124 research outputs found

    Granger Causality-based Information Fusion Applied to Electrical Measurements from Power Transformers.

    Get PDF
    In the immediate future, with the increasing presence of electrical vehicles and the large increase in the use of renewable energies, it will be crucial that distribution power networks are managed, supervised and exploited in a similar way as the transmission power systems were in previous decades. To achieve this, the underlying infrastructure requires automated monitoring and digitization, including smart-meters, wide-band communication systems, electronic device based-local controllers, and the Internet of Things. All of these technologies demand a huge amount of data to be curated, processed, interpreted and fused with the aim of real-time predictive control and supervision of medium/low voltage transformer substations. Wiener–Granger causality, a statistical notion of causal inference based on Information Fusion could help in the prediction of electrical behaviour arising from common causal dependencies. Originally developed in econometrics, it has successfully been applied to several fields of research such as the neurosciences and is applicable to time series data whereby cause precedes effect. In this paper, we demonstrate the potential of this methodology in the context of power measures for providing theoretical models of low/medium power transformers. Up to our knowledge, the proposed method in this context is the first attempt to build a data-driven power system model based on G-causality. In particular, we analysed directed functional connectivity of electrical measures providing a statistical description of observed responses, and identified the causal structure within data in an exploratory analysis. Pair-wise conditional G-causality of power transformers, their independent evolution in time, and the joint evolution in time and frequency are discussed and analysed in the experimental section.This work was partly supported by the MINECO/ FEDER under the RTI2018- 098913-B100 project. The authors would like to acknowledge the support of 370 CDTI (Centro para el Desarrollo Tecnologico Industrial, Ministerio de Cien cia, Innovacion y Universidades and FEDER, SPAIN) under the PASTORA project (Ref.: ITC-20181102). and to thank the companies within the PAS TORA consortium: Endesa, Ayesa, Ormaz´abal and Ingelectus. We would like to thank the reviewers for their thoughtful comments and efforts towards im 375 proving our manuscript. Finally, JM Gorriz would like to thank Dr G´omez Exp´osito for his helpful advice and comments

    Connected system for monitoring electrical power transformers using thermal imaging

    Get PDF
    The stable supply of electricity is essential for the industrial activity and economic development as well as for human welfare. For this reason, electrical system devices are equipped with monitoring systems that facilitate their management and ensure an uninterrupted operation. This is the case of electrical power transformers, which usually have monitoring systems that allow early detection of anomalies in order to prevent potential malfunctions. These monitoring systems typically make use of sensors that are in physical contact with the transformer devices and can therefore be affected by transformer problems. In this work we demonstrate a monitoring system for electrical power transformers based on temperature measurements obtained by means of thermal cameras. Properly positioned, the cameras provide thermal data of the transformer, the incoming and outgoing lines and their surroundings. Subsequently, by appropriate image processing, it is possible to obtain temperature series to monitor the transformer operation. In addition, the system stores and processes thermal data in external equipment (placed in locations other than the transformers) and is equipped with a communications module that allows secure data transmission independent of the power grid. This aspect, along with the fact that there is no need to have physical contact with the transformer, make this approach safer and more reliable than standard approaches based on sensors. The proposed system has been evaluated in 14 stations belonging to the Spanish power grid, obtaining accurate and reliable temperature time seriesConsejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía)FEDER under B-TIC-586-UGR20P20-00525 projects and by the University of GranadaEndesa Distribución under the PASTORA (ref. EXP – 00111351/ITC-20181102)RESISTO (ref. 2021/C005/00144188) contract

    Automatic Diagnosis of Schizophrenia and Attention Deficit Hyperactivity Disorder in rs-fMRI Modality using Convolutional Autoencoder Model and Interval Type-2 Fuzzy Regression

    Get PDF
    Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning method. The University of California Los Angeles dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm, particle swarm optimization, and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron, k-nearest neighbors, support vector machine, random forest, and decision tree, and adaptive neuro-fuzzy inference system methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy

    An Attention-Based Multi-Domain Bi-Hemisphere Discrepancy Feature Fusion Model for EEG Emotion Recognition

