, a2) = (1, 0) and acc(G[A];A1, A2) ≥ ?+ 1;

(III) k = 1, 1 ≤ ?, a1 + a2 ≤ 2, eG(A) ≤ ?∆ and acc(G[A];A1, A2) ≥ ? − a2. Moreover,

let X := {x ∈ A : dA(x) ≥ ∆?}. Then |X | = ? and all edges of G[A] are incident

with X.

Proof. Apply Lemma 4.7.6 to G[A]. Suppose first that (i) holds. Let M be a matching

in G[A] of size ? + 1 and let uv ∈ E(G[A]) be such that u /∈ V (M). Obtain M ? from

M by deleting all those edges with both endpoints in A1 or at least one endpoint in A2.

Then M ? accommodates A1, A2 by construction, so

acc(G[A];A1, A2) ≥ e(M
?
) ≥ ?+ 1− ?a1/2? − a2. (4.7.15)

If ?a1/2? + a2 ≥ k + 1, then (4.7.15) implies that (I) holds.

207



So suppose instead that ?a1/2? + a2 ≤ k. First consider the case k = 0. Then

?a1/2? + a2 = 0 and hence (a1, a2) = (0, 0). Now A1 = A2 = ∅, so M ∪ {uv} is a path

system which accommodates A1, A2, and e(M ∪ {uv}) = ?+ 2, so (I) holds.

Now consider the case k = 1. We have ?a1/2? + a2 ≤ 1. But a1 ≥ k ≥ 1 so

(a1, a2) = (1, 0). Observe that acc(G[A];A1, A2) ≥ ?+ 1 by (4.7.15). So (II) holds.

Suppose now that Lemma 4.7.6(i) does not hold in G[A]. Since ? ≥ 1, we have

eG(A) ≤ ?∆ by the final assertion in Lemma 4.7.6. Let X := {x ∈ A : dA(x) ≥ ∆?}.

Then |X | ≥ ?. Since Lemma 4.7.6(i) does not hold, we must have that |X | = ? and that

all edges of G[A] are incident with X .

Apply Proposition 4.7.19 to see that

acc(G[A];A1, A2) ≥ 2?− |X ∩ A1| − 2|X ∩ A2| ≥ 2?−min{a1, ?− a2} − 2a2

= ?− a1 − 2a2 +max{?, a1 + a2} ≥ ?− a2. (4.7.16)

In particular, if max{?, a1 + a2} ≥ k + 2, (4.7.16) implies that (I) holds. So we may

suppose that max{?, a1+a2} ≤ k+1. Recall that k+ ? ≥ 2 and a1 ≥ k in the hypothesis.

Hence, we have k = 1 and so 1 ≤ ?, a1 + a2 ≤ 2. So (III) holds.

We are now ready to prove Lemma 4.7.3 in the case when |A| − |B| ≥ 2 and m ≤ 2.

Roughly speaking, the approach is as follows. Proposition 4.7.15 implies that G contains

a basic connector P0. When m = 2, Lemmas 4.7.17 and 4.7.18 allow us to assume that

balAB(P0) is non-negative. We would like to extend P0 to a path system P in such a way

that RV(P) is an Euler tour and balAB(P) = ? + m/2 ≥ |A| − |B|. Proposition 4.7.16

implies that, in order to do this, it suffices to find a path system PA in G[A] which

accommodates A1, A2 (where Ai is the collection of all those vertices in A with degree

i in P0) and has enough edges. Now Lemma 4.7.21 implies that we can do this unless

m = 2, ? is small and (|A1|, |A2|) takes one of a small number of special values. Some

additional arguments are required in these cases.

Proof of Lemma 4.7.3 in the case when |A| − |B| ≥ 2 and m ≤ 2. Let k := m/2. Since
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m ∈ 2N0 we have k ∈ {0, 1}. Let ∆ := D/2, ∆? := νn and U := V1∪V2. Proposition 4.7.10

implies that

?+ k ≥ |A| − |B| ≥ 2. (4.7.17)

Proposition 4.7.4 implies that ?,m ≤ 12ρn. Then ∆?/∆, ?/∆?, m/∆? ? 1, ∆?/∆ ? ε.

Proposition 4.7.5 implies that

eG(A) ≥ (?− 1)∆ + ∆
?
and eG(A,U) ≥ (m− 1)∆ + ∆

?
. (4.7.18)

By Proposition 4.7.15, G contains a basic connector P0. Further assume that balAB(P0)

is maximal, and given balAB(P0), a1 is maximal where FP0
(A) := (a1, a2). Let

t := |A| − |B| − balAB(P0).

Then (BC2) implies that t ≥ 0. In fact we may assume that t ≥ 1 as otherwise P0

satisfies (P1)–(P3). For i = 1, 2 let Ai be the set of all those vertices in A which have

degree i in P0. So |Ai| = ai. Proposition 4.7.16 implies that, to prove Lemma 4.7.3, it

suffices to show that

acc(G[A];A1, A2) ≥ t.

(To check (P1), note that (BC2) and (4.7.17) imply t ≤ |A|−|B|+2 ≤ ?+k+2 ≤ ?+m+2.)

Claim A.

(i) Suppose that k = 1. Then balAB(P0) ≥ 0, and if balAB(P0) = 0 then a1 ≥ 1.

(ii) a1 ≥ k.

Proof. To prove Claim A(i), note that if k = 1 (and so m = 2), then (4.7.18) and

Lemma 4.7.6 imply that G[A,U ] contains a matching of size two. Together with

Lemma 4.7.18 and our choice of P0 this in turn implies Claim A(i). Claim A(ii)

clearly holds if k = 0, so assume k = 1. If balAB(P0) = 2, then a1 ≥ 1 by (BC4).

Together with Claim A(i) this shows that we may assume that balAB(P0) = 1.
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By (BC4), we may further assume that (a1, a2) = (0, 1). Then (4.7.11) implies

that eP0
(B,U) = 0. But then P0 has no endpoints in W = A ∪ B, contradicting

(BC1). ?

Apply Lemma 4.7.21 with G\B,A, U, FP0
(A), ?, k playing the roles of G,A, U, (a1, a2), ?, k.

Suppose first that (I) holds, so

acc(G[A];A1, A2) ≥ ?− a1 − 2a2 + k + 2
(BC4),(4.7.17)

≥ |A| − |B| − balAB(P0) = t,

as required. Therefore we may assume that one of Lemma 4.7.21(II) or (III) holds. So

k = 1 and therefore balAB(P0) ≥ 0 by Claim A(i). Suppose first that (II) holds. Then

acc(G[A];A1, A2) ≥ ?+ 1
(4.7.17)

≥ |A| − |B| ≥ t,

as required. Therefore we may assume that (III) holds. So 1 ≤ ?, a1+a2 ≤ 2, eG(A) ≤ ?∆

and acc(G[A];A1, A2) ≥ ?−a2. Let X := {x ∈ A : dA(x) ≥ ∆?}. Then Lemma 4.7.21(III)

also implies that |X | = ? and all edges of G[A] are incident with X .

