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Abstract

We use the duality between compactly supported cohomology of the associative graph complex and the
cohomology of the mapping class group to show that the duals of the Kontsevich cycles [W�] correspond to
polynomials in the Miller–Morita–Mumford classes. We also compute the coe/cients of the 0rst two terms of
this polynomial. This extends the results of (Combinatorial Miller–Morita–Mumford classes and Witten cycles,
math.GT/0207042, 2002), giving a more detailed answer to a question of Kontsevich (Commun. Math. Phys.
147(1) (1992) 1) and verifying more of the conjectured formulas of Arbarello and Cornalba (J. Algebraic
Geom. 5 (1996) 705).
? 2004 Elsevier Ltd. All rights reserved.
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0. Introduction

This paper explains the relationship between the Kontsevich cycles in associative graph homology
and the Miller–Morita–Mumford (MMM) classes in the cohomology of the mapping class group.
We use a version of the forested graph complex of Conant and Vogtmann [3] to go from the double
dual of associative graph homology to the cohomology of the mapping class group and we use our
cyclic set cocycle [8] to evaluate the MMM classes on the Kontsevich cycles.

Graph homology was introduced by Kontsevich [12,13]. He constructed three graph complexes
which are called the “Lie”, “associative” and “commutative” graph complexes. In this paper, we
study the associative graph complex which is a chain complex G∗ generated by isomorphism classes
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of ribbon graphs (graphs with cyclic orderings of the half-edges incident to each vertex). We use
nonstandard notation, indexing the graph complex so that trivalent graphs have degree zero and the
boundary map has degree +1. This avoids a shift in degree which occurs in the standard formulation
of Kontsevich’s theorem.

In [12,13], Kontsevich constructed homology and cohomology classes in the associative (ribbon
graph) case. We use the proof of this theorem given in [3]. We also use the notation Ms

g to denote
the group of isotopy classes of orientation preserving self-homeomorphisms of a connected Riemann
surface of genus g with s punctures. This group maps onto the symmetric group on s letters with
kernel equal to the mapping class group of genus g surfaces with s marked points. We always
assume that s¿ 1.

Theorem 0.1 (Kontsevich): The rational 0nitely supported cohomology of the associative graph
complex G∗ is isomorphic to the rational homology of the disjoint union of classifying spaces BMs

g
of mapping class groups Ms

g :

Hn
c (G

∗;Q) ∼= Hn

(∐
g; s

BMs
g ;Q

)
:

In this paper, we use the category of ribbon graphs Fat whose geometric realization |Fat| is
homotopy equivalent to the disjoint union of classifying spaces of mapping class groups over all
s¿ 1 with s¿ 3 when g= 0 (see [9] where this is shown to follow from Culler–Vogtmann [4]):

|Fat| �
∐
g; s

BMs
g :

We denote by G∗ the integral 0nitely supported cochain complex of the associative graph complex
G∗. The notation reLects the fact that the boundary map in G∗ has degree −1.
Kontsevich’s theorem above can now be restated as saying that there is a rational chain homotopy

equivalence between the cellular chain complex of the category Fat and the (associative) graph co-
homology complex G∗. We give an explicit description of this chain isomorphism. We also show that
the dual Kontsevich cycles in graph cohomology are (pull-backs of) polynomials in the “adjusted”
MMM classes. (They are adjusted by subtracting certain boundary classes.)

The main results of this paper were announced in [8] with short proofs. This paper gives more
detailed proofs, expresses them in the language of graph cohomology and also extends these results
to the next case. The calculation at the end of the paper shows that for n �= 1 we have

[W ∗
n;1] = 3(−2)n+3(2n+ 1)!!(�̃n�̃1 − �̃n+1)− (−2)n+2(2n+ 5)!!�̃n+1:

For n = 1 we divide the right-hand side by 2. Here �̃n is the adjusted MMM class. This is given
by taking the tautological bundle over BMs

g whose 0bers are Riemann surfaces with genus g and s
punctures and pushing down the (n + 1)th power of the Euler class of the vertical tangent bundle.
Equivalently, �̃n = �n − �n where �n is the same construction using the tautological bundle with
closed 0bers having s distinguished points and �n is the push-down of the nth power of Euler class
along these points. The “dual Kontsevich cycle” W ∗

� is de0ned below. In the special case �=(n; 1),
W ∗

n;1 :G2n+2 → Q is nonzero on the generator [�]∗ if and only if � has exactly two nontrivalent
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vertices with valence 5 and 2n+3. The value of W ∗
n;1 on [�]∗ is ±1=|Aut(�)| where the sign depends

on the orientation of �.
In more detail the contents of this paper are as follows. In Section 1, we review Kontsevich’s

de0nition of graph homology using Conant and Vogtmann’s formula for the Kontsevich orientation
of a graph. We de0ne G∗ to be the integral 0nitely supported cochain complex of the associative
graph complex G∗. Thus, e.g., G0 is the group of all integer valued functions f on the set of all
isomorphism classes [�] of oriented trivalent ribbon graphs so that f[�] = 0 for all but a 0nite
number of [�] and f[ − �] = −f[�] where −� is � with the opposite orientation. This complex
has an augmentation map

� :G0 → Q;

given by sending each dual generator [�]∗ to o(�)=|Aut(�)| where o(�) = ±1 depending on the
orientation of �.

We de0ne the integral subcomplex GZ∗ of G∗ to be the subcomplex generated by

〈�〉 := |Aut(�)|[�]∗:
In GZ0 these elements have augmentation ±1.

For any partition � = (�1; �2; : : : ; �r) of n =
∑

�i we de0ne the dual Kontsevich cycle W ∗
� to be

the homomorphism

W ∗
� :G2n → Q;

which sends each [�]∗ in the Kontsevich cycle W� to o(�)=|Aut(�)|. Since
W ∗

� 〈�〉= o(�) =±1;
these are integral cocycles on GZ∗ . These cocycles were considered by Kontsevich [11]. They are
the PoincarNe duals of certain strata of the moduli space of stable curves.

In graph cohomology, the dual Kontsevich cycles are linear combinations of cocycles given by
partition functions associated with certain one-dimensional A∞ algebras. We give a detailed account
of this construction, essentially repeating what Kontsevich says in [13] using the Conant–Vogtmann
de0nition of graph orientation.

For every ribbon graph � we next construct an acyclic Z-augmented chain complex F∗(�) over
G∗ so that F∗ gives an acyclic carrier, i.e., a functor from the category Fat of all ribbon graphs to
the category of augmented chain complexes over G∗. We call it the forest carrier. This determines
a chain map from the cellular chain complex C∗(Fat) to GZ∗ which is unique up to homotopy. We
show that this map is a rational homotopy equivalence by constructing a rational inverse

 :GZ∗ ⊗Q= G∗ ⊗Q→ C∗(Fat;Q):

The chain map  is de0ned by dual cells D(�) modelled on the PoincarNe duals of the Kontsevich
cycles.

In Section 2, we discuss the Stashe= polyhedron. We use the Conant–Vogtmann version of Kont-
sevich orientation to determine the intrinsic orientation of the Stashe= polyhedron which corresponds
to the sign of the simplices in the dual cell D(�). One of the main purposes of this is to justify
the sign convention used in [8]. We also use this discussion to prove that the forest carrier F∗ is
acyclic as claimed in the previous section.
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In Section 3, we discuss the relationship between the adjusted MMM classes �̃k and the dual
Kontsevich cycles. We review the formula for the adjusted MMM classes given by the cyclic set
cocycle and we show that the dual Kontsevich cycles are polynomials in the adjusted MMM classes.
This is a detailed version of a one page argument in [8].

Finally, Section 4 contains the calculation of the coe/cients of [W ∗
n;1] as a polynomial in the

adjusted MMM classes. We use the 0gures from Section 2 which were drawn with this second
purpose in mind.

This paper started with a conversation with Karen Vogtmann about graph homology. I should also
thank Michael Kleber for some very helpful discussions. Finally, I would like to thank both James
Stashe= and the referee for numerous helpful suggestions about this manuscript.

(1) Kontsevich cycles:
(a) category of ribbon graphs Fat;
(b) associative graph cohomology G∗;
(c) cocycles W ∗

� in graph cohomology;
(d) partition functions;
(e) the forest carrier F∗;
(f) dual cells.

(2) Stashe5 associahedra:
(a) Stashe= polyhedron Kn;
(b) the category An+3;
(c) orientation of Kn;
(d) orientation of Kodd;
(e) proof of Proposition 1.21.

(3) MMM classes:
(a) cyclic set cocycle;
(b) adjusted MMM classes in H 2k(G∗;Q).;
(c) cup products of adjusted MMM classes;
(d) computing the numbers bk∗

n∗ ;
(e) Kontsevich cycles in terms of MMM classes;
(f) computing a�

� .
(4) Some computations:

(a) the degenerate case n= 0;
(b) computation of bn+1

n;1 ;
(c) conjectures.

1. Kontsevich cycles

(1) Category of ribbon graphs Fat.
(2) Associative graph cohomology G∗.
(3) Cocycles W ∗

� in graph cohomology.
(4) Partition functions.
(5) The forest carrier F∗.
(6) Dual cells.
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We review the basic de0nitions and give an explicit rational homotopy equivalence between the
0nitely supported cohomology of the associative graph complex and the cellular chain complex of
the category of ribbon graphs.

1.1. Category of ribbon graphs Fat

By a ribbon graph (also known as fat graph) we mean a 0nite connected graph together with
a cyclic ordering on the half-edges incident to each vertex. We will use the following set theoretic
model for the objects in the category of graphs.

De�nition 1.1. Choose a 0xed in0nite set  which is disjoint from its power set. (This occurs, e.g.,
if every element of  is a set having greater cardinality than  .) Then by a graph we mean a 0nite
subset of  (the set of half-edges) together with two partitions of the set:

(1) A partition into pairs of half-edges which we call edges.
(2) A partition into sets of cardinality (=valence)¿ 3 which we call vertices.

To avoid straying too far from conventional terminology we refer to the elements of a vertex as
incident half-edges. Equivalently, we de0ne incident to mean not disjoint.

If e = {e−; e+} is an edge in � then the vertices v1; v2 incident to e−; e+ are the endpoints of e.
If the endpoints are equal then e is a loop. If e is not a loop then we can collapse e to a point
forming a new graph

�=e

with one fewer edge, one fewer vertex and two fewer half-edges than �. Set theoretically, �=e is
given by merging v1; v2 and deleting e−; e+.
If � is a ribbon graph and e is an edge in � which is not a loop then �=e can be given the

structure of a ribbon graph in the obvious way by letting the new vertex be cyclically ordered as

v∗ = (h1; : : : ; hn; k1; : : : ; km)

if v1 = (e−; h1; : : : ; hn) and v2 = (e+; k1; : : : ; km).
Morphisms of graphs and ribbon graphs can be given by collapsing several edges to points and

by isomorphisms. In other words, certain subgraphs will be collapsed to points.
By a subgraph of a graph � we mean a subset of the set of vertices together with all incident

half-edges and a set of edges both endpoints of which lie in the chosen set of vertices. For example,
we could take all of the vertices and none of the edges. A subgraph will usually not be a graph
since it usually has unpaired half-edges. The unpaired half-edges of a subgraph will be called its
leaves. If the graph � is connected, i.e., if it is not the disjoint union of two graphs, then every
subgraph is determined by its set of leaves.

A subgraph is a tree if it is connected and has one more vertex than edge. A forest is a disjoint
union of trees. A forest spans the graph if it contains all of the vertices. If F is a spanning forest
in a graph �, let �=F be the graph obtained by collapsing each tree in F to a separate point.
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By this we mean collapse the edges of each tree to a point. Thus:

(1) the edges of �=F are the edges of � which do not lie in F ;
(2) the vertices of �=F are the sets of leaves of the component trees of F .