    Get PDF
    Electroencephalogram (EEG)-based emotion recognition has become a research hotspot in the field of brain-computer interface. Previous emotion recognition methods have overlooked the fusion of multi-domain emotion-specific information to improve performance, and faced the challenge of insufficient interpretability. In this paper, we proposed a novel EEG emotion recognition model that combined the asymmetry of the brain hemisphere, and the spatial, spectral, and temporal multi-domain properties of EEG signals, aiming to improve emotion recognition performance. Based on the 10-20 standard system, a global spatial projection matrix (GSPM) and a bi-hemisphere discrepancy projection matrix (BDPM) are constructed. A dual-stream spatial-spectral-temporal convolution neural network is designed to extract depth features from the two matrix paradigms. Finally, the transformer-based fusion module is used to learn the dependence of fused features, and to retain the discriminative information. We conducted extensive experiments on the SEED, SEED-IV, and DEAP public datasets, achieving excellent average results of 98.33/2.46&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;%\%&lt;/tex-math&gt;&lt;/inline-formula&gt;, 92.15/5.13&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;%\%&lt;/tex-math&gt;&lt;/inline-formula&gt;, 97.60/1.68&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;%\%&lt;/tex-math&gt;&lt;/inline-formula&gt;(valence), and 97.48/1.42&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;%\%&lt;/tex-math&gt;&lt;/inline-formula&gt;(arousal) respectively. Visualization analysis supports the interpretability of the model, and ablation experiments validate the effectiveness of multi-domain and bi-hemisphere discrepancy information fusion.</p

    An Attention-Based Multi-Domain Bi-Hemisphere Discrepancy Feature Fusion Model for EEG Emotion Recognition

    Get PDF
    Electroencephalogram (EEG)-based emotion recognition has become a research hotspot in the field of brain-computer interface. Previous emotion recognition methods have overlooked the fusion of multi-domain emotion-specific information to improve performance, and faced the challenge of insufficient interpretability. In this paper, we proposed a novel EEG emotion recognition model that combined the asymmetry of the brain hemisphere, and the spatial, spectral, and temporal multi-domain properties of EEG signals, aiming to improve emotion recognition performance. Based on the 10-20 standard system, a global spatial projection matrix (GSPM) and a bi-hemisphere discrepancy projection matrix (BDPM) are constructed. A dual-stream spatial-spectral-temporal convolution neural network is designed to extract depth features from the two matrix paradigms. Finally, the transformer-based fusion module is used to learn the dependence of fused features, and to retain the discriminative information. We conducted extensive experiments on the SEED, SEED-IV, and DEAP public datasets, achieving excellent average results of 98.33/2.46&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;%\%&lt;/tex-math&gt;&lt;/inline-formula&gt;, 92.15/5.13&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;%\%&lt;/tex-math&gt;&lt;/inline-formula&gt;, 97.60/1.68&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;%\%&lt;/tex-math&gt;&lt;/inline-formula&gt;(valence), and 97.48/1.42&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;%\%&lt;/tex-math&gt;&lt;/inline-formula&gt;(arousal) respectively. Visualization analysis supports the interpretability of the model, and ablation experiments validate the effectiveness of multi-domain and bi-hemisphere discrepancy information fusion.</p

    Intelligent Condition Monitoring of Industrial Plants: An Overview of Methodologies and Uncertainty Management Strategies

    Full text link
    Condition monitoring plays a significant role in the safety and reliability of modern industrial systems. Artificial intelligence (AI) approaches are gaining attention from academia and industry as a growing subject in industrial applications and as a powerful way of identifying faults. This paper provides an overview of intelligent condition monitoring and fault detection and diagnosis methods for industrial plants with a focus on the open-source benchmark Tennessee Eastman Process (TEP). In this survey, the most popular and state-of-the-art deep learning (DL) and machine learning (ML) algorithms for industrial plant condition monitoring, fault detection, and diagnosis are summarized and the advantages and disadvantages of each algorithm are studied. Challenges like imbalanced data, unlabelled samples and how deep learning models can handle them are also covered. Finally, a comparison of the accuracies and specifications of different algorithms utilizing the Tennessee Eastman Process (TEP) is conducted. This research will be beneficial for both researchers who are new to the field and experts, as it covers the literature on condition monitoring and state-of-the-art methods alongside the challenges and possible solutions to them

