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RÉSUMÉ 

La thèse développe une nouvelle méthodologie de diagnostic et de pronostic de défauts dans un 

système complexe, nommée Interpretable logic tree analysis (ILTA), qui combine les techniques 

d’extraction de connaissances à partir des bases de données « knowledge discovery in database 

(KDD) » et l’analyse d’arbre de défaut « fault tree analysis (FTA) ». La méthodologie capitalise 

les avantages des deux techniques pour appréhender la problématique de diagnostic et de pronostic 

de défauts. Bien que les arbres de défauts offrent des modèles interprétables pour déterminer les 

causes possibles à l’origine d’un défaut, leur utilisation pour le diagnostic de défauts dans un 

système industriel est limitée, en raison de la nécessité de faire appel à des connaissances expertes 

pour décrire les relations de cause-à-effet entre les processus internes du système. Cependant, il 

sera intéressant d’exploiter la puissance d’analyse des arbres de défaut mais construit à partir des 

connaissances explicites et non biaisées extraites directement des bases de données sur la causalité 

des fautes. Par conséquent, la méthodologie ILTA fonctionne de manière analogue à la logique du 

modèle d'analyse d'arbre de défaut (FTA) mais avec une implication minimale des experts. Cette 

approche de modélisation doit rejoindre la logique des experts pour représenter la structure 

hiérarchique des défauts dans un système complexe. 

La méthodologie ILTA est appliquée à la gestion des risques de défaillance en fournissant deux 

modèles d'arborescence avancés interprétables à plusieurs niveaux (MILTA) et au cours du temps 

(ITCA). Le modèle MILTA est conçu pour accomplir la tâche de diagnostic de défaillance dans les 

systèmes complexes. Il est capable de décomposer un défaut complexe et de modéliser 

graphiquement sa structure de causalité dans un arbre à plusieurs niveaux. Par conséquent, un 

expert est en mesure de visualiser l’influence des relations hiérarchiques de cause à effet menant à 

la défaillance principale. De plus, quantifier ces causes en attribuant des probabilités aide à 

comprendre leur contribution dans l’occurrence de la défaillance du système. Le modèle ITCA est 

conçu pour réaliser la tâche de pronostic de défaillance dans les systèmes complexes. Basé sur une 

répartition des données au cours du temps, le modèle ITCA capture l’effet du vieillissement du 

système à travers de l’évolution de la structure de causalité des fautes. Ainsi, il décrit les 

changements de causalité résultant de la détérioration et du vieillissement au cours de la vie du 

système.  
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ABSTRACT 

The thesis develops a new methodology for diagnosis and prognosis of faults in a complex system, 

called Interpretable logic tree analysis (ILTA), which combines knowledge extraction techniques 

from knowledge discovery in databases (KDD) and the fault tree analysis (FTA). The methodology 

combined the advantages of the both techniques for understanding the problem of diagnosis and 

prognosis of faults. Although fault trees provide interpretable models for determining the possible 

causes of a fault, its use for fault diagnosis in an industrial system is limited, due to the need for 

expert knowledge to describe cause-and-effect relationships between internal system processes. 

However, it will be interesting to exploit the analytical power of fault trees but built from explicit 

and unbiased knowledge extracted directly from databases on the causality of faults. Therefore, the 

ILTA methodology works analogously to the logic of the fault tree analysis model (FTA) but with 

minimal involvement of experts. This modeling approach joins the logic of experts to represent the 

hierarchical structure of faults in a complex system. 

The ILTA methodology is applied to failure risk management by providing two interpretable 

advanced logic models: a multi-level tree (MILTA) and a multilevel tree over time (ITCA). The 

MILTA model is designed to accomplish the task of diagnosing failure in complex systems. It is 

able to decompose a complex defect and graphically model its causal structure in a tree on several 

levels. As a result, an expert is able to visualize the influence of hierarchical cause and effect 

relationships leading to the main failure. In addition, quantifying these causes by assigning 

probabilities helps to understand their contribution to the occurrence of system failure. The second 

model is a logical tree interpretable in time (ITCA), designed to perform the task of prognosis of 

failure in complex systems. Based on a distribution of data over time, the ITCA model captures the 

effect of the aging of the system through the evolution of the fault causation structure. Thus, it 

describes the causal changes resulting from deterioration and aging over the life of the system.  
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 INTRODUCTION 

 

Manufacturing before the 18th century was occurring in people’s homes, using very basic tools. In 

this era, manufacturing systems were very simple using few components, so their interrelations and 

behaviors were fully comprehensible and predictable (Taguchi & Chowdhury, 2004).  During this 

century, a major industrial revolution took place and changed the manufacturing process. 