We claim that we are done if balAB(P0) ?= a2. To see this, suppose first that

balAB(P0) ≤ a2 − 1. Since balAB(P0) ≥ 0 this implies that a2 = 1 and balAB(P0) = 0.

But a1 ≥ k ≥ 1 by Claim A(ii) and a1 + a2 ≤ 2, so a1 = a2 = 1. This is a contradiction

to (BC4). Suppose instead that balAB(P0) ≥ a2 + 1. Then

acc(G[A];A1, A2) ≥ ?− a2 ≥ ?+ 1− balAB(P0) = ?+ 1− (|A| − |B|) + t
(4.7.17)

≥ t.

Therefore we may assume that balAB(P0) = a2. In particular, this together with (BC4)

implies that balAB(P0) ∈ {0, 1}. We claim that we can further assume that

? = |A| − |B| − 1. (4.7.19)

Indeed, to see this, note that by (4.7.17), it suffices to show that we are done if ? ≥
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|A| − |B|. But in this case we have acc(G[A];A1, A2) ≥ ? − a2 ≥ |A| − |B| − a2 = t, as

required.

We will now distinguish two cases.

Case 1. G[A,U ] contains a matching of size three.

Recall that balAB(P0) ∈ {0, 1}. So Lemma 4.7.17 and our choice of P0 imply that

a1 ≥ 2. Since a1 + a2 ≤ 2 we have that (a1, a2) = (2, 0). Therefore balAB(P0) = a2 = 0.

Now, by Lemma 4.7.17 and our choice of P0 we deduce that there is some i ∈ {1, 2}

such that for j ∈ {1, 2} \ {i} and for each a ∈ A, there are matchings Ma,A,Ma,B

in G[A \ {a}, Vi], G[B, Vj ] respectively, each of which has size two. Moreover, Pa :=

Ma,A ∪Ma,B is a basic connector with balAB(Pa) = 0.

Let x ∈ X be arbitrary. (Recall that |X | = ? ≥ 1.) Apply Proposition 4.7.20 with

Px, V (Mx,A) ∩ A, ∅, X, ?, 1 playing the roles of P0, A1, A2, X, ?, r to obtain a path system

P in G such that RV(P) is an Euler tour, balAB(P) = balAB(Px) + ? + 1 = |A| − |B|

(using (4.7.19)), and e(P) ≤ ?+ 5. Thus, P satisfies (P1)–(P3).

Case 2. G[A,U ] does not contain a matching of size three.

Together with König’s theorem on edge-colourings this implies that eG(A,U) ≤ 2∆.

Claim B. X ∩ V (P0) = ∅.

Proof. Since eG(A,U) ≤ 2∆, Proposition 3.7.4(ii) implies that

eG(A) ≥ ∆(|A| − |B|)− eG(A,U)/2
(4.7.19)

≥ ?∆.

In fact, equality holds since eG(A) ≤ ?∆ by Lemma 4.7.21(III). Since all edges of

G[A] are incident with X and |X | = ? it follows that dA(x) = ∆ = D/2 for all

x ∈ X . For all x ∈ X , dU (x) = D − dA(x)− dB(x) ≤ D − 2dA(x) = D − 2∆ = 0.

The claim follows by (BC3). ?

Recall that we assume that t ≥ 1. Observe that, since balAB(P0) ∈ {0, 1}, the definition

of t and (4.7.19) imply that 1 ≤ t ≤ |A| − |B| = ? + 1. Choose an arbitrary X ? ⊆ X
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with |X ?| = t − 1. Apply Proposition 4.7.20 with P0, X
?, t − 1, 1 playing the roles of

P0, X, ?, r to obtain a path system P in G such that RV(P) is an Euler tour, balAB(P) =

balAB(P0) + t = |A| − |B|, and e(P) ≤ ?+ 5. Thus, P satisfies (P1)–(P3). ?

4.7.7 The proof of Lemma 4.7.3 in the case when |A| = |B|+ 1.

Note that the extremal example in Figure 4.1(i) satisfies the conditions of this case.

Therefore the degree bound D ≥ n/4 is essential here. We will follow a similar strategy

as in Section 4.7.6. We first find a basic connector P0 and then modify it to obtain a

path system P satisfying (P1)–(P3). To be more precise, P will satisfy e(P) ≤ 6 and

balAB(P) = 1. Throughout this section, we will assume that the basic connector P0 is

chosen so that |balAB(P0) − 1| is minimal. We will distinguish cases depending on the

value of balAB(P0).

Let G be a D-regular graph with vertex partition A,B, U where |A| = |B|+ 1. Then

Proposition 3.7.4(i) implies that

2eG(A) + eG(A,U) = 2eG(B) + eG(B,U) +D. (4.7.20)

We will need the following simple facts for the case when |balAB(P0)| = 2.

Proposition 4.7.22. Let G be a 3-connected graph with vertex partition V = {V1, V2,W :=

A ∪ B}. Then the following holds:

(i) if P0 is a basic connector in G with balAB(P0) = 2, then V (P0) ∩ B = ∅ and

P0[A, Vi] is a matching of size two for each i = 1, 2. In particular, P0[A, V1 ∪ V2]

contains a matching of size three.

(ii) if eG(B,U) > 0 and G contains a basic connector P ?
0
with balAB(P

?
0
) = 2, then G

also contains a basic connector P0 with balAB(P0) = 1;

(iii) if eG(A,U) > 0 then G contains a basic connector P0 with balAB(P0) ≥ −1;
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(iv) if eG(A,U), eG(B,U) > 0 then G contains a basic connector P0 with |balAB(P0)| ≤

1.

Proof. (i) follows immediately from (BC1)–(BC4). To prove (ii), note that by (i), for

both i = 1, 2 there are matchings Mi ⊆ G[A, Vi] of size two such that P
?
0
= M1 ∪M2. Let

e ∈ E(G[B,U ]) be arbitrary. Without loss of generality, suppose that e ∈ E(G[B, V1]).

If possible, let e? ∈ E(M1) be the edge incident with e; otherwise let e
? ∈ E(M1) be

arbitrary. Then P0 := (P ?
0
∪ {e}) \ {e?} is a basic connector with balAB(P0) = 1, as

required. (iii) and (iv) follow from Proposition 4.7.15 together with an argument similar

to the one for (ii).

The next lemma concerns the case when G[A, V1∪V2] contains a matching of size three.

This extra condition ensures the existence of a basic connector with useful properties of

which we can take advantage.

Lemma 4.7.23. Let n,D ∈ N be such that D ≥ n/4 and 1/n? 1. Let G be a 3-connected

D-regular graph with vertex partition V = {V1, V2,W := A ∪ B}, where |Vi| ≥ D/2 for

i = 1, 2. Suppose that |A| = |B|+ 1, that ∆(G[A, V1 ∪ V2]) ≤ D/2 and that G[A, V1 ∪ V2]

contains a matching of size three. Then G contains a path system P which satisfies

(P1)–(P3).