De�nition 1.2. A morphism of graphs & :�0 → �1 is de0ned to be an isomorphism

�0=F ∼= �1 (1)

for some spanning forest F in �0. In other words, the inverse image of every edge in �1 is an edge
in �0 and the inverse image of every vertex of �1 is a tree in �0.

One thing is obvious from this de0nition. A morphism & :�0 → �1 is uniquely determined by the
value of &−1(e) for every half edge e in �1. The reason is that this information speci0es the forest
F and also gives an isomorphism �1

∼= �0=F .
Morphisms of graphs (and ribbon graphs) also have the following left cancellation property.

Proposition 1.3. Any two morphisms f; g :�0 → �1 which are equalized by a morphism h :�1 → �2

are equal, i.e.,

hf = hg ⇒ f = g:

Remark 1.4. In category theoretic terminology, this proposition says that morphisms of graphs are
monomorphisms. They are also obviously epimorphisms, i.e., they satisfy both left and right cancel-
lation.

Proof. In order for f; g to be di=erent, there must be a half-edge e in �1 so that f−1(e) �= g−1(e).
But hf = hg cannot send two di=erent half-edges of �0 to the same half-edge in �2. So h(e) must
be a vertex v. The inverse image of v is a tree T0 in �0 and another tree T1 in �1 and the leaves
of both trees map bijectively onto the half-edges incident to v. Consequently, f; g give the same
bijection of the leaves of T0 with the leaves of T1. Any edge in T0 is uniquely characterized by the
partitioning of the set of leaves which would result if we cut the edge. And each interior half-edge
of T0 is determined by the corresponding subset of the set of leaves. Thus, f−1(e) = g−1(e) which
is a contradiction.

If � is a ribbon graph then the set of leaves of every tree in � inherits a cyclic order. Consequently,
�=F has an induced structure as a ribbon graph. A graph morphism & :�0 → �1 will be called a
ribbon graph morphism if it respects these cyclic orderings, i.e., if (1) is an isomorphism of ribbon
graphs.

If �; �′ are ribbon graphs, let Hom(�; �′) denote the set of all ribbon graphs morphisms �→ �′.
Since this is a subset of the set of all graph morphisms, left and right cancellation hold for these
morphisms as well. Thus we get the following corollary where Aut(�)=Hom(�; �) is the group of
ribbon graph automorphisms of �.

Corollary 1.5. Aut(�) acts freely on the right on Hom(�; �′) and Aut(�′) acts freely on the left.
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Let Fat denote the category of all ribbon graphs and ribbon graph morphisms. Let |Fat| denote
its geometric realization

|Fat|=
∐
n

∐
�∗∈NnFat

(n= ∼ :

Then we have the following theorem which I learned from Penner [18], which goes back to Strebel
[20] but which I prove using Culler–Vogtmann [4]. For details, see [9].

Theorem 1.6.

|Fat| �
∐
g; s

BMs
g ;

where Ms
g is the mapping class group of a surface of genus g with s punctures, i.e., the group of

isotopy classes of orientation preserving self-homeomorphisms of such a punctured surface.

Many ribbon graphs have an intrinsic orientation in the sense of Kontsevich graph homology.

1.2. Associative graph cohomology G∗

Graph homology (of ribbon graphs) is rationally dual to the homology of the category of ribbon
graphs. More precisely, we have an isomorphism between rational compactly supported cohomology
of the associative graph complex G∗ and the rational homology of the mapping class group. We
will construct an integral chain map which realizes this rational equivalence.

However, the main purpose of introducing graph homology in the present context is to 0x our
orientation conventions. We use the de0nitions given in [3]. Since our graphs are connected this
agrees with Kontsevich’s orientation convention.

De�nition 1.7 (Conant–Vogtmann): An orientation of a graph is de0ned to be an orientation on the
vector space spanned by the set of vertices and half-edges.

One way to specify an orientation of � is to take the vertices of � in some order followed by the
half-edges in pairs h; Rh forming the edges of � with the order of each pair given by some orientation
of each edge. We prefer however to use orientations of the form

o(�) = Sgn(v1e11e12 · · · e1n1v2e21 · · · e2n2v3 · · ·);
where v1; : : : ; vm are the vertices of � and ei1; : : : ; eini are the half-edges incident to vi in cyclic order.
Here Sgn indicates the equivalence class of the permutation up to sign, i.e., if we permute the entries
Sgn changes by the sign of the permutation. Note that o(�) is only a relative sign. However, if �
has a natural orientation, we can assign a value of ±1 to o(�) depending on whether it agrees or
not with the natural orientation.

Remark 1.8 (Conant–Vogtmann). A ribbon graph has a natural orientation if all its vertices have
odd valence. This is because the sign of the permutation ei1ei2 · · · eini depends only on the cyclic
order if ni is odd. Also the words viei1 · · · eini have even length making the order of the vertices
irrelevant. Furthermore, such a graph necessarily has an even number of vertices. So, it does not
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matter if we put the vertex 0rst and then the incident half-edges in cyclic order or the other way
around in o(�). (See Example 1.13.)

De�nition 1.9 (Conant–Vogtmann): Given a graph � and an edge e in � which is not a loop, let
�=e be the graph obtained from � by collapsing the edge e. If an orientation on � is given by
orienting all edges and ordering the vertices so that the source of e is 0rst and its target is second,
the induced orientation on �=e is given by taking the coalesced vertex to be 0rst and letting the
remaining vertices and edges be ordered and oriented as before.

As we warned earlier, we index the Kontsevich graph complex in a nonstandard way using
“codimension.”

De�nition 1.10. A graph has codimension n if it is obtained from a trivalent graph by collapsing
n edges. The codimension of a graph is also equal to the sum of the codimension of its vertices
where the codimension of a vertex is de0ned to be its valence minus 3.

The associative graph homology complex can now be de0ned. For all n¿ 0 let Gn be the free
abelian group generated by all isomorphism classes [�] of connected oriented ribbon graphs � of
codimension n modulo the relation −[�]= [−�] where −� is � with the opposite orientation. If �
has an orientation reversing automorphism this implies that 2[�] = 0. De0ne the boundary operator
@ :Gn → Gn+1 by

@[�] =
∑
e

[�=e];

where the sum is over all edges in � which are not loops.
The compactly supported dual of this complex is the (associative) graph cohomology complex

given as follows.

De�nition 1.11. For all n¿ 0 let Gn be the additive group of all homomorphisms f :Gn → Z so
that f[�] �= 0 for only 0nitely many [�]. (In particular, f[�] = 0 if � has an orientation reversing
automorphism.) Thus, Gn is generated by duals [�]∗ of generators of Gn. The boundary map d :Gn →
Gn−1 is given in terms of these dual generators by

d[�]∗ =
∑

‘i[�i]∗; (2)

where ‘i is equal to the number of edges e in �i so that �i=e ∼= � minus the number of edges in
�i so that �i=e ∼= −�. The sum is over a basis for Gn−1.

The coe/cient ‘i in (2) can be written as

‘i =
|Hom+(�i; �)| − |Hom−(�i; �)|

|Aut(�)| ∈Z;

where Hom±(�i; �) is the set of morphisms f :�i → � so that the orientation of � agrees/disagrees
with the orientation induced from �i by f. In other words, ‘i is the number of left equivalence
classes of morphisms �i → � counted with sign.
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Let ri be the number of right equivalence classes of such maps counted with sign. Then

ri =
|Hom+(�i; �)| − |Hom−(�i; �)|

|Aut(�i)| ∈Z:

So (2) can be written as

d〈�〉=
∑

ri〈�i〉;

where

〈�〉 := |Aut(�)|[�]∗:

De�nition 1.12. Let GZ∗ denote the subcomplex of G∗ generated by the elements 〈�〉. We call GZ∗
the integral subcomplex of G∗.

The boundary map in GZ∗ can be described in terms of expanding vertices. If � is an oriented
ribbon graph, each vertex of valence n can be expanded into two vertices connected by an edge in

n2 − 3n
2

di=erent ways. Each of these choices gives a ribbon graph �i with a distinguished edge e and an
isomorphism

�i=e ∼= �;

so that �i is unique up to isomorphism over �. We give �i the orientation induced from � by this
isomorphism. The boundary map of the integral subcomplex is then given by

d〈�〉=
∑
〈�i〉:

Example 1.13. Consider the ribbon graphs �0; �′
0; �1 shown in Fig. 1. We take the natural orien-

tation on the trivalent graphs �0; �′
0 given by taking the vertices in any order with each vertex

Fig. 1. d〈�1〉 = 〈�0〉 − 〈�′
0〉.
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followed by the incident half-edges in cyclic order:

o(�0) = Sgn(v1e1bc v2e2da · · ·);
o(�′

0) = Sgn(v′
1e

′
1abv

′
2e

′
2cd · · ·):

We give �1 the orientation induced by the isomorphism

�1
∼= �0=e:

This is given by bringing v1v2e1e2 to the left in o(�0) and replacing it with the new vertex v. Thus

o(�1) =−Sgn(vbcda · · ·) = Sgn(vabcd · · ·):
The automorphism group Aut(�0) ∼= D8 acts transitively on the set of four straight edges of �0 and
on the set of eight curved edges. Therefore, the 12 terms in the boundary @[�0] can be collected as

@[�0] = 4[�1] + 8[�′
1];

where �′
1 is given by collapsing one of the curved edges of �0.

The orientation of �′
0=e

′ is given by bringing v′
1v

′
2e

′
1e

′
2 to the left in o(�′

0) and replacing it with v:

o(�′
0=e

′) =−Sgn(vabcd · · ·) =−o(�1):

In other words, [�′
0=e

′]=−[�1]. Since there are no other edges in �′
0 equivalent to e′, the term [�1]

occurs only once with a minus sign in @[�′
0]. Dualizing we get

d[�1]∗ = 4[�0]∗ − [�′
0]

∗:

Since the orders of the automorphism groups are 2; 8; 2, respectively, we get

d〈�1〉= 〈�0〉 − 〈�′
0〉:

We will be looking at the rational cochain complex

Hom(G∗;Q):

This is the rational double dual of the original graph homology complex G∗. Thus cocycles in this
complex, such as W ∗

� de0ned below, are “in0nite cycles” in the graph homology complex.

Remark 1.14. Since GZn is a free abelian group whose generators 〈�〉 form a Q-basis for Gn ⊗Q,
its integral dual forms a lattice

Hom(GZ∗ ;Z) ⊆ Hom(G∗;Q);

which we call the integral cochain complex. Elements of this subcomplex will be called integral
cochains on G∗.

1.3. Cocycles W ∗
� in graph cohomology

De�nition 1.15. If � = (�1; �2; : : : ; �r) is a sequence of positive integers let W� be the set of all
ribbon graphs � which are trivalent at all but r vertices v1; : : : ; vr which have valence 2�i + 3,
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resp. This set will be called the Kontsevich cycle. The dual Kontsevich cycle W ∗
� ∈G2|�| (where

|�|= �1 + �2 + · · ·+ �r) is given by

W ∗
� [�]

∗ :=


o(�)
|Aut(�)| if �∈W�;

0 if � �∈ W�;

where o(�)=±1 depending on whether the given orientation of � agrees with the natural orientation
(Remark 1.8).

The dual Kontsevich cycle are integral cochains since they can be given by

W ∗
� 〈�〉= o(�)

if �∈W�. Also, note that W�;W ∗
� are independent of the order of the �i.

In the special case when r = 1, Wk is called the Witten cycle and W ∗
k will be called the dual

Witten cycle. In the case r = 0, W∅ is the set of all trivalent (connected) ribbon graphs and

W ∗
∅ = � :G0 → Q

is the map sending the dual [�]∗ of every trivalent graph � to o(�)=|Aut(�)|. On the integral
subcomplex this gives an epimorphism

� :GZ0 � Z
sending each generator 〈�〉 to o(�) =±1. We de0ne these maps to be the augmentation maps for
G∗ and GZ∗ .