    A Novel Data-Driven Fault Tree Methodology for Fault Diagnosis and Prognosis

    Get PDF
    RÉSUMÉ : La thèse développe une nouvelle méthodologie de diagnostic et de pronostic de défauts dans un système complexe, nommée Interpretable logic tree analysis (ILTA), qui combine les techniques d’extraction de connaissances à partir des bases de données « knowledge discovery in database (KDD) » et l’analyse d’arbre de défaut « fault tree analysis (FTA) ». La méthodologie capitalise les avantages des deux techniques pour appréhender la problématique de diagnostic et de pronostic de défauts. Bien que les arbres de défauts offrent des modèles interprétables pour déterminer les causes possibles à l’origine d’un défaut, leur utilisation pour le diagnostic de défauts dans un système industriel est limitée, en raison de la nécessité de faire appel à des connaissances expertes pour décrire les relations de cause-à-effet entre les processus internes du système. Cependant, il sera intéressant d’exploiter la puissance d’analyse des arbres de défaut mais construit à partir des connaissances explicites et non biaisées extraites directement des bases de données sur la causalité des fautes. Par conséquent, la méthodologie ILTA fonctionne de manière analogue à la logique du modèle d'analyse d'arbre de défaut (FTA) mais avec une implication minimale des experts. Cette approche de modélisation doit rejoindre la logique des experts pour représenter la structure hiérarchique des défauts dans un système complexe. La méthodologie ILTA est appliquée à la gestion des risques de défaillance en fournissant deux modèles d'arborescence avancés interprétables à plusieurs niveaux (MILTA) et au cours du temps (ITCA). Le modèle MILTA est conçu pour accomplir la tâche de diagnostic de défaillance dans les systèmes complexes. Il est capable de décomposer un défaut complexe et de modéliser graphiquement sa structure de causalité dans un arbre à plusieurs niveaux. Par conséquent, un expert est en mesure de visualiser l’influence des relations hiérarchiques de cause à effet menant à la défaillance principale. De plus, quantifier ces causes en attribuant des probabilités aide à comprendre leur contribution dans l’occurrence de la défaillance du système. Le modèle ITCA est conçu pour réaliser la tâche de pronostic de défaillance dans les systèmes complexes. Basé sur une répartition des données au cours du temps, le modèle ITCA capture l’effet du vieillissement du système à travers de l’évolution de la structure de causalité des fautes. Ainsi, il décrit les changements de causalité résultant de la détérioration et du vieillissement au cours de la vie du système.----------ABSTRACT : The thesis develops a new methodology for diagnosis and prognosis of faults in a complex system, called Interpretable logic tree analysis (ILTA), which combines knowledge extraction techniques from knowledge discovery in databases (KDD) and the fault tree analysis (FTA). The methodology combined the advantages of the both techniques for understanding the problem of diagnosis and prognosis of faults. Although fault trees provide interpretable models for determining the possible causes of a fault, its use for fault diagnosis in an industrial system is limited, due to the need for expert knowledge to describe cause-and-effect relationships between internal system processes. However, it will be interesting to exploit the analytical power of fault trees but built from explicit and unbiased knowledge extracted directly from databases on the causality of faults. Therefore, the ILTA methodology works analogously to the logic of the fault tree analysis model (FTA) but with minimal involvement of experts. This modeling approach joins the logic of experts to represent the hierarchical structure of faults in a complex system. The ILTA methodology is applied to failure risk management by providing two interpretable advanced logic models: a multi-level tree (MILTA) and a multilevel tree over time (ITCA). The MILTA model is designed to accomplish the task of diagnosing failure in complex systems. It is able to decompose a complex defect and graphically model its causal structure in a tree on several levels. As a result, an expert is able to visualize the influence of hierarchical cause and effect relationships leading to the main failure. In addition, quantifying these causes by assigning probabilities helps to understand their contribution to the occurrence of system failure. The second model is a logical tree interpretable in time (ITCA), designed to perform the task of prognosis of failure in complex systems. Based on a distribution of data over time, the ITCA model captures the effect of the aging of the system through the evolution of the fault causation structure. Thus, it describes the causal changes resulting from deterioration and aging over the life of the system

    Modern Views of Machine Learning for Precision Psychiatry

    Full text link
    In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research

    A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection

    Full text link
    Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. Approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: Forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and, finally, discuss mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting both the foundations, practical applications, and opportunities of graph neural networks for time series analysis.Comment: 27 pages, 6 figures, 5 table
    corecore