5,951 research outputs found

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Full Semantics Preservation in Model Transformation – A Comparison of Proof Techniques

    Get PDF
    Model transformation is a prime technique in modern, model-driven software design. One of the most challenging issues is to show that the semantics of the models is not affected by the transformation. So far, there is hardly any research into this issue, in particular in those cases where the source and target languages are different.\ud \ud In this paper, we are using two different state-of-the-art proof techniques (explicit bisimulation construction versus borrowed contexts) to show bisimilarity preservation of a given model transformation between two simple (self-defined) languages, both of which are equipped with a graph transformation-based operational semantics. The contrast between these proof techniques is interesting because they are based on different model transformation strategies: triple graph grammars versus in situ transformation. We proceed to compare the proofs and discuss scalability to a more realistic setting.\u

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    A Language Description is More than a Metamodel

    Get PDF
    Within the context of (software) language engineering, language descriptions are considered first class citizens. One of the ways to describe languages is by means of a metamodel, which represents the abstract syntax of the language. Unfortunately, in this process many language engineers forget the fact that a language also needs a concrete syntax and a semantics. In this paper I argue that neither of these can be discarded from a language description. In a good language description the abstract syntax is the central element, which functions as pivot between concrete syntax and semantics. Furthermore, both concrete syntax and semantics should be described in a well-defined formalism

    The Semantics of Graph Programs

    Get PDF
    GP (for Graph Programs) is a rule-based, nondeterministic programming language for solving graph problems at a high level of abstraction, freeing programmers from handling low-level data structures. The core of GP consists of four constructs: single-step application of a set of conditional graph-transformation rules, sequential composition, branching and iteration. We present a formal semantics for GP in the style of structural operational semantics. A special feature of our semantics is the use of finitely failing programs to define GP's powerful branching and iteration commands

    Strategic Port Graph Rewriting: An Interactive Modelling and Analysis Framework

    Get PDF
    We present strategic portgraph rewriting as a basis for the implementation of visual modelling and analysis tools. The goal is to facilitate the specification, analysis and simulation of complex systems, using port graphs. A system is represented by an initial graph and a collection of graph rewriting rules, together with a user-defined strategy to control the application of rules. The strategy language includes constructs to deal with graph traversal and management of rewriting positions in the graph. We give a small-step operational semantics for the language, and describe its implementation in the graph transformation and visualisation tool PORGY.Comment: In Proceedings GRAPHITE 2014, arXiv:1407.767

    An Abstract Machine for Unification Grammars

    Full text link
    This work describes the design and implementation of an abstract machine, Amalia, for the linguistic formalism ALE, which is based on typed feature structures. This formalism is one of the most widely accepted in computational linguistics and has been used for designing grammars in various linguistic theories, most notably HPSG. Amalia is composed of data structures and a set of instructions, augmented by a compiler from the grammatical formalism to the abstract instructions, and a (portable) interpreter of the abstract instructions. The effect of each instruction is defined using a low-level language that can be executed on ordinary hardware. The advantages of the abstract machine approach are twofold. From a theoretical point of view, the abstract machine gives a well-defined operational semantics to the grammatical formalism. This ensures that grammars specified using our system are endowed with well defined meaning. It enables, for example, to formally verify the correctness of a compiler for HPSG, given an independent definition. From a practical point of view, Amalia is the first system that employs a direct compilation scheme for unification grammars that are based on typed feature structures. The use of amalia results in a much improved performance over existing systems. In order to test the machine on a realistic application, we have developed a small-scale, HPSG-based grammar for a fragment of the Hebrew language, using Amalia as the development platform. This is the first application of HPSG to a Semitic language.Comment: Doctoral Thesis, 96 pages, many postscript figures, uses pstricks, pst-node, psfig, fullname and a macros fil

    Towards a Step Semantics for Story-Driven Modelling

    Full text link
    Graph Transformation (GraTra) provides a formal, declarative means of specifying model transformation. In practice, GraTra rule applications are often programmed via an additional language with which the order of rule applications can be suitably controlled. Story-Driven Modelling (SDM) is a dialect of programmed GraTra, originally developed as part of the Fujaba CASE tool suite. Using an intuitive, UML-inspired visual syntax, SDM provides usual imperative control flow constructs such as sequences, conditionals and loops that are fairly simple, but whose interaction with individual GraTra rules is nonetheless non-trivial. In this paper, we present the first results of our ongoing work towards providing a formal step semantics for SDM, which focuses on the execution of an SDM specification.Comment: In Proceedings GaM 2016, arXiv:1612.0105

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation
    corecore