We will also consider degenerate cases where some of the indices are zero. We interpret these
0’s as counting the number of distinct trivalent vertices:

W ∗
0k [�]

∗ :=


(

n

k

)
o(�)
|Aut(�)| if �∈W∅ with n vertices;

0 if � is not trivalent:

Proposition 1.16. Each dual Kontsevich cycle W ∗
� is an integral cocycle.

Proof. Let n= 2|�|. Then we want to show that

W ∗
� (d〈�〉) = 0

for all oriented ribbon graphs � of codimension n + 1. However, the only case in question occurs
when � has only one even valent vertex, call it v0. The orientation on � can be given by 0rst taking
v0, then the incident half-edges e1; : : : ; e2m, then all other vertices with their incident half-edges in
cyclic order. The orientation depends on which of the half-edges at v0 is 0rst.
There are three cases.
Case 1: The graph � has r − 2 odd valent vertices of codimension ¿ 2. After re-indexing the �i

we may assume that these codimensions are 2�3; 2�4; : : : ; 2�r . The even valent vertex v0 must have
valence 2�1 + 2�2 + 4 and it needs to split into two vertices of codimension 2�1 and 2�2. There is
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always an even number of ways to do this (2�1 + 2 ways if �1 = �2 and 2�1 + 2�2 + 4 ways if not)
and half of them will give one sign and half the other. (The sign alternates as we rotate the half
edges incident to v0.) Consequently, the value of W ∗

� on d[�]∗ will be zero.
Case 2: The graph � has r−1 odd valent vertices of codimension ¿ 2. We may assume that these

codimensions are 2�2; : : : ; 2�r (after re-indexing the �i). The vertex v0 must have valence 2�1 + 4
and it needs to split into two vertices of valence 2�1 + 3 and 3. There are 2�1 + 4 ways to do this
and half of them will give one sign and half the other.

Case 3: v0 has valence 4. It can split into two trivalent vertices in two ways with opposite sign
as we saw in Example 1.13.

Proposition 1.16 also follows from an observation of Kontsevich that A∞ superalgebras give
partition functions on ribbon graphs which are cocycles on associative graph cohomology. We explain
this sophisticated point of view in the following subsection which is not necessary to understand the
rest of the paper.

1.4. Partition functions

In [12,13], Kontsevich explains how a 0nite-dimensional A∞ superalgebra A gives a cocycle on
the associative graph cohomology complex G∗. Kontsevich assumed that A was an algebra over the
real numbers. However, it is easy to see that the ground 0eld can have any characteristic. In fact,
we only need to assume that A is a 0nitely generated free module over a commutative ring R.

We will go over the de0nition of an A∞ superalgebra following Getzler and Jones [5]. Then
we revise Kontsevich’s de0nition of the partition function using the Conant–Vogtmann de0nition
of graph orientation. Finally, we examine the special case of one-dimensional algebras to verify
Kontsevich’s claim [13] that the cocycles coming from these examples linearly span the space of
polynomials in the MMM classes. Translated into the present setting, these cocycles are easily seen
to be linear combinations of the dual Kontsevich cycles (which come from Kontsevich’s earlier
paper [11]).

De�nition 1.17. By an A∞ superalgebra we mean a Z=2-graded algebra A = A0 ⊕ A1 over a com-
mutative ring R together with a sequence of R-linear mappings

mk :A⊗k → A; k¿ 1;

which are homogeneous of degree k (mod 2) so that for homogeneous elements x1; : : : ; xk we have∑
r+s+t=k

(−1)umr+1+t(x1; : : : ; xr; ms(xr+1; : : : ; xr+s); xr+s+1; : : : ; xk) = 0;

where u= r + st + s|x1|+ · · ·+ s|xr|.

Suppose that A ∼= Rn is 0nitely generated and free as an R-module. Suppose that m1 = 0. And
suppose that we have an nondegenerate even scalar product

〈; 〉 :A⊗ A→ R:
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This means the following.

(1) 〈a; b〉= 0 if |a|+ |b|= 1.
(2) 〈a; b〉= (−1)|a|〈b; a〉. (This implies (1) if 2 is not a zero divisor in R.)
(3) There is a degree 0 R-linear isomorphism

D : HomR(A; R)
≈→A;

so that 〈a; Df〉= f(a).
(4) For all x0; : : : ; xn ∈A0

∐
A1 we have

〈mn(x1; : : : ; xn); x0〉= (−1)n+|x0|+n|x0|〈mn(x0; : : : ; xn−1); xn〉:
Then we have a partition function

ZA :GZ∗ → R;

given on any generator 〈�〉 as follows.
First, choose an ordering for the vertices v1; v2; : : : of �. Next, label the half-edges incident to

each vi in reverse (clockwise) order ei1; : : : ; eini ; ei0 (if vi has valence ni + 1). Let �1 =±1 so that

o(�) = �1Sgn(v1; e10; e1n1 ; : : : ; e11; v2; e20; e2n2 ; : : : ; e21; v3; : : :):

Choose an R-basis b1; : : : ; bn for A (bi ∈A0
∐

A1) and a dual basis b∗
1 ; : : : ; b

∗
n ∈HomR(A; R) so that

〈bi; Db∗
j 〉= b∗

j (bi) = 1ij:

We note that if ci=
∑

&ijbj is another basis for A then the corresponding dual basis is c∗
i =
∑

 kib∗
k

where ( ki) = (&ij)−1 ∈GL(n; R).
The partition function is given by the state sum

ZA〈�〉= �1
∑
states

∏
i

〈mni(xi1; : : : ; xini); xi0〉�2
∏
j

〈D Ry∗
j; Dy∗

j 〉: (3)

The sum is over all states where a state of � is given by assigning a basis element xij of A to each
half-edge eij of �. The 0rst product is over all vertices vi. The second product is over all edges
(hj; Rhj). Here y∗

j represents the dual basis element corresponding to the basis element yj assigned
to hj and similarly for Ry∗

j. The sign �2 = ±1 is the sign of the permutation of the odd half-edges
(those assigned elements of A1 as basis elements) as they appear in the sequence:

e11; e12; : : : ; e1n1 ; e10; e21; : : : ; e2n2 ; e20; e31; : : : ;

which places each next to its other half (placing Rhj next to and on the right of hj). If hj; Rhj are
switched, the sign of �2 changes but so does the sign of 〈D Ry∗

j; Dy∗
j 〉. So, the sign of the expression

�2
∏

j 〈D Ry∗
j; Dy∗

j 〉 is independent of the choice of orientation of the edges.

Theorem 1.18 (Kontsevich). ZA is a cocycle on GZ∗ .

Remark 1.19. The usual de0nition of the partition function has a factor of 1=|Aut(�)|:
ZA[�]∗ =

�1
|Aut(�)|

∑
states

∏
i

〈mni(xi1; : : : ; xini); xi0〉�2
∏
j

〈D Ry∗
j; Dy∗

j 〉:

This factor disappears on the integral subcomplex GZ∗ since 〈�〉= |Aut(�)|[�]∗.
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Proof. It is easy to see that the partition function is well de0ned. For every ordered pair (i; j), the
basis element xij and its dual appears (as one of the yj’s) exactly once as a variable to be summed
over. So, formula (3) for ZA(�) is independent of the choice of basis. (If we sum over a di=erent
basis ci =

∑
&ijbj, the dual basis c∗

i =
∑

 kib∗
k also appears. But

∑
 ki&ij = 1kj. So, this is the

same as the original sum over bj and b∗
j .) If we transpose two vertices v1; v2 then both �1 and �2

change by a factor of (−1)n1n2 . Finally, if we cyclically permute the half-edges around a vertex v
of valence n+ 1 then the signs �1; �2 and the value change by factors of

�′1=�1 = (−1)n;
�′2=�2 = (−1)|x0|

∑ |xi|;

value′=value = (−1)n+|x0|+|x0|n:

The product of these factors is 1 since the degrees of x0; : : : ; xn must add up to nmod 2. (Otherwise
expression (3) is zero.) Thus ZA is well de0ned. It remains to show that ZA is a cocycle.
The boundary of any generator 〈�〉 in GZ∗ is a sum over all vertices v of � of all ribbon graphs

�′ obtained from � by expanding v into two vertices. For each 0xed v the sum of the values of
ZA(�′) add up to zero. To see this we label the half-edges clockwise around v. This means that the
Conant–Vogtmann orientation starts as

o(�) = Sgn(v e0 en · · · e1 v′ · · ·):
When we expand v we get �′ with orientation

o(�′) = Sgn(v1v2h Rhe0en · · · e1v′ · · ·)
= (−1)u Sgn(v1her+s · · · er+1v2e0en · · · er+s+1 Rher · · · e1v′ · · ·);

where n= r + s+ t with

�1 = (−1)u = (−1)st+s+t+1 = (−1)r+st+n+1:

The corresponding terms of the partition function are

〈ms(xr+1; : : : ; xr+s); y〉〈mr+t+1(x1; : : : ; xr; Ry; xr+s+1; : : : ; xn); x0〉〈D Ry ∗; Dy∗〉 (4)

with associated relative sign term

�2 = (−1)s|x1|+···+s|xr |;

since the degrees of xr+1; : : : ; xr+s; y must add up to r.
Using the identity∑

i

〈x; bi〉〈y;Db∗
i 〉= 〈x; y〉;

we see that expression (4) contracts to

〈mr+t+1(x1; : : : ; xr; ms(xr+1; : : : ; xr+s); xr+s+1; : : : ; xn); x0〉;
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when summed over all allowed values of y; Ry; y∗; Ry ∗. By de0nition of an A∞ algebra, the product
of this with �1�2 adds up to zero if we sum over all �′ obtained from � by expanding v since n is
constant. We need the assumption m1 = 0 since �′ has no bivalent vertices.

Suppose that x=(x0; x1; x2; : : :) is an in0nite sequence of rational numbers. Then Kontsevich points
out that there is a one-dimensional A∞ algebra A = A0 = Q with scalar product in which m2k is
multiplication by xk−1, modd =0 and 〈a; b〉=ab. Since the states of � are given by assigning a basis
vector to each half-edge, there is only one state and the partition function Zx = ZA, which is a sum
over all states, has only one term.

Example 1.20. The partition function

Zx :G∗ → Q

is the cocycle de0ned by the equation

Zx[�]∗ =
o(�)
|Aut(�)| x

r0
0 x

r1
1 · · ·

if � is a ribbon graph with ri vertices of valence 2i + 3 for i = 0; 1; 2; : : : and no vertices of even
valence.

Since the Euler characteristic of � is given by

5(�) =−1
2

∑
ri(2i + 1);

the value of r0 can be written as

r0 =−25 −
∑
i¿1

ri(2i + 1): (5)

Thus, the partition function Zx can be given in terms of the dual Kontsevich cycles by

Zx = x−25
0

∑
�

y�W ∗
� ; (6)

where y� =
∏

i (xi=x
2i+1
0 )ri if � = (1r1 ; 2r2 ; : : :) and the sum is over all � so that r0, as given by (5),

is nonnegative. (So the right-hand side of (6) is well de0ned only when 5 is 0xed.)
Thus, if we restrict to the subcomplex of the graph cohomology complex G∗ generated by [�]∗

where 5(�) is 0xed, the linear span of these partition functions is the same as the linear span of
the W ∗

� and, by Corollary 3.23, this is equal to the algebra generated by the adjusted MMM classes
�̃k excluding �̃0 = 5. (However, we lose the linear independence of the [W ∗

� ] when we restrict to
this 0nitely generated subcomplex of G∗.)

