389,970 research outputs found

    Fundamental Cycles and Graph Embeddings

    Full text link
    In this paper we present a new Good Characterization of maximum genus of a graph which makes a common generalization of the works of Xuong, Liu, and Fu et al. Based on this, we find a new polynomially bounded algorithm to find the maximum genus of a graph

    Graph cohomology and Kontsevich cycles

    Get PDF
    The dual Kontsevich cycles in the double dual of associative graph homology correspond to polynomials in the Miller-Morita-Mumford classes in the integral cohomology of mapping class groups. I explain how the coefficients of these polynomials can be computed using Stasheff polyhedra and results from my previous paper GT/0207042.Comment: 36 pages, 3 figure

    A Message-Passing Algorithm for Counting Short Cycles in a Graph

    Full text link
    A message-passing algorithm for counting short cycles in a graph is presented. For bipartite graphs, which are of particular interest in coding, the algorithm is capable of counting cycles of length g, g +2,..., 2g - 2, where g is the girth of the graph. For a general (non-bipartite) graph, cycles of length g; g + 1, ..., 2g - 1 can be counted. The algorithm is based on performing integer additions and subtractions in the nodes of the graph and passing extrinsic messages to adjacent nodes. The complexity of the proposed algorithm grows as O(g∣E∣2)O(g|E|^2), where ∣E∣|E| is the number of edges in the graph. For sparse graphs, the proposed algorithm significantly outperforms the existing algorithms in terms of computational complexity and memory requirements.Comment: Submitted to IEEE Trans. Inform. Theory, April 21, 2010

    P-matrices and signed digraphs

    Get PDF
    We associate a signed digraph with a list of matrices whose dimensions permit them to be multiplied, and whose product is square. Cycles in this graph have a parity, that is, they are either even (termed e-cycles) or odd (termed o-cycles). The absence of e-cycles in the graph is shown to imply that the matrix product is a P0-matrix, i.e., all of its principal minors are nonnegative. Conversely, the presence of an e-cycle is shown to imply that there exists a list of matrices associated with the graph whose product fails to be a P0-matrix. The results generalise a number of previous results relating P- and P0-matrices to graphs

    Computing Graph Roots Without Short Cycles

    Get PDF
    Graph G is the square of graph H if two vertices x, y have an edge in G if and only if x, y are of distance at most two in H. Given H it is easy to compute its square H2, however Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph H (of girth 3). In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if G = H2 for some graph H of small girth. The main results are the following. - There is a graph theoretical characterization for graphs that are squares of some graph of girth at least 7. A corollary is that if a graph G has a square root H of girth at least 7 then H is unique up to isomorphism. - There is a polynomial time algorithm to recognize if G = H2 for some graph H of girth at least 6. - It is NP-complete to recognize if G = H2 for some graph H of girth 4. These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results generalize previous results on tree square roots, and provide polynomial time algorithms to compute a graph square root of small girth if it exists. Some open questions and conjectures will also be discussed
    • …
    corecore