Proof. Let U := V1 ∪ V2. Without loss of generality we may assume that eG(A, V1) ≤

eG(A, V2). We will obtain P by adding at most two edges to a basic connector P0.

Therefore e(P) ≤ 6 so (P1) will hold. We may assume that there does not exist a basic

connector P ?
0
with balAB(P

?
0
) = 1 (otherwise we can take P := P ?

0
). Apply Lemma 4.7.17

to obtain a basic connector in G which satisfies (i) or (ii).

Case 1. Lemma 4.7.17(i) holds.

So G contains a basic connector P0 such that balAB(P0) ≥ 1 and, if FP0
(A) = (a1, a2),

then a1 ≥ 2. Thus balAB(P0) = 2 by our assumption. Proposition 4.7.22(i) implies

that V (P0) ∩ B = ∅. Furthermore, Proposition 4.7.22(ii) implies that eG(B,U) = 0.
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Suppose that eG(B) ≥ 1. For arbitrary e ∈ E(G[B]) we have that P := P0 ∪{e} satisfies

(P1)–(P3). So we may assume that eG(B) = 0. So (4.7.20) implies that

2eG(A) + eG(A,U) = D. (4.7.21)

Moreover, for each b ∈ B we have that NG(b) ⊆ A and thus |A| ≥ D. So |B| ≥ D − 1

and since D ≥ n/4 we have that |U | ≤ 2D + 1. We will only prove the case when

|V1| = D − s for some s ∈ N0. (The same argument also works for |V2| = D − s.) Recall

that s ≤ D/2 by assumption. Then every vertex in V1 has at least s + 1 neighbours in

V1. Since eG(B,U) = 0 and eG(A, V1) ≤ eG(A, V2) we have that

eG(V1, V2) ≥ eG(V1, V1)− eG(A, V1)
(4.7.21)

≥ (s+ 1)(D − s)−D/2 ≥ D/2.

Suppose that P0 is a matching of size four in G[A,U ]. Then, given any e ∈ E(G[V1, V2]),

we can choose ei ∈ P0[A, Vi] such that e, e1, e2 is a matching of size three. Otherwise,

Proposition 4.7.22(i) implies that P0 consists of vertex-disjoint paths u1a1, u2a2, v1av2,

where vi, ui ∈ Vi and a, a1, a2 ∈ A. Since eG(V1, V2) ≥ 2, we can pick e ∈ E(G[V1, V2]) \

{u1u2}. It is easy to see that we can similarly find ei ∈ E(P0[A, Vi]) such that e, e1, e2 is

a matching of size three. In both cases, P := {e, e1, e2} satisfies (P1)–(P3).

Case 2. Lemma 4.7.17(ii) holds.

Since eG(A, V1) ≤ eG(A, V2) this implies that eG(V1, A) = 0. Moreover, Lemma 4.7.17(ii)

also implies that, for each a ∈ A, there are matchingsMa,A,Ma,B in G[A\{a}, V2], G[B, V1]

respectively, each of which has size two. In particular eG(B,U) ≥ 2. Suppose that

eG(A) > 0. Let aa? ∈ E(G[A]). Then P := Ma,A ∪ Ma,B ∪ {aa?} satisfies (P1)–(P3).

So we may assume that eG(A) = 0. Then (4.7.20) implies that eG(A, V2) = eG(A,U) ≥

D+eG(B,U) ≥ D+2. The ‘moreover’ part of Lemma 4.7.6 with G[A, V2], D/2, 2 playing

the roles of G,∆, ? implies that G[A, V2] contains a matching MA of size three and an

edge xy with x /∈ V (MA). Let a ∈ A be arbitrary. Then P := Ma,B ∪MA ∪{xy} satisfies
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(P1)–(P3).

The following proposition will be used to find edges in G[A] which can be added to a

basic connector P0 so that it is still a path system and RV(P0) is still an Euler tour. For

example, if a ∈ A is such that dP0
(a) = 2, then we cannot add any edges in G[A] which are

incident with a. (Recall that the partition given in Lemma 4.7.3 satisfies dA(a) ≤ dB(a)

for all a ∈ A.)

Proposition 4.7.24. Let G be a D-regular graph with vertex partition A,B, U where

|A| = |B|+ 1. Let a ∈ A be such that dA(a) ≤ dB(a). Then

2eG(A \ {a}) + eG(A \ {a}, U) ≥ eG(B,U).

Proof. Note that

2eG(A \ {a}) + eG(A \ {a}, U) = 2eG(A) + eG(A,U)− 2dA(a)− dU (a)

≥ 2eG(A) + eG(A,U)− dA(a)− dB(a)− dU (a)

= 2eG(A) + eG(A,U)−D
(4.7.20)

≥ eG(B,U),

as required.

By Lemma 4.7.23, we may assume that G[A, V1 ∪ V2] contains no matching of size

three. Then Proposition 4.7.22(i) allows us to assume that balAB(P0) ≤ 0 (or we are

done). In the next lemma, we consider the case when balAB(P0) = 0.

Lemma 4.7.25. Let D ∈ N. Let G be a 3-connected D-regular graph with vertex partition

V = {V1, V2,W := A ∪ B}. Suppose that |A| = |B| + 1, ∆(G[A, V1 ∪ V2]) ≤ D/2 and

dA(a) ≤ dB(a) for all a ∈ A. Suppose further that G[A, V1 ∪ V2] does not contain a

matching of size three. Let P0 be a basic connector in G with balAB(P0) = 0. Then G

contains a path system P which satisfies (P1)–(P3).
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Proof. Let U := V1∪V2. Since G[A,U ] does not contain a matching of size three, König’s

theorem on edge-colourings implies that

eG(A,U) ≤ D. (4.7.22)

Property (BC4) implies that a1 + 2a2 ∈ {1, 2} and so FP0
(A) ∈ {(2, 0), (1, 0), (0, 1)}. We

will distinguish cases based on the value of FP0
(A).

Case 1. FP0
(A) = (2, 0).

Then (4.7.11) implies that eP0
(A,U) = eP0

(B,U) = 2. Since P0 is an Euler tour and

e(P0) ≤ 4 by (BC1) and (BC2), there are distinct vertices a, a? ∈ A, a collection of

distinct vertices X := {u, u?, v, v?} ⊆ U with |X ∩ Vi| = 2 for i = 1, 2 and b, b
? ∈ B which

are not necessarily distinct, such that P0 := {au, a?u?, bv, b?v?}.

Observe that we are done if there exists e ∈ E(G[A]) \ {aa?} since then P0 ∪ {e}

satisfies (P1)–(P3). So we may assume that E(G[A]) ⊆ {aa?}. Now

2 = eP0
(B,U) ≤ eG(B,U)

(4.7.22)

≤ 2eG(B) + eG(B,U) +D − eG(A,U)
(4.7.20)

= 2eG(A) ≤ 2.

Therefore we have eG(B) = 0, eG(A) = 1, eG(A,U) = D and eG(B,U) = 2, so

E(G[B,U ]) = {bv, b?v?} and E(G[A]) = {aa?}.