Setting x0 = 1 and taking partial derivatives of (6) with respect to y� using 0nite di=erences,
we can conclude that, for each 0xed 5, the dual Kontsevich cycles W ∗

� are linear combinations of
partition functions Zx for various multi-indices x. Consequently, Kontsevich’s Theorem 1.18 that
each Zx is a cocycle implies that each W ∗

� is a cocycle.
To pull the cocycles W ∗

� back to the category of ribbon graphs we need to use an acyclic carrier
related to the forested graph complex of [3].
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1.5. The forest carrier F∗

Conant and Vogtmann use forested graph complexes to show that graph homology is rationally
isomorphic to the cohomology of the mapping class group as claimed by Kontsevich. In our notation,
the forested graph complex is the total complex of an integral acyclic carrier

F∗ :Fat → GZ∗ ⊆ G∗;

which we call the “forest carrier.”
Suppose that �0 is a ribbon graph. Then we will construct a chain complex F∗(�0) generated by

the isomorphism classes of all ribbon graphs � which map to �0. Each such object is given by a
“forested ribbon graph,” i.e., a ribbon graph � with a spanning forest F (so that �=F ∼= �0). If �0

has codimension n then F∗(�0) will be the augmented chain complex

0→ Fn(�0)→ Fn−1(�0)→ · · · → F0(�0)
�→Z→ 0;

given as follows.
Let Fk(�0) be the free abelian group generated by all isomorphism classes of codimension k

objects in Fat over �0 together with an orientation. In other words, generators of Fk(�0) are given
by morphisms

f :�→ �0;

where � is a ribbon graph of codimension k together with an orientation on �. Two such objects
fi :�i → �0 for i=1; 2 are isomorphic if there is an orientation preserving isomorphism g :�1 → �2

so that f2 ◦ g = f1. As usual, we equate reversal of orientation with reversal of sign. In particular,
Fn(�0) has rank 1 with two generators corresponding to the two possible orientations of �0.
The boundary map d :Fk(�0)→ Fk−1(�0) is given by

d[f :�→ �0] =
∑

[f ◦ gi :�i → �0];

where the sum is taken over all right equivalence classes of morphisms

gi :�i → �;

which collapse only one edge. We take the unique orientation on each �i which induces the given
orientation on �.

The augmentation map � :F0(�0)→ Z is given by

�[�→ �0] = o(�) =±1:

Proposition 1.21. Suppose that �0 is trivalent except for r vertices v1; : : : ; vr which have codimen-
sions n1; : : : ; nr , resp. Then F∗(�0) is based chain isomorphic to the tensor product

F∗(�0) ∼= C∗(Kn1)⊗ C∗(Kn2)⊗ · · · ⊗ C∗(Knr);

where C∗(Km) is the cellular chain complex of the m-dimensional Stashe5 polyhedron Km. In
particular, F∗(�0) is acyclic.
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Proposition 1.21 follow from the well-known properties of the Stashe= polyhedron which we will
review shortly. Suppose for the moment that this is true.

For each �0 there is a natural augmented chain map p :F∗(�0)→ GZ∗ given by

p[f :�→ �0] = 〈�〉:
A morphism g :�0 → �1 induces a chain map g∗ :F∗(�0)→ F∗(�1) by

g∗[f :�→ �0] = [g ◦ f :�→ �1]:

This is a chain map over GZ∗ in the sense that p ◦ g∗ = g∗. Therefore, F∗ is a functor from Fat to
the category of acyclic augmented chain complexes over GZ∗ . In other words, it is an acyclic carrier.
We call F∗ the forest carrier.

The acyclic carrier F∗ carries a unique (up to homotopy) chain map

&∗ :C∗(Fat)→ GZ∗ ; (7)

where C∗(Fat) is the cellular chain complex of the category of ribbon graphs. (So Cn(Fat) is the
free abelian group generated by all elements

�∗ = (�0 → �1 → · · · → �n)

of the n-skeleton NnFat of the simplicial nerve N•Fat of Fat. We refer to such �∗ as an
n-simplices in Fat.)

Theorem 1.22. Any chain map (7) carried by F∗ is a rational homotopy equivalence.

Remark 1.23. If we consider the forest carrier F∗ as a diagram of chain complexes over GZ∗ we
see that there is an induced chain map from the homotopy pushout of this diagram into GZ∗ . This
homotopy pushout is the forested graph complex

C∗(Fat;F∗) =
⊕
n¿0;

⊕
�∗∈NnFat

7nZ(�∗)⊗ F∗(�0);

where Z(�∗) is the free abelian group of rank one generated by (�∗) and 7n is the n-fold suspension
operator. Since F∗ is acyclic, C∗(Fat;F∗) � C∗(Fat;Z). This gives the following diagram:

C∗(Fat;Z) ←C∗(Fat;F∗)
p→GZ∗ :

We are claiming that the right hand arrow, given by p :F∗ → GZ∗ for n= 0 and zero for n¿ 0, is
a rational homotopy equivalence.

We observe that the chain map (7), being well-de0ned up to homotopy, induces a well-de0ned
map in cohomology. This gives the following observation.

Theorem 1.24. The dual Kontsevich cycles pull back to well-de0ned integer cohomology classes

&∗[W ∗
� ]∈H 2|�|(Fat;Z) ∼=

∏
g; s

H 2|�|(Ms
g ;Z):

The rest of this section is devoted to the proof of Theorem 1.22 assuming Proposition 1.21. Our
strategy is to construct an explicit rational homotopy inverse for the chain map (7) using “dual
cells.”
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1.6. Dual cells

“Dual cells” are elements of C∗(Fat) associated to every generator 〈�〉 ∈GZn . Every oriented
ribbon graph � has many dual cells but we will see that each of them is necessarily mapped to

(−1)
(
n+1
2

)
〈�〉 by any chain map carried by the forest carrier.

A rational inverse

 :GZ∗ ⊗Q→ C∗(Fat;Q)

is given by mapping each rational generator 〈�〉 to the average dual cell in a 0nite model for
C∗(Fat;Q) given by choosing one object from every isomorphism class of ribbon graphs and
taking the average over all possible dual cells which lie in this 0nite model. We could have used
this 0nite model all along if we were only interested in the rational instead of integral cohomology
of the mapping class group.

The composition & will be the identity mapping on GZ∗ ⊗Q= G∗ ⊗Q and the composition  &
will be homotopic to the identity on the 0nite model since it is carried by the “identity carrier”. The
identity carrier is a canonical acyclic carrier which carries the identity map on the cellular chain
complex of any small category (see Lemma 1.29).

Suppose that � is an oriented ribbon graph of codimension n. Then a dual cell for � is given
by choosing one representative from every isomorphism class of ribbon graphs over � (taking the
identity map on � as one representative). Consider all n simplices

�∗ = (�0 → · · · → �n = �);

where �i is a representative of codimension i. Then the dual cell is given by the signed sum of all
of these n-simplices

D(�) =
∑

o(�∗)(�∗)∈Cn(Fat);

where the sign o(�∗) = ±1 is positive i= the given orientation of � agrees with the one induced
from the natural orientation of the trivalent graph �0. Note that, if we reverse the orientation of �,
this sign will change. So,

D(−�) =−D(�):

It is also trivial to see that, in the case n=0, we have D(�) =� assuming that we take the natural
orientation on �.

Lemma 1.25. The boundary of the dual cell is, up to sign, a sum of dual cells

dD(�) = (−1)n
∑

D(�′);

where the sum is taken over all chosen representatives

�′ → �

of all isomorphism classes of ribbon graphs of codimension n− 1 over �. We take the orientation
on �′ induced by the given map.
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Proof. By Proposition 1.3, the set of isomorphism classes of objects over each �′ maps monomor-
phically into the set of isomorphism classes of objects over �. Therefore, the given choices of
representatives for � gives a complete set of representatives for the objects over �′ and D(�′) is
de0ned.

The boundary of D(�) is given by

dD(�) =
∑
�∗

n−1∑
i=0

(−1)io(�∗)(�0; : : : ; �̂i; : : : ; �n = �)

+(−1)n
∑
�∗

o(�∗)(�0; : : : ; �n−1):

However, the double sum is zero since, when �i is deleted, there are exactly two ways to 0ll in the
blank and these give opposite signs for o(�∗). The second sum is equal to the sum of D(�n−1) for
all possible �n−1.

Lemma 1.26. Given any oriented ribbon graph � of codimension n, any dual cell D(�)∈C∗(Fat)
and any augmented chain map & :C∗(Fat)→ GZ∗ carried by the forest carrier F∗ we will have

&(D(�)) = (−1)n(n+1)=2〈�〉:

Proof. This will be by induction on n. Suppose that n= 0. Then

&(D(�)) = &(�) = 〈�〉;
since the identity map [�→ �] is the unique element of F0(�) with augmentation equal to 1.

Now suppose the statement holds for n− 1. Then by Lemma 1.26 we have

&dD(�) = (−1)n&
∑

D(�′) = (−1)n+n(n−1)=2
∑
〈�′〉= (−1)n(n+1)=2d〈�〉:

However, Fn+1(�)= 0. So, the value of &D(�) in Fn(�) is uniquely determined by the value of its
boundary. This forces &D(�) to be (−1)n(n+1)=2〈�〉.

To construct a rational inverse for the chain map & we choose a 0nite model for Fat. Let Fin
be a full subcategory of Fat that contains exactly one object from every isomorphism class. Then
Fin is a deformation retract of Fat and the cellular chain complex of Fin is a deformation retract
of C∗(Fat). Although useful for computations, the category Fin has certain defects that we need
to watch out for. For example, if we take a graph �∈Fin and collapse an edge e, the result �=e
may not be an object of Fin. So, we would need to take the unique object �′ ∈Fin isomorphic to
�=e and choose an isomorphism �′ ∼= �=e. This construction become natural only if we “average”
over all possible such isomorphisms.

If � is any oriented ribbon graph of codimension n, let RD(�)∈Cn(Fin;Q) be the average dual
cell of � given by

RD(�) =
∑ o(�∗)
|Aut(�0; : : : ; �n)| (�0 → · · · → �n

≈→�); (8)

where

Aut(�0; : : : ; �n) = Aut(�0)× · · · × Aut(�n)
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and the sum is taken over all possible sequences of morphism in Fin so that �i has codimension
i for each i and all possible choices for the isomorphism �n ≈ �. We will view this sequence of
n + 1 morphisms in Fat as a sequence of n morphisms in the category Fin=� of objects of Fin
over �.

Lemma 1.27. If d〈�〉=∑ 〈�′〉 in GZ∗ then d RD(�) = (−1)n ∑ RD(�′).

Proof. The proof is analogous to the proof of Lemma 1.25. We just need to realize that when �i

is deleted, there are |Aut(�i)| ways to put it back in as an isomorphic copy. Consequently,

d RD(�) =
n−1∑
i=0

(−1)i
∑ o(�∗)
|Aut(�0; : : : ; �̂i; : : : ; �n)|

(�0 → · · · �̂i · · · → �n
≈→�)

+ (−1)n
∑ o(�∗)
|Aut(�0; : : : ; �n−1)| (�0 → · · · → �n−1 → �):

Then, in the second sum, the morphism �n−1 → � can be uniquely factored through some �′ making
it into a sum of terms of the form (−1)n RD(�′).

This lemma says that we have a chain map

 :GZ∗ ⊗Q→ C∗(Fin;Q)

given by  〈�〉= (−1)n(n+1)=2 RD(�). Lemma 1.26 gives us:

Theorem 1.28. The composition

G∗ ⊗Q  →C∗(Fin;Q) ,→ C∗(Fat;Q)
&→G∗ ⊗Q

is the identity map on G∗ ⊗Q= GZ∗ ⊗Q for any chain map & carried by the forest carrier.

Finally, Theorem 1.22 follows from the following.

Lemma 1.29. The composition

C∗(Fin;Q) ,→ C∗(Fat;Q)
&→G∗ ⊗Q  →C∗(Fin;Q)

is homotopic to the identity map.

Proof. To show that two chain maps are homotopic it su/ces to construct an acyclic carrier that
carries both of them. In this case it will be the “identity carrier.”

Let X be any object of any small category A. Then the category A=X of objects over X is
contractible since it has a terminal object id :X → X and any morphism X → Y induces a functor
A=X →A=Y . Consequently, the cellular chain complex C∗(A=X ) is an acyclic carrier from C∗(A)
to itself, i.e., a functor from A into the category of augmented acyclic chain complexes over C∗(A).
We call this the identity carrier since it carries the identity morphism on C∗(A).
In order to show that  ◦& is carried by the identity carrier we need to show that the chain map

 is covered by a mapping from the forest carrier to the identity carrier, i.e., we need a natural
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commuting diagram as follows for all objects � in Fin.