Consequently, the world’s economy also shifted from handicrafts to an industrialized economy, 

which transformed machinery systems and resulted in mass production.  

Over the past three centuries, innovations and development in an industrialized organization helped 

automate industrial processes to achieve more complex tasks. The implementation of cloud 

computing, internet of things (IOT), artificial intelligence (AI) and cyber-physical systems have 

revolutionized this era to build a new generation of systems known as “Industry 4.0”, which are 

smarter systems with more complex structures and many connected subsystems and components 

(Martinez, Lara, Saucedo, & Fierro, 2018).  

Although Industry 4.0 has had a dramatic impact on enhancing the productivity of industrial 

systems and their automated processes, this new concept has led to further complication to a 

system’s structure (Mourtzis, Papakostas, & Makris, 2019). These new systems are mainly 

characterized by non-linear dynamics and have diverged from their superposition principles 

(Socolar, 2006). In addition, they are composed of many interconnected subsystems and 

components with a complex hierarchical structure. Their interrelations and interdependencies are 

complex to understand, compared to old systems (Torngren & Sellgren, 2018). 

Therefore, the challenge is to sustain the performance of complex systems at a level that will 

maximize the system’s availability and productivity. This objective can be achieved through 

effective risk management, which considers the different risk factors that result from a system’s 

diversity and connectivity. This effectiveness is accomplished through the involvement of different 

approaches and tools that are conducted by the new technologies’ capabilities and the power of 

data.  

 



2 

 

This chapter is organized as follows. Section 1.1 depicts a risk management roadmap and the 

possible types of risks that the industrial system could face. Then, focus is made to the fault risk, 

as the most important and avoidable risk that needs to be managed in order to sustain the system’s 

performance at an acceptable level. In Section 1.2, the different types of maintenance plans are 

investigated in order to propose a reliable risk management strategy to manage fault risk. 

Accordingly, condition-based maintenance (CBM) is selected because of its advantages over other 

strategies in managing the fault through its continuous monitoring. In Section 1.3, CBM steps are 

discussed, where more focus is relayed to the decision-making step. The different approaches for 

constructing fault diagnosis and prognosis models are explored, where these models form the core 

of the CBM decision making for fault management. In Section 1.4, the problem statement that 

crystalizes this thesis is depicted and followed by the thesis objectives in Section 1.5. Finally, the 

last section represents the organization of the thesis. 

1.1 Risk Management of a Complex System 

Complicated and complex systems are fundamentally different systems in term of understanding 

their events causality, system linearity and controllability. Complicated system includes many 

subsystems that have independent relationship, its event causality has linear cause-and-effect 

pathways and every system output has a corresponding input. On the other hand, complex system 

includes a network of subsystems and components that characterized with complex dependences 

and multiple interacting causes that hard to recognize with a clear pattern (Grabowski & Strzalka, 

2008).  

Due to nowadays systems complexity, managing the system physical asset such as components, 

equipment and production line required diversified capabilities such as human, informational and 

finical capabilities. Asset Management (AM) focus on employs those relevant capabilities for 

managing the whole system physical asset portfolio. Through AM, the assets that have direct or 

indirect impacts on the customer (e.g. assets that part of production line) are managed by avoiding 

the failures and directly absorbing the consequences (Abbas & Shafiee, 2020). Risk management 

has turn to be integral part of an efficient AM implementation, as the levels of system complexity 
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that needs specialization increases. Dedicated Risk Management is designated to control the system 

risks myriad and diversity to which assets are exposed (Analouei, Taheriyoun, & Safavi, 2020).  

Risk management exploits engineering and management knowledge to reduce and eliminate risks 

(Gilbert, Amalberti, Laroche, & Paries, 2007). This objective can be achieved by understanding 

the elements of the system and their related risks in order to modify or redesign the system until 

reaching an acceptable level of safety. The essential steps of risk management are depicted in 

Figure 1.1 according to ISO 31000 (Purdy, 2010).  