We will assume that either {u, u?} ⊆ V1 and {v, v
?} ⊆ V2; or {u, v} ⊆ V1 and {u

?, v?} ⊆

V2 since the other cases are similar.

Case 1.a. {u, u?} ⊆ V1 and {v, v?} ⊆ V2.

Suppose that eG(V1, V2) ?= 0. Let v1v2 ∈ E(G[V1, V2]) with vi ∈ Vi. Choose e1 ∈

P0[A, V1 \ {v1}] and e2 ∈ P0[B, V2 \ {v2}]. Then P := {e1, e2, v1v2, aa
?} satisfies (P1)–

(P3). Suppose that eG(A, V2) ?= 0. Let a??x2 ∈ E(G[A, V2]) with a
?? ∈ A and x2 ∈ V2.

Choose e2 ∈ P0[B, V2\{x2}]. Then P := {au, a?u?, a??x2, e2} satisfies (P1)–(P3). Therefore

eG(A ∪ V1, V2) = 0. So E(G[V2, V2]) = {bv, b?v?}, contradicting the 3-connectivity of G.

Case 1.b. {u, v} ⊆ V1 and {u?, v?} ⊆ V2.
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We may assume that b = b? since otherwise P := P0 ∪ {aa?} satisfies (P1)–(P3). Since

G[A,U ] does not contain a matching of size three, every edge in G[A,U ] is incident with

at least one of a, a?, u, u?. Suppose that there exists a?? ∈ A\{a, a?} such that ua?? ∈ E(G).

Then P := P0 ∪ {ua??, aa?} \ {ua} satisfies (P1)–(P3). A similar deduction can be made

with u? playing the role of u. Therefore every edge in G[A,U ] is incident with a or a?.

Since eG(A,U) = D we have dU (a), dU (a
?) = D/2.

Suppose that eG(V1, V2) ?= 0. Let v1v2 ∈ E(G[V1, V2]) with vi ∈ Vi. If v1 ?= u and

v2 ?= u
? then P := {au, a?u?, v1v2} satisfies (P1)–(P3). Therefore we may suppose, without

loss of generality, that v1 = u. Suppose that v2 ?= u?. Then P := {a?u?, v1v2, bv, aa
?}

satisfies (P1)–(P3). Therefore we may suppose that v2 = u. Thus uu
? ∈ E(G). Since

dU (a) ≥ D/2, we can choose w ∈ NU (a) \ {v, v
?, u, u?}. Suppose that w ∈ V1. Then

P := {aw, uu?, aa?, bv?} satisfies (P1)–(P3). If w ∈ V2 then P := {aw, uu?, aa?, bv} satisfies

(P1)–(P3).

Thus we may assume that eG(V1, V2) = 0. Choose Ya ∈ {V1, V2} such that dYa(a) ≥

D/4. Note that there is always such a Ya. Define Ya? analogously. Suppose that Ya? = V1.

Choose w? ∈ NV1
(a?) \ {u, v}. Then P := P0 ∪ {a?w?} \ {bv} satisfies (P1)–(P3). We can

argue similarly if Ya = V2.

Therefore we may assume that Ya? = V2 and Ya = V1. Suppose that dV1
(a?) ?= 0.

Let w? ∈ NV1
(a?). Since dV1

(a) ≥ D/4, we can choose w ∈ NV1
(a) \ {w?}. Then P :=

P0∪{aw, a?w?}\{au, bv} satisfies (P1)–(P3). So dV1
(a?) = 0. Since every edge of G[A,U ]

is incident with a or a?, we have that every edge in G[A, V1] is incident with a. We have

shown that every edge in G[V1, V1] is incident with a or b, contradicting the 3-connectivity

of G.

Case 2. FP0
(A) = (1, 0).

Then (4.7.11) implies that eG(B,U) ≥ eP0
(B,U) = 1. So (4.7.20) and (4.7.22) give

2eG(A) = D + 2eG(B) + eG(B,U) − eG(A,U) ≥ 1. Let e ∈ E(G[A]) be arbitrary. Then

P := P0 ∪ {e} satisfies (P1)–(P3).

Case 3. FP0
(A) = (0, 1).
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Now (4.7.11) implies that eP0
(B,U) = eP0

(A,U) = 2. So (BC2) implies that eP0
(V1, V2) =

0 and that there exist distinct vi, ui ∈ Vi for i = 1, 2, and b, b
? ∈ B and a ∈ A such that

P0 = {v1b, v2b
?, u1au2}. Proposition 4.7.24 implies that 2eG(A\{a})+eG(A\{a}, U) ≥ 2.

Suppose first that eG(A \ {a}) ≥ 1. Choose e ∈ E(G[A \ {a}]). Then P := P0 ∪ {e}

satisfies (P1)–(P3). Therefore we may assume that eG(A \ {a}, U) ≥ 2. Suppose there

exists e? ∈ E(G[A \ {a}, U \ {u1, u2}]). Without loss of generality, suppose that e
? has

an endpoint in V1. Then P := P0 ∪ {e?} \ {v1b} satisfies (P1)–(P3). Therefore we may

assume that G contains an edge a?u1 where a
? ∈ A \ {a}. Let P ?

0
:= P0 ∪ {a?u1} \ {au1}.

Then P ?
0
is a basic connector with balAB(P

?
0
) = 0 and FP ?

0
(A) = (2, 0). So we are in Case

1.

The next lemma concerns the case when balAB(P0) = −1.

Lemma 4.7.26. Let D ∈ N where D ≥ 12. Let G be a 3-connected D-regular graph with

vertex partition V = {V1, V2,W := A∪B}. Suppose that |A| = |B|+1, ∆(G[A, V1∪V2] ≤

D/2 and dA(a) ≤ dB(a) for all a ∈ A. Let P0 be a basic connector in G such that

|balAB(P0) − 1| is minimal. Suppose that balAB(P0) = −1. Then G contains a path

system P which satisfies (P1)–(P3).

Proof. Let U := V1 ∪ V2. Observe that G[A,U ] does not contain a matching of size two

since otherwise Lemma 4.7.18 would imply that balAB(P0) ≥ 0. Therefore eG(A,U) ≤

D/2, and so (4.7.20) implies that

eG(A) ≥ D/4. (4.7.23)

Write FP0
(A) := (a1, a2). Then (BC4) implies that a1 + 2a2 ∈ {0, 1}. So (a1, a2) ∈

{(0, 0), (1, 0)}. Suppose first that (a1, a2) = (0, 0). Then by (4.7.23), we can choose

distinct e, e? ∈ E(G[A]). In this case P := P0 ∪ {e, e?} satisfies (P1)–(P3).