F∗(�)⊗Q  ̃−−→ C∗(Fin=�;Q)

p

� � q

G∗ ⊗Q  −−→ C∗(Fin;Q)

Recall that the generators of F∗(�) are isomorphism classes [f :�′ → �] of oriented ribbon graphs
over �. The projection p sends this to 〈�′〉 ∈G∗ ⊗ Q which then goes to the average dual cell
RD(�′)∈C∗(Fin;Q). But the morphism f :�′ → � makes all the terms in the de0nition (8) of
RD(�′) into simplices in Fin=� and therefore de0nes a lifting

 ̃ [f :�′ → �] = f∗( RD(�′))

of RD(�′) to C∗(Fin=�;Q) as required.

2. Stashe- associahedra

We use several di=erent versions of the Stashe= associahedron. The convex n-dimensional Stashe=
polyhedron is usually called Kn+2, but we denote it Kn to emphasize its dimension. We also consider
the category An = simpKn−3 of simplices in Kn−3 and the simplicial nerve of An which is a
triangulation of the polyhedron Kn−3.

An outline of this section:

(1) Stashe= polyhedron Kn.
(2) The category An+3.
(3) Orientation of Kn.
(4) Orientation of Kodd.
(5) Proof of Proposition 1.21.

2.1. Stashe5 polyhedron Kn

The Stashe= polyhedron Kn (usually written Kn+2 although it is n dimensional) originates in [19].
The application of this polyhedron to the present context (the moduli space of curves) originates in
[7]. The simplicial decomposition described in the following theorem also appear in [7] but originally
is due to Boardman and Vogt [2].

Theorem 2.1. There is an n-dimensional convex polyhedron Kn whose points correspond to isomor-
phism classes of planar metric trees with n + 3 leaves of 0xed length and up to n internal edges
of variable length 6 1. Two planar metric trees lie in the same open face of Kn if and only if,
after collapsing all internal edges of length ¡ 1, they become isomorphic 0xing the leaves.

Let C∗(Kn) be the cellular chain complex of Kn. Then C0(Kn) is freely generated by isomorphism
classes of trivalent planar trees with n + 3 given leaves. Recall that any such tree has a natural
orientation. More generally we have the following.
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Proposition 2.2. For all 06 k6 n, Ck(Kn) is generated by isomorphism classes [T ] of oriented
planar trees T with n+ 3 0xed leaves and n− k internal edges. The boundary map is given by

d[T ] =
∑
[T ′ ;e]

[T ′];

where the sum is taken over all isomorphism classes of pairs (T ′; e) where e is an edge in an
oriented tree T ′ so that T ∼= T ′=e with the induced orientation.

Remark 2.3. This is more or less a tautology since we choose the geometric orientation of the faces
to make this algebraic statement true. We also note that trees with 0xed leaves have no nontrivial
automorphisms. Therefore,

〈T 〉= |Aut(T )|[T ] = [T ]:

Proof. Let T0 be a trivalent planar tree with n+ 3 0xed leaves h0; : : : ; hn+2 (in cyclic order) and n
internal edges e1; : : : ; en. Since T0 is trivalent, it has an intrinsic orientation. If we collapse the edges
e1; : : : ; ek in that order we get a tree Tk of codimension k with the induced orientation. The trees Tk

for various k are related by

Tk = Tk−1=ek :

The k-dimensional face of Kn corresponding to the tree Tk consists of isomorphism class of trees
T having edges e1; : : : ; ek of variable length ¡ 1 and the other edges of length equal to 1. Let
x1; : : : ; xk be the lengths of e1; : : : ; ek . Then we choose the geometric orientation of this face of Kn

(in a neighborhood of the vertex T0) by taking these coordinated in opposite order:

(xk ; : : : ; x1):

When xk reaches 1 we get to the face corresponding to Tk−1. The orientation of the k − 1 face is
therefore related to that of the k-face by the “0rst vector points outward” rule which is standard.

2.2. The category An

Let An+3 be the category of faces of Kn with inclusion maps as morphisms. Then the geometric
realization of the nerve of An+3 is homeomorphic to Kn. A homeomorphism

& : |An+3| → Kn

is given by sending each object (=vertex in the nerve) to some point in the interior of the corre-
sponding face of Kn and extending linearly over the simplices.

Take an n-simplex

T∗ = (T0 → T1 → · · · → Tn) (9)

in An+3 which is nondegenerate in the sense that T0 is trivalent and each Ti is obtained from
Ti−1 by collapsing one edge. Then, by induction, each tree Ti obtains an induced orientation from
the intrinsic orientation of T0. The orientation of the tree Tn gives a geometric orientation of the
polyhedron Kn as explained in the proof of Proposition 2.2.
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Suppose that an orientation for the tree Tn representing the top cell of Kn is given. (For example,
when n is even, we can take the intrinsic orientation of Tn.) Then the algebraic orientation o(T∗)
of the n-simplex T∗ in (9) is de0ned to be ±1 depending on whether the given orientation of Tn is
equal to the one induced from T0. The dual cell D(Tn) is de0ned by

D(Tn) =
∑

o(T∗)T∗ ∈Cn(An+3);

where the sum is over all nondegenerate n-simplices T∗. This is an n-chain in the cellular chain
complex of An+3. It represents a triangulation of the top cell of Kn with algebraic orientation which
does not agree with the geometric orientation.

2.3. Orientation of Kn

Lemma 2.4. The embedding

(n → Kn

given by the n simplex (9) has degree (−1)n(n+1)=2 with respect to the orientation of Kn corre-
sponding to the orientation of Tn induced from that of T0.

Remark 2.5. This implies that, given any orientation of Tn, the corresponding geometric orientation
of Kn agrees with

 [Tn] := (−1)n(n+1)=2D(Tn):

Proof. For any 06 k6 n we claim that the map

7k :(k → Fk

given by T0 → · · · → Tk has degree (−1)k(k+1)=2 where Fk is the face of Kn corresponding to Tk

with the induced orientation.
This statement holds for k = 0. Suppose it holds for k − 1. Since the front k − 1 face (k−1 is

opposite the kth vertex Tk , its orientation is equal to (−1)k times the induced orientation from (k .
Whereas, we are orienting the faces to make Proposition 2.2 true, i.e., the orientation of Fk−1 is the
one induced from Fk . Consequently, the degree of 7k is

(−1)k(k−1)=2(−1)k = (−1)k(k+1)=2:

Putting k = n we get the lemma.

Now suppose that n = 2k. Then the tree T2k has an intrinsic orientation which determines an
intrinsic orientation for the polyhedron K2k . We can ask what is the sign of each 2k simplex
72k :(2k → K2k .

In [8], the sign of the 2k simplex T∗ = (T0 → T1 → · · · → T2k) is de0ned to be the sign of the
permutation of 2k + 3 letters

sgn(T∗) := sgn(a1; a2; a3; b1; b2; : : : ; b2k);

where ai; bj are the regions (components of the complement of the tree in the disk in which it can
be embedded with leaves on the boundary) given as follows. The regions which bound the edge e1
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(so that T1 = T0=e1) are a1; a3 (in either order). Let the two other regions which touch e1 be a2; b1
so that they are a1; a2; a3; b1 in cyclic order. For i¿ 2 let vi be the vertex of ei furthest away from
e1 and let bi be the region which touches ei at the point vi. Then sgn(T∗) is de0ned to be the sign
of the permutation of a1; a2; a3; b1; : : : ; b2k which puts these regions into the correct cyclic order.

Theorem 2.6. With respect to the intrinsic orientation of K2k , the sign of the embedding

72k :(2k → K2k

given by the 2k simplex (T0 → T1 → · · · → T2k) is equal to sgn(T∗) as de0ned above.

Proof. We have three de0nitions of the orientation of K2k :

(a) the intrinsic orientation of K2k induced from the intrinsic orientation of T2k ;
(b) the orientation of K2k induced from that of T0 by the sequence of maps T0 → · · · → T2k ;
(c) the orientation of K2k induced from (2k by the map 72k .

The statement we are trying to prove is that (a) and (c) di=er by sgn(T∗). We know, by Lemma
2.4, that (b) and (c) di=er by the sign

(−1)2k(2k+1)=2 = (−1)k :
Therefore, it su/ces to show that the sign di=erence between (a) and (b), which is equal to o(T∗)
by de0nition, is given by

o(T∗) = (−1)ksgn(T∗) = sgn(a1; a2; a3; b2k ; : : : ; b1): (10)

But this is a special case of the following lemma.

Lemma 2.7. Suppose that T0 is a planar tree with internal edges e1; : : : ; e2k and 2k + 1 internal
vertices all trivalent except for v0 which has valence 2n+1. Let vi be the vertex on ei furthest away
from v0. Let T1; : : : ; T2k be given by Ti = Ti−1=ei. Then the di5erence o(T∗) between the intrinsic
orientation of T2k and the one induced from T0 is given by

o(T∗) = (−1)ksgn(a1; : : : ; a2n+3; b1; : : : ; b2k); (11)

where ai are the regions around v0 and bi is the region which touched ei only at vi.

Proof. First, we claim that the truth value of this statement remains unchanged if we permute the
edges e1; : : : ; e2k . To see this suppose we change the order of ei; ei+1. Then Ti will become a di=erent
tree and the orientations of Ti+1; : : : ; T2k will be reversed. This comes from the proof that @2 = 0
in graph homology. Switching ei; ei+1 will also transpose the labels bi; bi+1. So sign (11) will also
change so the relative sign remains unchanged.

By permuting the order of the edges we may assume that each tree Ti has only one vertex v0
which is not trivalent and ei+1 becomes an edge in Ti connecting v0 to vi+1. Consequently, T2k−2 has
an intrinsic orientation and, by induction on k, this orientation di=ers from the one induced from T0

by

o(T0; : : : ; T2k−2) = (−1)k−1 sgn(a1; : : : ; a2n+3; b1; : : : ; b2k−2): (12)
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Fig. 2. Case 1: sgn(a1; : : : ; a2n+3; b1; b2) = (−1)m where 16m6 2n+ 2.

To prove that (12) implies (11) we look at the di=erence between the two signs and the di=erence
between the intrinsic orientation of T2k and the one induced from the intrinsic orientation of T2k−2.
The statement that we need is exactly the statement of the lemma in the case k = 1.

Now we assume that k = 1. As before, we may assume that e1 connects v0 to v1 but there are
two possibilities for e2.

Case 1: e2 connects v0 and v2.
If we let a1; : : : ; am be the regions at v0 from e1 to e2 as shown in Fig. 2 then the intrinsic

orientation of T0 and induced orientations of T1; T2 are

(T0) Sgn(v0e
−
1 h1h2 · · · hm−1e−

2 hm+2 · · · h2n+3 v1e+1 h2n+4h2n+5 v2e+2 hmhm+1);

(T1) −Sgn(v0h1h2 · · · hm−1e
−
2 hm+2 · · · h2n+5 v2e+2 hmhm+1);

=(−1)mSgn(v0e−
2 v2e

+
2 h1 · · · h2n+5);

(T2) (−1)m−1 Sgn(v0h1h2 · · · h2n+5);

where the leaves are labelled h1; : : : ; h2n+5 in counterclockwise order and e−
i ; e+i are the halves of ei

closer/further from v0. We see that the induced orientation of T1 di=ers from the intrinsic orientation
by (−1)m−1. However, the regions a1; : : : ; a2n+3; b1; b2 are arranged in the cyclic order

[b1; a1; : : : ; am; b2; am+1; : : : ; a2n+3];

so the permutation sign is

sgn(a1; : : : ; a2n+3; b1; b2) = (−1)m:
Multiplying by (−1)k =−1 we get (11).

Case 2: e2 connects v1 and v2.
Here there are two subcases as shown in Fig. 3.