 

Figure 1.1 Schematic diagram for risk management ISO 31000:2009 (Purdy, 2010) 

The “Establish the Context” step defines the context of the risks based on the system structure and 

the relations of its outputs & inputs. The “Risk Identification” step identifies the possible internal 

and external risks. The “Risk analysis” step evaluates and quantifies each identified risk and its 

impact on the system. The “Risk evaluation” step validates the risk feasibility and evaluate the 

cyber-risks acceptance. The “Risk treatment” step proposes a set of decisions in order to minimize 

the risk impacts on the system. 

The Risk identification is the main step of the roadmap towards successful risk analysis and 

management. At this step, the risks are classified according to their probabilities and likelihood. 

The risks are later inspected at the risk analysis step. The diversity of aspects in a complex system, 

such as technical and socioeconomic, urges to propose new risk classifications, facilitate the risk 

identification step. 
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Institutions and enterprises define risks through different perceptions. Each perception is shaped 

based on a system’s structure. In general, Kaplan, and Mikes (2012) summarized the different risk 

classifications into three main categories: strategic, external and avoidable risks.  

Strategic risks happen due to failures in managerial and business decisions. External risks are hard 

to predict due the causes of the external factors. On the other hand, avoidable risks are internal 

abnormal events in the system that have direct impact on the system’s performance and its 

production outcomes. Contrary to strategic and external risks, avoidable risks are derived from 

shortening in a system’s internal dynamics and can be directly managed through system control 

parameters. The occurrences of avoidable risks can be quantified by analyzing a system’s reliability 

(Yoon & Youn, 2019).  

The most well-known, avoidable risk in industrial systems is the fault. The fault is an internal event 

caused from a deviation in the system behaviour and its expected normal response. It is treated in 

the same manner, as depicted in Figure 1.1. The fault risk is identified and its consequences are 

analyzed and evaluated to implement the risk management that minimizes its occurrence and its 

contribution to system failure (Zhi-jun & Yan, 2015).  

The main objective of fault risk management is to sustain the system at acceptable performance 

and security levels by eliminating their occurrence. According to Kaplan, and Mikes (2012), the 

procedures of eliminating those risks can be achieved through different maintenance strategies. 

The strategies are depicted in the next subsection, along with their strengths and limitations for 

better managing the fault risk in industrial systems.  

1.2 Maintenance strategies 

Maintenance strategies are focused on eliminating the consequences of avoidable risks (faults) in 

industrial systems (He, X., Tong, & Chen, 2007). They integrate both reliability and safety in order 

to develop an optimal maintenance strategy for managing faults and minimizing the probability of 

a system failure that may occur from potential faults. This topic remains a critical research point 

for reliability and safety engineering that has pushed them to develop different maintenance 

strategies for maintaining the system at reliable and cost-effective operations (Telukdarie, Ndlovu, 

& Medoh, 2018). Various maintenance strategies over the past several years have been proposed. 
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According to the literature, they can be divided into two categories: “Corrective Maintenance” and 

“Preventive Maintenance,” as depicted in Figure 1.2. 

 

Figure 1.2 Main types of maintenance strategies  

Corrective maintenance (CM) is described as a strategy performed after failure happens. The 

causes’ faults are identified, isolated and rectified to restore the system to a state that can perform 

its required functions normally (Kothamasu, Huang, & VerDuin, 2006). CM is a running to failure 

strategy that is applied once the failure occurs to restore the system to its recommended 

performance. It can be efficient when the failure’s consequences are limited and do not need urgent 

repairs (Polotski, Kenne, & Gharbi, 2019). On the other hand, preventive maintenance (PM) is 

described as a strategy that performs maintenance tasks, such as inspection and serving at 

predetermined intervals, or by monitoring the system performance to minimize the future system’s 

failure probabilities and to improve its degraded performance (Kothamasu et al., 2006). The key 

difference between the two main strategies is that CM is a reaction strategy that requires the failure 

to occur first, besides its unscheduled strategy, whereas PM aims to prevent the failure before it 

happens through a scheduled plan (Velmurugan & Dhingra, 2015). 

Emergency maintenance (EM) is one of the more well-known CM strategies, which is applied only 

in emergency situations due to unexpected fault. It is not preferred to use the EM frequently, since 

it is usually more expensive than the normal maintenance. In addition, it leads to a longer system 

outage and dramatic impact on production (Mesenzhnik, Prut, Gnedin, & Bugrova, 1990).  