Now suppose that (a1, a2) = (1, 0). Then (4.7.11) implies that

eG(B,U) ≥ eP0
(B,U) = 3. (4.7.24)
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Let au be the single edge in P0[A,U ], where a ∈ A and u ∈ U . Note that any edge in

E(G[A \ {a}, U ]) is incident with u since G[A,U ] contains no matching of size two. So

eG(A \ {a}, U) = dA\{a}(u). Thus Proposition 4.7.24 and (4.7.24) imply that

2eG(A \ {a}) + dA\{a}(u) ≥ 3. (4.7.25)

Suppose first that dA(a) ≤ 1. In this case, (4.7.23) implies that eG(A\{a}) ≥ D/4−1 ≥ 2.

Let e, e? ∈ E(G[A \ {a}]) be distinct. Then P := P0 ∪ {e, e?} satisfies (P1)–(P3).

Now suppose that dA(a) ≥ 2. Let a?, a?? ∈ NA(a) be distinct. Suppose that eG(A \

{a}) ?= 0. Then we can choose e ∈ E(G[A \ {a}]), and P := P0 ∪ {aa?, e} satisfies

(P1)–(P3). Suppose instead that eG(A \ {a}) = 0. Then dA\{a}(u) ≥ 3 by (4.7.25),

so there exists a∗ ∈ A \ {a, a?, a??} such that ua∗ ∈ E(G[A,U ]). We have that P :=

P0 ∪ {ua∗, a?aa??} \ {ua} satisfies (P1)–(P3).

We are now ready to combine the preceding lemmas to prove Lemma 4.7.3 fully in

the case when |A| = |B|+ 1.

Proof of Lemma 4.7.3 in the case when |A| = |B| + 1. Let U := V1 ∪ V2. Suppose first

that G[A,U ] contains a matching of size three. Then we are done by Lemma 4.7.23,

so assume not. Proposition 4.7.15 implies that G contains a basic connector. Choose

a basic connector P0 in G such that |balAB(P0) − 1| is minimal. Recall that (BC2)

implies |balAB(P0)| ≤ 2. Since G[A,U ] does not contain a matching of size three, Propo-

sition 4.7.22(i) implies that balAB(P0) ≤ 1. We may assume that balAB(P0) ≤ 0 or we are

done. Lemmas 4.7.25 and 4.7.26 prove the lemma in the case when balAB(P0) = 0,−1

respectively. So we may assume that balAB(P0) = −2. Thus, by (4.7.11), we have

eG(B,U) ≥ 4. Moreover, by Proposition 4.7.22(iii) we may assume that eG(A,U) = 0.

Now (4.7.20) implies eG(A) ≥ D/2 + 2. The ‘moreover’ part of Lemma 4.7.6 with

G[A], D/2, 1 playing the roles of G,∆, ? implies that G[A] contains a matching MA of

size two and an edge aa? with a /∈ V (MA). So P := P0 ∪MA ∪ {aa?} satisfies (P1)–(P3).

?
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4.7.8 The proof of Lemma 4.7.3 in the case when |A| = |B|

In this subsection we consider the only remaining case of Lemma 4.7.3: when the bipar-

tite vertex classes A and B have equal size. Our aim is to find a path system P such

that RV(P) is an Euler tour, and balAB(P) = 0. As in the previous section, we will

appropriately modify a basic connector guaranteed by Proposition 4.7.15. The degree

bound D ≥ n/4 is used again here.

Proof of Lemma 4.7.3 in the case when |A| = |B|. Let U := V1 ∪ V2. Proposition 3.7.4(i)

implies that

2eG(A) + eG(A,U) = 2eG(B) + eG(B,U). (4.7.26)

Proposition 4.7.15 implies that G contains a basic connector. Choose a basic connector

P0 in G such that |balAB(P0)| is minimal. Write FP0
(A) := (a1, a2).

Suppose first that eG(B,U) = 0. Then

2balAB(P0)
(4.7.11)

= a1 + 2a2 = eP0
(A,U) ≤ eG(A,U)

(4.7.26)

≤ 2eG(B).

(In particular, balAB(P0) ≥ 0.) Let E ? ⊆ E(G[B]) be a collection of balAB(P0) distinct

edges (so |E ?| ≤ 2 by (BC2)). Then P := P0∪E
? satisfies (P1)–(P3). Thus we may assume

that eG(B,U) ≥ 1 and a similar argument allows us to assume that eG(A,U) ≥ 1.

Together with the 3-connectivity of G, this implies that G[W,U ] contains a matching

M of size two such that one edge is incident with A and one edge is incident with B.

Proposition 4.7.22(iv) and our choice of P0 together imply that |balAB(P0)| ≤ 1. Without

loss of generality we suppose that balAB(P0) = −1 (otherwise balAB(P0) = 1 and we could

swap A and B, or balAB(P0) = 0 and we are done by taking P := P0). Then (BC4)

implies that (a1, a2) ∈ {(0, 0), (1, 0)}. If eG(A) ≥ 1 then, for any e ∈ E(G[A]) we have

that P := P0 ∪ {e} satisfies (P1)–(P3). So we may assume that

eG(A) = 0. (4.7.27)
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Claim 1. G[A,U ] does not contain a matching of size two.

Proof. Suppose not. We will show that if G[A,U ] contains a matching of size two,

then the minimality of |balAB(P0)| will be contradicted. First consider the case

when (a1, a2) = (1, 0). So eP0
(A,U) = 1 and therefore eP0

(B,U) = 3 by (4.7.11).

But (BC2) implies that e(P0) ≤ 4, so eP0
(V1, V2) = 0. Now by (BC1) we have that

|V (P0) ∩ Vi| = 2 for i = 1, 2, and dP0
(v) = 1 for all v ∈ V (P0) ∩ Vi. In particular,

eP0
(Vi, B) > 0 for both i = 1, 2. Let e be the single edge in P0[A,U ]. Without

loss of generality, we may assume that G[A,U ] contains an edge e? which is vertex-

disjoint from e. (Otherwise, G[A,U ] contains a matching av, a?v? such that e = av?.

Then P ?
0
:= P0 ∪ {a?v?} \ {e} is a basic connector with balAB(P

?
0
) = balAB(P0)

and a?v? is the single edge in P ?
0
[A,U ]; and av is an edge which is vertex-disjoint

from a?v?.) Suppose first that e? has an endpoint in V1. If possible, choose f ∈

E(P0[V1, B]) which is incident with e
?; otherwise let f ∈ E(P0[V1, B]) be arbitrary.

Then P := P0 ∪ {e?} \ {f} contradicts the minimality of |balAB(P0)|. The case

when e? has an endpoint in V2 is similar.

Suppose now that (a1, a2) = (0, 0). Then eP0
(A,U) = 0 and hence eP0

(B,U) =

2. Moreover, P0[B,U ] is a matching e, e
? since P0 is an Euler tour by (BC1). Now

dRV (P0)
(Vi) ≥ 2 for i = 1, 2, so eP0

(V1, V2) ≥ 1. But (BC2) implies that e(P0) ≤ 4,

so eP0
(V1, V2) ≤ 2. Suppose that eP0

(V1, V2) = 1 and let f ∈ E(P0[V1, V2]).