(2a) b1 is clockwise from b2.
(2b) b2 is clockwise from b1.
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Fig. 3. Case 2a: b1b2 (on left) and Case 2b: b2b1 (on right).

In subcase (2a), we have the following orientations on T0; T1; T2 induced from the intrinsic orientation
of T0.

(T0) Sgn(v0e
−
1 h1h2 · · · h2n+2 v1e+1 h2n+3e−

2 v2e+2 h2n+4h2n+5);

(T1) −Sgn(v0h1h2 · · · h2n+3 e−
2 v2e

+
2 h2n+4h2n+5)

=Sgn(v0e
−
2 v2e

+
2 h1 · · · h2n+5);

(T2) −Sgn(v0h1h2 · · · h2n+5):

The induced orientation of T2 is negative the natural orientation. But

sgn(a1; : : : ; a2n+3; b1; b2) = +1;

since the regions are in the correct cyclic order. Thus, the lemma holds in this case.
In subcase (2b), the induced orientations on T0; T1; T2 are

(T0) Sgn(v0e
−
1 h1h2 · · · h2n+2 v1e+1 e

−
2 h2n+5 v2e+2 h2n+3h2n+4);

(T1) −Sgn(v0h1h2 · · · h2n+2e
−
2 h2n+5 v2e+2 h2n+3h2n+4);

=− Sgn(v0e
−
2 v2e

+
2 h1 · · · h2n+5);

(T2) Sgn(v0h1h2 · · · h2n+5):

The induced orientation on T2 is equal to the natural orientation. But

sgn(a1; : : : ; a2n+3; b1; b2) =−1
so the lemma holds in this 0nal case.

2.4. Orientation of Kodd

Suppose that n is odd. Then the planar trees in Kn have an even number (n + 3) of leaves.
An orientation of these trees is given by taking a 0xed cyclic ordering of these leaves, starting at
one point and going counterclockwise. This gives an orientation of a tree with one vertex and thus
of the top cell of Kn. For any other tree T ∈Kn an orientation is given by choosing an ordering
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of the internal edges of T . The orientation given by this ordering is the one which induces the
chosen orientation on the one vertex tree by collapsing the edges in order.

We can now prove Proposition 1.21.

2.5. Proof of Proposition 1.21

Recall that we have a ribbon graph �0 all of whose vertices are trivalent except for v1; : : : ; vr
which have valence n1 +3; : : : ; nr +3. For each i, we choose a cyclic ordering of the half-edges at vi
and take the orientation on �0 given by v1 followed by its half-edges, v2 followed by its half-edges,
etc.

Not suppose that for each i, Ti is a planar tree with ni + 3 leaves representing an mi-face of Kni .
Thus Ti has ni−mi internal edges. Choose an ordering of these edges. Let �0(T1; : : : ; Tr) denote the
graph obtained from �0 by replacing vi by Ti. Then the Ti will form a forest in �0. Let ei1; ei2; : : : be
the internal edges of Ti. Take the orientation on �0(T1; : : : ; Tr) so that, if the edges eij are collapsed
in lexicographic order, we get the chosen orientation on �0.
Let

& :Cm1(K
n1)⊗ · · · ⊗ Cmr (K

nr)→ Fm(�0);

where m= m1 + · · ·+ mr be given by

&([T1]⊗ · · · ⊗ [Tr]) = [�0(T1; : : : ; Tr)→ �0]:

We claim that this gives a chain isomorphism

& :C∗(Kn1)⊗ · · · ⊗ C∗(Knr)→ F∗(�0):

Since & sends basis elements to basis elements, it su/ces to show that & is a chain map. But this
is straightforward.

The boundary of [T1]⊗ · · · ⊗ [Tr] is, by Proposition 2.2, equal to
r∑

i=1

(−1)m1+···+mi−1
∑

[T1]⊗ · · · ⊗ [Ti−1]⊗ [T ′
i ]⊗ [Ti+1]⊗ · · · ⊗ [Tr];

where the second sum is over all pairs (T ′
i ; ei0) so that T ′

i =ei0 ∼= Ti. But (−1)m1+···+mi−1 is also the
sign of the permutation which brings the edge ei0 to the beginning in the ordering of all edges of
�0(T1; : : : ; T ′

i ; : : : ; Tr). So

d&([T1]⊗ · · · ⊗ [Tr]) =
∑

(−1)m1+···+mi−1&([T1] · · · [T ′
i ] · · · [Tr])

as required.

3. MMM classes

We review the de0nition of the adjusted MMM classes. Morita [17] explains these cohomology
classes in more detail. Arbarello and Cornalba [1] explain why the adjusted version is more suitable.
We will pull these cohomology classes back to the graph cohomology complex G∗ and describe
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what happens when we evaluate them on the dual Kontsevich cycles.

(1) Cyclic set cocycle.
(2) Adjusted MMM classes in H 2k(G∗;Q).
(3) Cup products of adjusted MMM classes.
(4) Computing the numbers bk∗

n∗ .
(5) Kontsevich cycles in terms of MMM classes.
(6) Computing a�

� .

Suppose that

>s
g → E

p→B

is a compact manifold bundle where >s
g is an oriented connected surface of genus g and s unordered

distinguished points. Let

@ : B̃→ B

be the s-fold covering space given by the s distinguished point in each 0ber of E. Then the vertical
tangent bundle of E is an oriented 2-plane bundle and therefore has an Euler class e(E)∈H 2(E;Z).
The push-down of the (k + 1)th power of this class is the MMM class

�k(E) = p∗(e(E)k+1)∈H 2k(B;Z):
The restriction of the Euler class e(E) to B̃ ⊆ E gives another Euler class e(B̃)∈H 2(B̃;Z). The

push-down of the kth power of this second class is the boundary class

�k(E) = @∗(e(B̃)k)∈H 2k(B;Z):
The adjusted or punctured MMM classes �̃k(E) are given by

�̃k(E) = �k(E)− �k(E):

The surface bundle >s
g → E → B is classi0ed by a map f :B → BMs

g and all three cohomology
classes de0ned above are pull-backs of universal classes

�k; �k ; �̃k ∈H 2k(Ms
g ;Z) ∼= H 2k(Fatsg;Z):

By the fundamental results of Morita [16] and Miller [14] the MMM classes �k and the 0rst s
boundary classes �1; : : : ; �s are algebraically independent over Q in the stable range (given by Harer
[6] stability). The classes �r for r ¿ s are polynomials in �1; : : : ; �s. For example,

�3 = 3�1�2 − 1
2 �

3
1

if s = 2. Since the category Fat is the disjoint union of Fatsg for all g; s, this also extends to
�̃0 = 1− 2g− s and we have the following.

Theorem 3.1. The universal adjusted MMM classes

�̃k ∈H ∗(Fat;Q)

for k¿ 0 are algebraically independent.

In [8], a combinatorial rational cocycle is constructed for the punctured class �̃k . It is called the
“cyclic set cocycle.”
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3.1. Cyclic set cocycle

Let Z be the category of cyclically ordered sets and cyclic order preserving monomorphisms.
Then it is well known that

|Z| � BU (1):

The kth power of the 0rst Chern class of the canonical complex line bundle over Z is given by the
unadjusted cyclic set cocycle ckZ whose value on a 2k-simplex

C∗ = (C0 → C1 → · · · → C2k)

is given by

ckZ(C∗) =
∑

sgn(a0; a1; : : : ; a2k)
(−2)k(2k − 1)!!|C0| · · · |C2k | ; (13)

where the sum is taken over all choices of elements ai ∈Ci−Ci−1. (In our notation, we pretend that
the maps in C∗ are inclusion maps. Strictly speaking, ai should be an element of C2k which lies in
the image of Ci but not in the image of Ci−1.)

The unadjusted cyclic set cocycle has the following obvious property.

Proposition 3.2. In order for the unadjusted cyclic set cocycle ckZ to be nonzero on C∗ it is
necessary (but not su>cient) for each Ci to be larger than Ci−1, i.e.,

|C0|¡ |C1|¡ · · ·¡ |C2k |:

In [8] it is shown that the adjusted MMM class �̃k is given on the category of ribbon graphs by
evaluating the unadjusted cyclic set cocycle (13) at each vertex and dividing by −2. Since there is
already a factor of (−2)k in the denominator it seems reasonable to de0ne the (adjusted) cyclic set
cocycle c̃kZ by

c̃kZ(C∗) =
1
−2 ckZ(C∗) =

∑
sgn(a0; a1; : : : ; a2k)

(−2)k+1(2k − 1)!!|C0| · · · |C2k | : (14)

Theorem 3.3 (Igusa [8]). The adjusted rational MMM class �̃k ∈H 2k(Fat;Q) is given on a 2k-
simplex

�∗ = (�0 → · · · → �2k) (15)

in Fat by evaluating the cyclic set cocycle c̃kZ on every vertex of �0 counted with multiplicity
where the multiplicity of a vertex is de0ned to be its valence minus 2.

We use the notation c̃kFat to denote this rational cocycle on the cellular chain complex of Fat
and we refer to it by the same name, i.e., c̃kFat is the cyclic set cocycle on the category of ribbon
graphs.

By de0nition, c̃kFat satis0es the following important condition.

Proposition 3.4. The value of c̃kFat on a 2k-simplex (15) can be nonzero only if there is at least
one vertex v0 of �0 whose image in each �i has greater valence than its image in �i−1.
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Using dual cells we can pull back the adjusted MMM classes to the rational cohomology of the
graph cohomology complex G∗.

3.2. Adjusted MMM classes in H 2k(G∗;Q)

Recall that there is a chain homotopy equivalence

 :G∗ ⊗Q→ C∗(Fat;Q)

given up to sign by sending each rational generator 〈�〉 ∈Gn to the average dual cell of � inside a
0nite model Fin:

 〈�〉= (−1)
(
n+1
2

)
RD(�):

Since the cyclic set cocycle c̃kFat has the same value on isomorphic simplices, its value on any dual
cell of � is the same. Therefore, its value of the average dual cell RD(�) is equal to its value on
any particular dual cell D(�).

De�nition 3.5. The cyclic set cocycle

c̃kG :G2k → Q

on the graph cohomology complex G∗ is given by

c̃kG〈�〉= (−1)k c̃kFat(D(�))

for any choice of dual cell D(�).

Theorem 3.6. The cyclic set cocycle c̃kG represents the adjusted MMM class

[c̃kG] =  ∗(�̃k)∈H 2k(G∗;Q):

It is clear from the de0nition of the cyclic set cocycle that it can only be nonzero on the Witten
cycle Wk and it has the same value on 〈�〉 for every element � of Wk with natural orientation.
Therefore, c̃kG is proportional to the dual Witten cycle W ∗

k . The proportionality constant was computed
in [8].

Theorem 3.7. We have the following equation of rational cocycles on the associative graph coho-
mology complex G∗:

W ∗
k = (−2)k+1(2k + 1)!!c̃kG:

Proof. As we showed in Theorem 2.6 and Remark 2.5, the sign convention used in [8] for every
simplex in the dual cell of any �∈Wk is given by (−1)ko(�∗) which agrees with the coe/cient of
the same term in

 〈�〉= (−1)k
∑

o(�∗)(�0; : : : ; �2k):
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Putting these together, we get the following which can be interpreted as statement about the
relationship between rational cohomology classes in graph cohomology, the category of ribbon graphs
or the mapping class group.

