101 research outputs found

    An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications

    Get PDF
    To meet the future demand for huge traffic volume of wireless data service, the research on the fifth generation (5G) mobile communication systems has been undertaken in recent years. It is expected that the spectral and energy efficiencies in 5G mobile communication systems should be ten-fold higher than the ones in the fourth generation (4G) mobile communication systems. Therefore, it is important to further exploit the potential of spatial multiplexing of multiple antennas. In the last twenty years, multiple-input multiple-output (MIMO) antenna techniques have been considered as the key techniques to increase the capacity of wireless communication systems. When a large-scale antenna array (which is also called massive MIMO) is equipped in a base-station, or a large number of distributed antennas (which is also called large-scale distributed MIMO) are deployed, the spectral and energy efficiencies can be further improved by using spatial domain multiple access. This paper provides an overview of massive MIMO and large-scale distributed MIMO systems, including spectral efficiency analysis, channel state information (CSI) acquisition, wireless transmission technology, and resource allocation

    Dexterity for Channel Capacity Enhancement in MU-MIMO by Abrogating Interference

    Get PDF
    The looming field of Multi user Multiple-input Multiple-output (MU-MIMO) communication system has faced a challenge with precoding techniques for achieving increased channel capacity of their less inhaling of signals, imperfect knowing of channel state information, loss of signals by noise ,time complexity etc. in downlink systems which results in interference to the users. Hence straight forwarding from the issues, the paper newly introduce2LB-FR precoding technique which holds Linde-Lyold’s (LL)algorithm to increase data transmission by consuming large amount of signals with space and the Bernoulli distribution with Bayes decision (BB) to allot the perfect channel state; l information during transmission that eliminates co-interference. Holding Floyd Rasta (FR) algorithm expels the noise if added and takes the shortest required path by acquiring all the possible routes available in single execution which decreases delay. By the overall implementation, the proposed work pomped that in short time ,the capacity of the channel get enhanced with interference cancellation

    Beamspace Aware Adaptive Channel Estimation for Single-Carrier Time-varying Massive MIMO Channels

    Full text link
    In this paper, the problem of sequential beam construction and adaptive channel estimation based on reduced rank (RR) Kalman filtering for frequency-selective massive multiple-input multiple-output (MIMO) systems employing single-carrier (SC) in time division duplex (TDD) mode are considered. In two-stage beamforming, a new algorithm for statistical pre-beamformer design is proposed for spatially correlated time-varying wideband MIMO channels under the assumption that the channel is a stationary Gauss-Markov random process. The proposed algorithm yields a nearly optimal pre-beamformer whose beam pattern is designed sequentially with low complexity by taking the user-grouping into account, and exploiting the properties of Kalman filtering and associated prediction error covariance matrices. The resulting design, based on the second order statistical properties of the channel, generates beamspace on which the RR Kalman estimator can be realized as accurately as possible. It is observed that the adaptive channel estimation technique together with the proposed sequential beamspace construction shows remarkable robustness to the pilot interference. This comes with significant reduction in both pilot overhead and dimension of the pre-beamformer lowering both hardware complexity and power consumption.Comment: 7 pages, 3 figures, accepted by IEEE ICC 2017 Wireless Communications Symposiu
    • …
    corecore