Then P0 = {e, e?, f} is a matching of size three. Moreover eP0
(B, Vi) = 1 for

i = 1, 2. If there exists eA ∈ E(G[A,U ] \ V (f)) then we can replace one of e, e?

by eA to contradict the minimality of |balAB(P0)|. Therefore there is a matching

{eA, e
?
A
} ⊆ E(G[A,U ]) such that both eA, e

?
A
are incident to V (f). Then they

are vertex-disjoint from {e, e?}, so P := {e, e?, eA, e
?
A
} contradicts the minimality

of |balAB(P0)|. Suppose now that eP0
(V1, V2) = 2. Then P0[B,U ] ⊆ G[B, Vi] for

some i = 1, 2. Without loss of generality we assume that i = 2. Suppose that

there exists eA ∈ E(G[A, V1]). Choose f ∈ E(P0[V1, V2]) that is not incident to

eA. Choose eB ∈ E(P0[B, V2]) that is not incident to f . Then P := {eA, f, eB}
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contradicts the minimality of |balAB(P0)|. Therefore we may assume that there

is a matching MA ⊆ G[A, V2] of size two. There is at least one V1V2-path in P0

(which consists of a single edge f ?). Choose e ∈ MA which is not incident to

f ?. If possible, let eB be the edge of P0[B, V2] which is incident to e; otherwise

let eB ∈ E(P0[B, V2]) be arbitrary. Then P := P0 ∪ {e} \ {eB} contradicts the

minimality of |balAB(P0)|. This completes the proof of the claim. ?

Therefore eG(A,U) ≤ D/2 since ∆(G[A,U)] ≤ D/2. So (4.7.26) and (4.7.27) together

imply that

eG(W,U) = eG(B,U)− eG(A,U) + 2eG(A,U) ≤ D. (4.7.28)

Suppose first that |A| = |B| = D − k for some k ∈ N. Then (4.7.27) implies that, for

all a ∈ A, we have dU (a) = D − dA(a) − dB(a) ≥ D − |B| = k. So eG(A,U) ≥ k|A| =

k(D − k) ≥ D − 1, a contradiction. So |A| = |B| ≥ D and hence |U | = n − |A| − |B| ≤

n− 2D ≤ 2D since D ≥ n/4.

Claim 2. There exists a matching M ? of size three in G[V1, V2].

Proof. To prove the claim, assume without loss of generality that |V1| ≤ |V2|.

Then there exists s ∈ N0 such that |V1| = D − s. Recall from our assumption in

Lemma 4.7.3 that |V1| ≥ D/2. Suppose first that s ≥ 2. Then

eG(V1, V2) ≥ D|V1| − eG(U,W )− 2

?
|V1|

2

?
(4.7.28)

≥ |V1|(D − |V1|+ 1)−D (4.7.29)

≥ min{D
2
/4−D/2, 2D − 6} ≥ D + 1.

Recall that dVi
(xi) ≥ dVj

(xi) for all xi ∈ Vi and {i, j} = {1, 2}. So ∆(G[V1, V2]) ≤

D/2. Therefore we are done by König’s theorem on edge-colourings.

Thus we may assume that s ∈ {0, 1}. Let H := G[V1, V2]. Suppose that

H contains no matching of size three. By König’s theorem on vertex covers, H

contains a vertex cover {vi, vj} where vi ∈ Vi, vj ∈ Vj and i, j are not necessarily
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distinct. So e(H) ≤ dH(vi) + dH(vj). Note that the complement G of G satisfies

e
G
(V1) + eG(V2) ≥ dG[Vi]

(vi) + dG[Vj ]
(vj)− 1 = |Vi| − dVi

(vi) + |Vj | − dVj
(vj)− 3

≥ D − dVi
(vi) +D − dVj

(vj)− 5 ≥ dH(vi) + dH(vj)− 5

≥ e(H)− 5. (4.7.30)

Therefore by counting the degrees in G of the vertices in U , we have that

eG(U,W ) =

?

v∈V1

dG(v) +

?

v∈V2

dG(v)− 2e(H)− 2eG(V1)− 2eG(V2)

= D(|V1|+ |V2|)− 2e(H)

− 2

??
|V1|

2

?

− e
G
(V1) +

?
|V2|

2

?

− e
G
(V2)

?

(4.7.30)

≥ D(|V1|+ |V2|)− 10− 2

?
|V1|

2

?

− 2

?
|V2|

2

?

= |V1|(D − |V1|) + |V2|(D − |V2|) + |V1|+ |V2| − 10 ≥ 2D − 14,

a contradiction to (4.7.28). This proves the claim. ?

Recall that M is a matching of size two in G[W,U ] with one edge incident to A and

one edge incident to B. Assume without loss of generality that eM (V2,W ) ≥ eM (V1,W ).

There exists e ∈ E(M ?) which is vertex-disjoint from M . Suppose first that eM (V2,W ) =

2. Let e? ∈ E(M ?)\{e} be arbitrary. Then P := M ∪{e, e?} satisfies (P1)–(P3). Suppose

instead that eM (V2,W ) = eM (V1,W ) = 1. Then P := M ∪ {e} satisfies (P1)–(P3). This

completes the proof of Lemma 4.7.3 in all cases. ?

4.8 The proof of Theorem C

We are now ready to prove Theorem C. It is a consequence of Theorem 3.7.11 and

Lemma 3.6.2, as well as Lemmas 4.5.1, 4.6.1 and 4.7.1.

Proof of Theorem C. Choose a non-decreasing function g : (0, 1)→ (0, 1) with g(x) ≤ x
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for all x ∈ (0, 1) such that the requirements of Proposition 3.6.1 and Lemmas 3.6.2, 4.5.1,

4.6.1, 4.7.1 (each applied, where relevant, with 1/32, 1/4 playing the roles of η, α) are

satisfied whenever n, ρ, γ, ν, τ satisfy

1/n ≤ g(ρ), g(γ); ρ, γ ≤ g(ν); ν ≤ g(τ ); τ ≤ g(1/32). (4.8.1)

Choose τ, τ ? so that

0 ≤ τ
?
≤ τ ≤ g(1/32), 40

−3
and τ

?
≤ g(τ ).

Define a function g? : (0, 1) → (0, 1) by g?(x) = (g(x))3. Apply Theorem 3.7.11 with

g?, τ ?, 1/20 playing the roles of g, τ, ε to obtain an integer n0. Let G be a 3-connected D-

regular graph on n ≥ n0 vertices where D ≥ n/4. We may assume that Theorem 3.7.11(ii)

holds or we are done. Thus there exist ρ, ν with 1/n0 ≤ ρ ≤ ν ≤ τ ?, 1/n0 ≤ g?(ρ) and

ρ ≤ g?(ν); and (k, ?) ∈ {(4, 0), (2, 1), (0, 2)} such that G has a robust partition V with

parameters ρ, ν, τ ?, k, ? (and thus also a robust partition with parameters ρ, ν, τ, k, ?).