Corollary 3.8 (Igusa [8]). The dual Witten cycle [W ∗
n ] is a multiple of the adjusted MMM class

[W ∗
n ] = (−2)n+1(2n+ 1)!!�̃n:

For example, we have

[W ∗
0 ] =−2�̃0;

[W ∗
1 ] = 12�̃1;

[W ∗
2 ] =−120�̃2;

[W ∗
3 ] = 1680�̃3;

[W ∗
4 ] =−30240�̃4:

3.3. Cup products of adjusted MMM classes

We now consider cup products of the �̃k’s for k¿ 1. If

�= (�1; �2; : : : ; �s)

is a partition of n in the sense that �i ¿ 0 and n=
∑

�i then let �̃� denote the cup product

�̃�1 ∪ · · · ∪ �̃�s ∈H 2n(Fat;Z):
Since the �̃�i are even degree classes, this cup product does not depend on the order of the �i’s.
However, at the chain level, the order does matter. (The order matters in Fat but not in the graph
cohomology complex by Corollary 3.22.) Let c̃�Fat denote the cup product

c̃�Fat = c̃�1Fat ∪ · · · ∪ c̃�sFat ∈C2n(Fat;Q) (16)

and let

c̃�G =  ∗c̃�Fat ∈Hom(G2n;Q)

denote the pull-back of c̃�Fat to G∗. Then, by Theorem 3.3, we have

[c̃�G] =  ∗�̃�:

De�nition 3.9. �= (�1; : : : ; �s) is a re0nement of � = (�1; : : : ; �r) and we write

�6 �

if each �i is a sum of �j’s so that, if we let @(i) be the set of these indices j, then @ is a partition
of the set {1; 2; : : : ; s} into r parts and

�@(i) :=
∑
j∈@(i)

�j = �i:

We say that @ represents � as a re0nement of �.
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Lemma 3.10. If c̃�G is nonzero on 〈�〉 ∈G2n then � must lie in some Kontsevich cycle W� where �
is a re0nement of �.

Proof. In order for the cup product (16) to be nonzero on a dual cell D(�) where �∈G2n there
must be a nondegenerate 2n-simplex (i.e., where none of the morphisms are isomorphisms)

�0 → �1 → · · · → �2n
∼= �;

so that

c̃�1Fat(�0 → · · · → �2�1) �= 0;

c̃�2Fat(�2�1 → · · · → �2�1+2�2) �= 0; etc:

By Proposition 3.4, �2�1 must have a vertex of multiplicity 2�1 and it must have a vertex which
increases in multiplicity by 2�2 by the time it gets to �2�1+2�2 . This implies that �2�1+2�2 must have
either a vertex of multiplicity 2�1 + 2�2 or two vertices of multiplicity 2�1; 2�2, resp.

By induction, �=�2�1+···+2�s−1 =�2n−2�s must lie in a Kontsevich cycle WB so that (�1; : : : ; �s−1)
is a re0nement of B as a partition of n − �s. In order for c̃n−�s

Fat to be nonzero on the back �s face
of �∗, the graph � must have a vertex which increases in multiplicity by 2�s by the time it gets to
�2n. Thus, �2n must lie in W� where either �=(B; �s) or � is equal to B with one of the Bi increased
by �s. In either cases

�6 (B; �s)6 �

as claimed.

Lemma 3.11. Suppose that �∈W� where �= (�1; : : : ; �r) is a partition of n and � is a re0nement
of �. Then the value of c̃�G on 〈�〉 depends only on the ordered partition � and the unordered
partition � (and is independent of the choice of �∈W�).

Remark 3.12. We will denote this number by

b�
� := c̃�G〈�〉=  ∗c̃�Fat〈�〉= (−1)nc̃�FatD(�)∈Q: (17)

It is obvious that the order of the �i’s is not important. We will later show (Corollary 3.22) that
the order of the �j’s is also not important.

Proof. If � lies in W� then � has vertices v1; : : : ; vr of codimension 2�1; : : : ; 2�r . In any dual cell
for �, each of these vertices is expanded to a tree in all possible ways (up to isomorphism). The
rest of the graph is left 0xed. However, the cyclic set cocycle is only evaluated on the vertices of
these trees. Since the orientation of the simplices in the dual cell depend only on these trees and the
value of the cocycle depends only on the trees, which in turn depend only on the numbers �1; : : : ; �r

the value of c̃�Fat on D(�) depends only on �.

Putting these two lemmas together we get the following.

Theorem 3.13. Any cup product of cyclic set cocycles

c̃�G =  ∗(c̃�1Fat ∪ · · · ∪ c̃�sFat)
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can be expressed as a rational linear combinations of dual Kontsevich cycles by

c̃�G =
∑

b�
�W

∗
� ;

where the sum is over all partitions � of n=
∑

�j so that � is a re0nement of � and b�
� is given

by (17).

Remark 3.14. At the level of cohomology this theorem implies that

�̃� =
∑

b�
�[W

∗
� ]:

Once we show that the cohomology classes [W ∗
� ] are linearly independent (Corollary 3.21) then this

equation can be used to de0ne b�
� . We can then conclude that b�

� and c̃�G are independent of the
order of � (Corollary 3.22).

3.4. Computing the numbers b�
�

We 0rst show that the computation of the numbers b�
� can be reduced to the case when �= n is

the trivial partition of n.

Lemma 3.15. If � = (�1; : : : ; �r) and �= (�1; : : : ; �s) are partitions of n then

b�
� =

∑
@

r∏
i=1

b�i
�@(i)

; (18)

where we sum over all partitions @ of the set {1; : : : ; s} into r parts @(i) representing � as a
re0nement of � in the sense that �i =

∑
j∈@(i) �j.

Example 3.16. Take the partition � = (5; 3) of n= 8 and the re0nement �= (3; 2; 1; 1; 1). Then

b5;33;2;1;1;1 = b53;2b
3
1;1;1 + 3b53;1;1b

3
2;1 + b52;1;1;1b

3
3:

These terms come from the 0ve ways in which (5; 3) can be re0ned to (3; 2; 1; 1; 1). They are

({3; 2}; {1; 1; 1}); 3× ({3; 1; 1}; {2; 1}); ({2; 1; 1; 1}; {3}):
There are three ways to do the second re0nement depending on which 1 goes to the right (to 3 in
(5; 3)).

Proof. The number b�
� from (17) times (−1)n is given by evaluating the cup product c̃�Fat of the

cocycles c̃�jFat on every term of the dual cell D(�) of any ribbon graph � in W�.
The dual cell is given by choosing graphs over � and taking nondegenerate 2n-simplices

�∗ = (�0 → · · · → �2n
∼= �)

(times o(�∗)) where each �i is a chosen representative.
Look at all the terms in the dual cell D(�) which begin with a 0xed �0 (0xed as an object over

�). We will see that the sum of the values of the cup product c̃�Fat on these terms is a sum of
products corresponding to the sum of products on the right-hand side of (18).
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Let v1; : : : ; vr be the nontrivalent vertices of � and let T 1; : : : ; T r be the trees in �0 which collapse
to these vertices. Thus, T i has 2�i edges which are naturally ordered up to even permutation.

If the cup product c̃�Fat =∪c̃�pFat is nontrivial on a 2n-simplex �∗ beginning with �0 then to each
index p the cocycle c̃�pFat must be nontrivial on

�2np → �2np+1 → · · · → �2np+2�p ; (19)

where np = �1 + �2 + · · ·+ �p−1. This means the edges which collapse in this sequence must all lie
in the same tree T i. Let i = f(p). Then f is an epimorphism

f : {1; : : : ; s}� {1; : : : ; r}; (20)

so that �i is equal to the sum of the �p for all p∈f−1(i). In other words, @=f−1 represents � as
a re0nement of �.

The value of the cocycle c̃�pFat on the middle 2�p-simplex (19) depends only on the sequence
of edges in T i which are collapsing. Thus, if we 0x epimorphism (20), then, for each index i, the
order in which the edges of T i collapse in (19) varies independently of the edges of T j for j �= i.
Consequently, the sum of products becomes a product of sums (@= f−1 still being 0xed).∑

�∗

r∏
i=1

∏
p∈@(i)

c̃�pFat(�2np ; : : : ; �2np+2�p) =
r∏

i=1

∑
T i∗

∏
p∈@(i)

c̃�pFat(T
i
2np ; : : : ; T

i
2np+2�p);

where T i
k is the inverse image in �k of the vertex vi of �.

But a di=erent example with r = 1 gives the same sum

(−1)�ib�i
�pi(i)

=
∑
T i∗

∏
p∈@(i)

c̃�pFat(T
i
2np ; : : : ; T

i
2np+2�p):

Taking the product over all i and the sum over all @ we get

(−1)nb�
� =

∑
@

r∏
i=1

(−1)�ib�i
�@(i)

;

which is the same as (18) since n=
∑

�i.

We can now compute some of the numbers b�
� . We start with the following case which follows

from Theorem 3.7.

Lemma 3.17. In the case of the trivial partitions �= � = n we have

bn
n =

1
(−2)n+1(2n+ 1)!!

:

By Lemma 3.15 this give the following.

Proposition 3.18. If the partition � of n has mi terms equal to �i for i=1; : : : ; r (so that
∑

mi�i=n)
then

b�
� =

r∏
i=1

mi!(b
�i
�i)

mi =
r∏

i=1

mi!
((−2)�i+1(2�i + 1)!!)mi

:
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Proof. The factor of
∏

mi! is equal to the number of ways that the partition � re0nes itself.

3.5. Kontsevich cycles in terms of MMM classes

We are now ready to show that the dual Konsevich cycles W ∗
� represent polynomials in the

adjusted MMM classes �̃k (as we claimed in [8]). We will then conclude that their cohomology
classes [W ∗

� ] are linearly independent as promised in Remark 3.14.
To avoid circular reasoning, we must assume at this point that the numbers b�

� may depend on
the order of the parts of �. Therefore, we take the ordering of both � and � to be nonincreasing:
�1¿ �2¿ · · ·¿ �r ¿ 0. If � is a re0nement of � then �6 � in lexicographic order. Consequently,
the matrix

Bn = (b�
�)

is upper triangular. (A priori this uses only some of the numbers sb�
� .) The diagonal entries b�

� are
nonzero by Proposition 3.18 so Bn is invertible. Let An be the inverse matrix

An = B−1
n = (a�

�):

The entries of this matrix are rational numbers uniquely determined by the equation∑
B

aB
�b

�
B = 1�

� : (21)

The main theorem is the following.

Theorem 3.19. The cohomology classes of the dual Kontsevich cycles are polynomials in the ad-
justed MMM classes

[W ∗
� ] =

∑
�

a�
��̃�:

Remark 3.20. This formula holds in the rational cohomology of G∗, and in the integral cohomology
modulo torsion of the category of ribbon graphs and the mapping class group Ms

g for all g; s¿ 1
(and for g= 0; s¿ 3).

Proof. Since the matrix Bn is invertible, the system of linear equations given in Theorem 3.13 has
the unique solution

W ∗
� =

∑
�

a�
�c̃

�
G

provided that � is in nonincreasing order.

Since the coe/cients a�
� form an invertible matrix and the monomials �̃� are linearly independent

by Theorem 3.1 we have the following.

Corollary 3.21. The cohomology classes [W ∗
� ] are linearly independent over Q.

This, in turn, implies the following as explained in Remark 3.14.
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Corollary 3.22. The cocycles c̃�G and the numbers b�
� are independent of the ordering of the par-

titions �, �.

Combining these with Theorem 3.13, we get the following.

Corollary 3.23. The cohomology classes [W ∗
� ] form a Q-basis for the polynomial algebra generated

by the adjust MMM classes �̃k for k¿ 1.

3.6. Computing a�
�

We will use the de0ning equation (21) to determine the numbers a�
� in some simple cases.