Let γ := ρ1/3. Note that n, ρ, γ, ν, τ satisfy (4.8.1). Apply Lemmas 4.5.1, 4.6.1

in the cases when (k, ?) equals (4, 0), (0, 2) respectively to obtain a V-tour of G with

parameter γ. Proposition 3.6.1 implies that V is a weak robust partition with parameters

ρ, ν, τ, 1/32, k, ?. Then Lemma 3.6.2 implies that G contains a Hamilton cycle. Apply

Lemma 4.7.1 in the case when (k, ?) = (2, 1) to obtain a Hamilton cycle in G. This

completes the proof of the theorem. ?
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CHAPTER 5

ON DEGREE SEQUENCES FORCING THE

SQUARE OF A HAMILTON CYCLE

5.1 Introduction

One of the most fundamental results in extremal graph theory is Dirac’s theorem [40]

which states that every graph G on n ≥ 3 vertices with minimum degree δ(G) at least

n/2 contains a Hamilton cycle. It is easy to see that the minimum degree condition here

is best possible. The square of a Hamilton cycle C is obtained from C by adding an

edge between every pair of vertices of distance two on C. A famous conjecture of Pósa

from 1962 (see [43]) provides an analogue of Dirac’s theorem for the square of a Hamilton

cycle.

Conjecture 5.1.1 (Pósa [43]). Let G be a graph on n vertices. If δ(G) ≥ 2n/3, then G

contains the square of a Hamilton cycle.

Again, it is easy to see that the minimum degree condition in Pósa’s conjecture can-

not be lowered. To see this, consider the complete tripartite graph whose parts are

almost the same size (so, when the number of vertices n is divisible by 3, this would be

Kn/3−1,n/3,n/3+1). This graph does not even contain a perfect K3-packing, so certainly

does not contain the square of a Hamilton cycle.

The conjecture was intensively studied in the 1990s (see e.g. [46, 47, 48, 49, 50]),
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culminating in its proof for large graphs G by Komlós, Sárközy and Szemerédi [71]. The

proof applies Szemerédi’s Regularity lemma and as such the graphs G considered are

extremely large. More recently, the lower bound on the size of G in this result has been

significantly lowered (see [31, 87]).

Although the minimum degree condition is best possible in Dirac’s theorem, this does

not necessarily mean that one cannot significantly strengthen this result. Indeed, Ore [97]

showed that a graph G of order n ≥ 3 contains a Hamilton cycle if d(x)+ d(y) ≥ n for all

non-adjacent x ?= y ∈ V (G). The following result of Pósa [100] provides a degree sequence

condition that ensures Hamiltonicity.

Theorem 5.1.2 (Pósa [100]). Let G be a graph on n ≥ 3 vertices with degree sequence

d1 ≤ · · · ≤ dn. If di ≥ i + 1 for all i < (n − 1)/2 and if additionally d?n/2? ≥ ?n/2?

when n is odd, then G contains a Hamilton cycle.

Notice that Theorem 5.1.2 is significantly stronger than Dirac’s theorem as it allows

for almost half of the vertices of G to have degree less than n/2. A theorem of Chvátal [35]

generalises Theorem 5.1.2 by characterising all those degree sequences which ensure the

existence of a Hamilton cycle in a graph: Suppose that the degrees of a graph G are

d1 ≤ · · · ≤ dn. If n ≥ 3 and di ≥ i+1 or dn−i ≥ n−i for all i < n/2 then G is Hamiltonian.

Moreover, if d1 ≤ · · · ≤ dn is a degree sequence that does not satisfy this condition then

there exists a non-Hamiltonian graph G whose degree sequence d?
1
≤ · · · ≤ d?

n
is such

that d?
i
≥ di for all 1 ≤ i ≤ n.

Recently there has been an interest in generalising Pósa’s conjecture. An ‘Ore-type’

analogue of Pósa’s conjecture has been proven for large graphs in [30, 38]. In [3], Allen,

Böttcher and Hladký determined the minimum degree threshold that ensures a large

graph contains a square cycle of a given length. The focus of this chapter is to investigate

degree sequence conditions that guarantee a graph contains the square of a Hamilton

cycle. This problem was raised in the arXiv version of [12]. The main result of this

chapter is the following approximate degree sequence version of Pósa’s conjecture.
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Theorem D. Given any η > 0 there exists an n0 ∈ N such that the following holds. If

G is a graph on n ≥ n0 vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥ n/3 + i+ ηn for all i ≤ n/3,

then G contains the square of a Hamilton cycle.

Note that Theorem D allows for almost n/3 vertices in G to have degree substantially

smaller than 2n/3. However, it does not quite imply Pósa’s conjecture for large graphs

due to the term ηn. An example from the arXiv version of [12] shows that the term ηn

in Theorem D cannot be globally replaced by o(
√
n) for every i ≤ n/3. So in this sense

Theorem D is close to best possible. We suspect though that the degrees in Theorem D

can be capped at 2n/3.

Conjecture 5.1.3. Given any η > 0 there exists an n0 ∈ N such that the following holds.

If G is a graph on n ≥ n0 vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥ min{n/3 + i+ ηn, 2n/3} for all i,

then G contains the square of a Hamilton cycle.

It would be extremely interesting to establish an approximate analogue of Chvátal’s

theorem for the square of a Hamilton cycle, i.e., to provide an approximate characterisa-

tion of those degree sequences which force the square of a Hamilton cycle.

A well-known result of Aigner and Brandt [2] and Alon and Fischer [5] states that if

G is a graph on n vertices with minimum degree δ(G) ≥ (2n−1)/3 then G contains every

graph H on n vertices with maximum degree ∆(H) ≤ 2. (A conjecture of El-Zahar [41],

that was proven for large graphs by Abbasi [1], implies that for many graphs H with

∆(H) ≤ 2, the minimum degree condition here can be substantially lowered.) Since

a square path on n vertices contains any such graph H , an immediate consequence of

Theorem D is the following degree sequence result.
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Corollary 5.1.4. Given any η > 0 there exists an n0 ∈ N such that the following holds.

Suppose that H is a graph on n ≥ n0 vertices such that ∆(H) ≤ 2. If G is a graph on n

vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥ n/3 + i+ ηn for all i ≤ n/3,

then G contains H.

The case when H is a triangle factor was proved in [113], and in fact this result is

used as a tool in the proof of Theorem D.

The proof of Theorem D makes use of Szemerédi’s Regularity lemma [108] and the

Blow-up lemma [72]. In Section 5.2 we give a detailed sketch of the proof.

5.2 Overview of the proof

Over the last few decades a number of powerful techniques have been developed for

embedding problems in graphs. The Blow-up lemma [72], in combination with the Reg-

ularity lemma [108], has been used to resolve a number of long-standing open problems,

including Pósa’s conjecture for large graphs [71]. More recently, the so-called Connecting-

Absorbing method developed by Rödl, Ruciński and Szemerédi [102] has also proven to

be highly effective in tackling such embedding problems.