Proposition 3.24. When �= � = n we have

an
n =

1
bn
n
= (−2)n+1(2n+ 1)!!:

Proposition 3.25. When �= � = (�m1
1 ; : : : ; �mr

r ) with
∑

mi�i = n then

a�
� =

1
b�
�

=
r∏

i=1

((−2)ki+1(2ki + 1)!!)mi

mi!
:

For example, a2;22;2=1202=2=7200 and a1;1;11;1;1=123=3!=288. These numbers are not always integers.
For example,

a1
5

15 =
125

5!
=

10368
5

:

Corollary 3.26. The dual Kontsevich cycle [W ∗
� ] is a polynomial of degree

∑
mi in the adjusted

MMM classes with leading term
r∏

i=1

((−2)�i+1(2�i + 1)!!�̃�i)
mi

mi!
:

In order to compute the remaining terms, we need to compute a�
� for � �= �. The 0rst case is an+k

n;k
which occurs in the equation

[W ∗
n;k] = an;k

n;k �̃n�̃k + an+k
n;k �̃n+k : (22)

The de0ning equation for an+k
n;k is

an+k
n;k bn+k + an;k

n;kb
n+k
n;k = 0:

From this and Proposition 3.24 we get

an;k
n;k = (−2)2n+2k+2(2n+ 1)!!(2k + 1)!!;

an+k
n;k =−an+ka

n;k
n;kb

n+k
n;k

=−(−2)2n+2k+3(2n+ 2k + 1)!!(2n+ 1)!!(2k + 1)!!bn+k
n;k



K. Igusa / Topology 43 (2004) 1469–1510 1505

if n �= k and

an;n
n;n =−(−2)4n+3((2n+ 1)!!)2;

a2nn;n = (−2)4n+2(4n+ 1)!!((2n+ 1)!!)2b2nn;n:

In the next section we will compute bn+k
n;k in the special case k = 1.

4. Some computations

(1) The degenerate case n= 0.
(2) Computation of bn+1

n;1 .
(3) Conjectures.

We will compute the numbers bn+1
n;1 and obtain an+1

n;1 and the coe/cients of [W ∗
n;1] when expressed

as a polynomial in the adjusted MMM classes. To simplify the notation, we write an and bn instead
of an

n and bn
n in this section.

4.1. The degenerate case n= 0

First, we consider the degenerate case n = 0. In this case, it is easy to compute W ∗
k;0 and work

backwards since this cocycle counts the number of pairs of vertices, one of codimension 2k and the
other of codimension 0 (i.e., trivalent). The number of trivalent vertices of a graph with one vertex
of multiplicity 2k + 1 is t where

t + 2k + 1 =−25 =−2�̃0:

So, t =−2�̃0 − (2k + 1) and

[W ∗
k;0] = t[W ∗

k ] = (−2�̃0 − (2k + 1))(−2)k+1(2k + 1)!!�̃k ;

[W ∗
k;0] = (−2)k+2(2k + 1)!!�̃k �̃0 − (2k + 1)(−2)k+1(2k + 1)!!�̃k : (23)

The right-hand side should be divided by 2 when k = 0.
For the case k = 1 this gives

[W ∗
1;0] = [W ∗

0;1] =−24�̃0�̃1 − 36�̃1:

Consequently, a10;1 =−36 and

b10;1 =
1
259

a10;1 =−
1
8
:

4.2. Computation of bn+1
n;1

To obtain bn+1
n;1 in general we use the formula from Lemma 3.11

bn+1
n;1 = (−1)n+1(c̃nFat ∪ c̃1Fat)D(�);
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where � is any graph in the Witten cycle Wn+1, i.e., a ribbon graph which is trivalent except at one
vertex of multiplicity 2n+ 2.

The dual cell D(�) is a sum

D(�) =
∑
�∗

o(�∗)(�0; : : : ; �2n+2 = �):

When we evaluate the cup product (−1)n+1(c̃nFat ∪ c̃1Fat) we get

bn+1
n;1 = (−1)n+1

∑
�∗

o(�∗)c̃nFat(�0; : : : ; �2n)c̃1Fat(�2n; �2n+1; �):

There are three possible con0gurations for �2n. They are Case 1, given in Fig. 2 and Cases 2a,
2b, given in Fig. 3 from Section 2. In all cases, �2n is odd-valent so it has a natural orientation.
The orientation of the sequence �∗ can then be expressed as a product of two orientations

o(�0; : : : ; �2n; �′; �) = o(�0; : : : ; �2n)o(�2n; �′; �);

where we write �′ = �2n+1. Consequently, for any 0xed �2n, we get

(−1)n
∑

o(�0; : : : ; �2n)c̃nFat(�0; : : : ; �2n)

(
−
∑
�′

o(�2n; �′; �)c̃1Fat(�2n; �′; �)

)
:

The 0rst factor is bn regardless of �2n so

bn+1
n;1

bn
=−

∑
�2n;�′

o(�2n; �′; �)c̃1Fat(�2n; �′; �):

If we denote the sequence �2n → �′ → � by �∗ and substitute 1=bn = an we get

anbn+1
n;1 =−

∑
�∗

o(�∗)c̃1Fat(�∗): (24)

Recall that

c̃1Fat(�∗) =
∑ �(v0)

4

∑
sgn(a; b; c)
|C0‖C1‖C2|

with the 0rst sum being over all vertices v0 of �2n where �(v0) is the multiplicity of v0 and |Ci| is
the valence of the image of vi in �2n+i. The sign sum∑

sgn(a; b; c) = sgn(x1 · · · x2n+5)

is the number of times that the letters a; b; c occur in the correct cyclic order in the word w =
x1 · · · x2n+5 minus the number of times it occurs in the other cyclic order in w where the jth letter
xj of w is equal to bi (b0 =a; b1 =b; b2 =c) if the jth region in the complement of the graph reaches
v0 at the ith step (�2n+i).
The sum (24) breaks up into three parts depending on the graph �2n.
Case 1: Suppose the graph �2n is given by Fig. 2 and T ′ = T2n=e1. Then

o(�∗) = (−1)m:
The number of times this same con0guration (with 0xed 16m6 2n+ 2) occurs is

2n+ 5:
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The cyclic set cocycle c̃1Fat(�∗) has two terms

(1) The center vertex has multiplicity 2n+ 1 and average sign

sgn(amca2n−m+3b)
(2n+ 3)(2n+ 4)(2n+ 5)

=
2n− 2m+ 3

(2n+ 3)(2n+ 4)(2n+ 5)

for a contribution of

(2n+ 1)(2n− 2m+ 3)
4(2n+ 3)(2n+ 4)(2n+ 5)

:

(2) The vertex v1 has multiplicity 1 and average sign

sgn(a3bm−1cb2n−m+2)
3(2n+ 4)(2n+ 5)

=− 2n− 2m+ 3
(2n+ 4)(2n+ 5)

:

The total value of the cocycle is

c̃1Fat(�∗) =
(2n− 2m+ 3)(2n+ 1− (2n+ 3))

4(2n+ 3)(2n+ 4)(2n+ 5)
=

−(2n− 2m+ 3)
2(2n+ 3)(2n+ 4)(2n+ 5)

:

Multiply this by (−1)m(2n+ 5) and sum over all 16m6 2n+ 2 to get

−1
2(2n+ 3)(2n+ 4)

2n+2∑
m=1

(−1)m(2n− 2m+ 3) =
n+ 1

(2n+ 3)(2n+ 4)
:

Case 2a: Suppose �2n is given by Fig. 3a and �′ = �2n=e1. Then

o(�∗) = sgn(a1; : : : ; a2n+3; b1; b2) = 1:

This con0guration occurs 2n+ 5 times and the cyclic set cocycle has two terms.

(1) The center vertex has multiplicity 2n+ 1 and average sign

sgn(a2n+3bc)
(2n+ 3)(2n+ 4)(2n+ 5)

=
1

(2n+ 4)(2n+ 5)

for a contribution of

2n+ 1
4(2n+ 4)(2n+ 5)

:
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(2) The vertex v1 has multiplicity 1 and average sign
sgn(a2cab2n+1)

3(2n+ 4)(2n+ 5)
=

−(2n+ 1)
3(2n+ 4)(2n+ 5)

:

So

c̃1Fat(�∗) =
2n+ 1

6(2n+ 4)(2n+ 5)
:

Multiply this by 2n+ 5 for a total of
2n+ 1

6(2n+ 4)
:

Case 2a′: Suppose that T2n is the same (Fig. 3a) but �′ = �2n=e2. Then o(�∗) =−1. The con0g-
uration still occurs 2n+ 5 times and the cyclic set cocycle again has two terms.

(1) At v1 we have
1
4
sgn(a2bac2n+1)
3 · 4(2n+ 5)

=
2n+ 1

48(2n+ 5)
:

(2) At v2 we get
1
4
sgn(ba3c2n+1)
3 · 4(2n+ 5)

=
−3(2n+ 1)
48(2n+ 5)

:

So,

c̃1Fat(�∗) =
−(2n+ 1)
24(2n+ 5)

;

making the total in this case
2n+ 1
24

:

Case 2b is the same as Case 2a. (The sign changes twice.) So

anbn+1
n;1 =

n+ 1
(2n+ 3)(2n+ 4)

+
2n+ 1

3(2n+ 4)
+

2n+ 1
12

:

Simplifying this expression we get

anbn+1
n;1 =

2n+ 5
12

− 1
2(2n+ 3)

:

Multiplying by a1an+1 = 12(−2)n+2(2n+ 3)!! we get

an+1a1anbn+1
n;1 = (−2)n+2(2n+ 5)!! + 3(−2)n+3(2n+ 1)!!:

Theorem 4.1. For n �= 1 we have

[W ∗
n;1] = 3(−2)n+3(2n+ 1)!!(�̃n�̃1 − �̃n+1)− (−2)n+2(2n+ 5)!!�̃n+1:

For n= 1 we divide the right-hand side by 2.
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For example, we have

[W ∗
0;1] =−24�̃0�̃1 − 36�̃1;

[W ∗
1;1] = 72�̃2

1 + 348�̃2;

[W ∗
2;1] =−1440�̃2�̃1 − 13680�̃3;

[W ∗
3;1] = 20160�̃3�̃1 + 312480�̃4;

[W ∗
4;1] =−362880�̃4�̃1 − 8285760�̃5:

This agrees with calculation (23) when n=0; k=1 and also agrees with the calculation of Arbarello
and Cornalba [1]. The sign di=erence comes from the fact that they use the opposite sign for all
�̃even. (What we call �̃k is what they would call (−1)k+1�k restricted to the open moduli space of
curves.) The calculations of [1] give cohomology classes which they showed act as PoincarNe duals
of the Kontsevich cycles with respect to products of boundary cycles. Therefore, Theorems 3.1 and
3.19 already suggests that they must be correct.

4.3. Conjectures

The formula in Theorem 4.1 has an apparent symmetry which also appears in formula (23) when
it is rephrased as follows:

[W ∗
k;0] = (−2)k+2(2k + 1)!!(�̃k �̃0 − �̃k)− (−2)k+1(2k + 3)!!�̃k : (25)

This leads to the following conjecture.

Conjecture 4.2.

[W ∗
n;k] = (−2)n+k+2(2n+ 1)!!(2k + 1)!!(�̃n�̃k − �̃n+k)− (−2)n+k+1(2n+ 2k + 3)!!�̃n+k :

The right-hand side should be divided by 2 if n= k.

Remark 4.3. First, note that this conjectured formula can be simpli0ed using the numbers an =
(−2)n+1(2n+ 1)!!:

[W ∗
n;k] = anak(�̃n�̃k − �̃n+k) +

1
2
an+k+1�̃n+k :

Next, we also note that it is symmetrical in n; k. And 0nally, in the 0rst new case when n= k=2
it gives

[W ∗
2;2] =

1202

2
(�̃2

2 − �̃4) +
665280

4
�̃4 = 7200�̃2

2 + 159120�̃4; (26)

which agrees with Arbarello and Cornalba [1].

Remark 4.4. Michael Kleber and I have made further progress on calculation and interpretation of
the coe/cients bn

�. So far we veri0ed Conjecture 4.2 for all k6 7. In particular this proves (26).
We also found that

[W ∗
1;1;1] = 288�̃3

1 + 4176�̃1�̃2 + 20736�̃3:
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This, together with Theorem 4.1 and Corollary 3.8, veri0es all calculations of the coe/cients a�
�

given by Arbarello and Cornalba. Details will be given in a subsequent joint paper.

Remark 4.5. Conjecture 4.2 was proved 6 days after it was announced by Mondello [15] and 9
days after that by Michael Kleber and the author [10]. Both papers give general formulas for the
coe/cients a�

� ; b
�
� .
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