Typically, both these approaches have been applied to graphs with ‘large’ minimum

degree. Our graph G in Theorem D may have minimum degree (1/3+o(1))n. In particu-

lar, this is significantly smaller than the minimum degree threshold that forces the square

of a Hamilton cycle in a graph (namely, 2n/3). As we describe below, having vertices of

relatively small degree makes the proof of Theorem D highly involved and rather delicate.

Further, we also develop a number of new ideas in order to deal with these vertices of

small degree.
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5.2.1 An approximate version of Pósa’s conjecture

In order to highlight some of the difficulties in the proof of Theorem D, we first give a

sketch of a proof of an approximate version of Pósa’s conjecture. This is based on the

proof of Pósa’s conjecture for large graphs given in [87].

Let 0 < ε ? γ ? η. Suppose that G is a sufficiently large graph on n vertices with

δ(G) ≥ (2/3+η)n. We wish to find the square of a Hamilton cycle in G. The proof splits

into three main parts.

• Step 1 (Absorbing path): Find an ‘absorbing’ square path PA in G such that

|PA| ≤ γn. PA has the property that given any set A ⊆ V (G) \ V (PA) such that

|A| ≤ 2εn, G contains a square path P with vertex set V (PA) ∪ A, where the first

and last two vertices on P are the same as the first and last two vertices on PA.

• Step 2 (Reservoir set): Let G? := G \ V (PA). Find a ‘reservoir’ set R ⊆ V (G?)

such that |R| ≤ εn. R has the property that, given arbitrary disjoint ordered

edges ab, cd ∈ E(G), there are ‘many’ short square paths P in G so that: (i) The

first two vertices on P are a, b respectively; (ii) The last two vertices on P are c, d

respectively; (iii) V (P ) \ {a, b, c, d} ⊆ R.

• Step 3 (Almost tiling with square paths): Let G?? := G? \R. Find a collection

P of a bounded number of vertex-disjoint square paths in G?? that together cover

all but εn of the vertices in G??.

Assuming that δ(G) ≥ (2/3 + η)n, the proof of each of these three steps is not too

involved. (Note though that the proof in [87] is more technical since there δ(G) ≥ 2n/3.)

After completing Steps 1–3, it is straightforward to find the square of a Hamilton

cycle in G. Indeed, suppose ab is the last edge on a square path P1 from P and cd is the

first edge on a square path P2 from P . Then Step 2 implies that we can ‘go through’ R

to join P1 and P2 into a single square path in G. Repeating this process we can obtain

a square cycle C in G that contains all the square paths from P . Further, we may also
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incorporate the absorbing square path PA into C. C now covers almost all the vertices

of G. We then use PA to absorb all the vertices from V (G) \ V (C) into C to obtain the

square of a Hamilton cycle.

5.2.2 A degree sequence version of Pósa’s conjecture

Suppose thatG is a sufficiently large graph on n vertices as in the statement of Theorem D.

A result of Treglown [113] guarantees that G contains a collection of ?n/3? vertex-disjoint

triangles. Further, this result together with a simple application of the Regularity lemma

implies that G in fact contains a collection P of a bounded number of vertex-disjoint

square paths that together cover almost all of the vertices in G. So we can indeed prove

an analogue of Step 3 in this setting. In particular, if we could find a reservoir set R as

above, then certainly we would be able to join together the square paths in P through

R, to obtain an almost spanning square cycle C in G.

Suppose that ab, cd ∈ E(G) and we wish to find a square path P in G between ab

and cd. If dG(a), dG(b) < n/2 then it may be the case that a and b have no common

neighbours. Then it is clearly impossible to find such a square path P between ab and

cd (since ab does not lie in a single square path!). The degree sequence condition on G is

such that almost n/6 vertices in G may have degree less than n/2. Therefore we cannot

hope to find a reservoir set precisely as in Step 2 above.

We overcome this significant problem as follows. We first show that G contains a

reservoir set R that can only be used to find a square path between pairs of edges

ab, cd ∈ E(G) of large degree (namely, at least (2/3 + η)n). This turns out to be quite

involved. In order to use R to join together the square paths P ∈ P into an almost

spanning square cycle, we now require that the first and last two vertices on each such P

have large degree.

To find such a collection of square paths P we first find a special collection F of

so-called ‘folded paths’ in a reduced graph R of G. Roughly speaking, folded paths are

a generalisation of the notion of a square path. Each such folded path F ∈ F will act
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as a ‘guide’ for embedding one of the paths P ∈ P into G. More precisely, there is a

homomorphism from a square path P into a folded path F . In particular, the structure

of F will ensure that the first and last two vertices on P are ‘mapped’ to large degree

vertices in G.

Given our new reservoir set R and collection of square paths P , we again can obtain

an almost spanning square cycle C in G. Further, if we could construct an absorbing

square path PA as in Step 1, we would be able to absorb the vertices in V (G) \ V (C)

to obtain the square of a Hamilton cycle. However, we were unable to construct such

an absorbing square path, and do not believe there is a ‘simple’ way to construct one.

(Though, one could construct such a square path PA if one only requires PA to absorb

vertices of large degree.) Instead, our method now turns towards the Regularity-Blow-up

approach.

Using what we have achieved thus far, we can obtain an almost spanning square cycle

in the reduced graph R of G. In fact, we obtain a much richer structure Z? in R called a

‘triangle cycle’. Z? is a special 6-regular graph on 3? vertices that contains the square of a

Hamilton cycle. In particular, Z? contains a collection of vertex-disjoint triangles T? that

together cover all the vertices in Z?. We then show that G contains an almost spanning

structure C that looks like the ‘blow-up’ of Z?. More precisely, if V (Z?) = {1, . . . , 3?} and

V1, . . . , V3? are the corresponding clusters in G, then

• V (C) = V1 ∪ · · · ∪ V3?;

• C[Vi, Vj ] is ε-regular whenever ij ∈ E(Z?);

• If ij is an edge in a triangle T ∈ T? then C[Vi, Vj ] is ε-superregular.

We call C a ‘cycle structure’. The initial structure of C is such that it contains a spanning

square cycle. However, since C is not necessarily spanning in G, this does not correspond

to the square of a Hamilton cycle in G. We thus need to incorporate the ‘exceptional

vertices’ of G into this cycle structure C in a balanced way so that at the end C (and hence

G) contains the square of a Hamilton cycle. The rich structure of Z? and thus C is vital
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for this. Again particular care is needed when incorporating exceptional vertices of small

degree into our cycle structure. This part of the proof builds on ideas used in [23, 24].

Unfortunately, space considerations prevent us from presenting the proof of Theo-

rem D in its entirety. All the details may be found in [107].
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[42] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1959),

292–294.
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[81] D. Kühn and D. Osthus, Hamilton decompositions of regular expanders: a proof

of Kelly’s conjecture for large tournaments, Advances in Mathematics 237 (2013),

62–146.
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[83] D. Kühn and D. Osthus, Hamilton cycles in graphs and hypergraphs: an extremal

perspective, Proc. Int. Con. of Math. 2014, Seoul, South Korea, 4 (2014), 381–406.
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