Maintenance 
strategies 

Corrective 
maintenance 

(CM)

Emergency 
maintenance 

(EM)
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maintenance 
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Time Based 
maintenance 

(TBM)

Condition Based 
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PM subtypes are divided into two main categories: time-based maintenance (TBM) and condition-

based maintenance (CBM). TBM aims to restore the system’s reliability at fixed time intervals to 

prevent the occurrence of failure by predicting the mean time between failure (MTBF) (de Jonge, 

B., Dijkstra, & Romeijnders, 2015). It assumes that failures are mainly age related, which is an 

assumption that is too simple for the complexity of present-day failures. On the other hand, CBM 

considers the faults to be warning indicators for abnormalities in the system process that could lead 

to a failure. Therefore, it monitors the system performance by looking for evidence related to the 

occurrence of faults, in order to recommend a maintenance action to treat those faults (Kumar, S., 

Goyal, Dang, Dhami, & Pabla, 2018).  

Deciding between CM and PM strategies is achieved based on the system failure rate, which has 

different behaviors over the system’s life time, and requires different maintenance strategies to 

adapt to changes over time. Figure 1.3 depicts the failure rate trend versus the lifetime of the 

industrial system, which is known as the bathtub curve. 

( Region A ) ( Region B ) ( Region C )

 

Figure 1.3 Typical bathtub curve (Suhir, 2015) 

It has been observed that the failure rate trend can be divided into three main patterns, which defines 

three categories of the failure: early infant mortality (Region A), constant (Region B) and wear-out 

failures (Region C).  

• Region A is characterized by an initial decreasing failure rate that happens due to the lack 

in design and lack of adequate controls. The failures can be eliminated through corrective 
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maintenance, since the intervention actions are only limited to correcting the limitations in 

system design.  

• Region B is characterized by the lowest constant failure rate, which is considered to be the 

useful lifetime of the system. The failures mainly happen due to chance, after redesigning 

and configuring the system well. They can be eliminated through corrective maintenance 

strategy.  

• Region C is characterized by an increase in failure rate as a result of system deterioration 

due to wear-out. The increase in failures can be held up and the system lifetime can be 

extended via a preventive maintenance strategy that focuses on minimizing the possible 

failure occurrences (Jardine & Tsang, 2005).   

Wear-out is a degradation and deterioration in system elements due to an impact of the fault 

appearance and its development. It is a very critical stage in the system lifetime, as the 

deficiencies in its management lead to a complete system failure (Wilkins, 2002). 

Regarding system performance in region C, it can be categorized into two working states: 

the normal and degradation state. According to Ahmadi (2012), the system can deliver its 

main functions in both the normal and degradation states, as follows:  

• The normal state can be maintained if the system is kept at the beginning of region 

C. The system leads to fewer production defects and malfunctions. The objective of 

PM in that region is to maintain the system in good working condition as long as 

possible so that its failure rate still close to the lower failure rate of region B. This 

objective can be achieved by monitoring the system’s health condition through the 

assigned thresholds that reflecting the system degradation state. The system will 

enter into a degradation state if the conditions exceed those thresholds. 

• The degradation state occurs when the system enters deeply in the wear-out 

region. Consequently, the PM performs a set of maintenance actions by overpassing 

this threshold to return the system to its normal state.  

The best PM strategy for region C is CBM, since maintenance actions are only performed 

when evidence related to system deterioration is detected due to the occurrence of faults. The 

CBM strategy performs more than the other PM strategies because it ensures the system’s 
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reliability and the safety of the system. In addition, it minimizes the overall cost by 

continually monitoring the system’s health condition and the degradation state.  

Thanks to the great development of wireless sensors (!!! INVALID CITATION !!! ), 

engineers can easily verify the system health conditions to periodically measure a huge 

quantity of data and sends them to a data center (DC). With the support of this collected data 

in DC, the knowledge of the system’s health state is extracted and the implementation of 

CBM provides efficient, continuous system monitoring. In addition, sustaining the system’s 

reliability through CBM is more effective by considering the current system state rather than 

performing repairs at calculated elapsed times, as in TBM. Moreover, the system’s 

complexity impacts the accurate estimation of MTBF in TBM, based on the failure 

distribution for precisely defining the predetermined maintenance intervals (Lai, Jiang, & 

Jackson, 2019). In the next section, the CBM steps that manage the faults in region C (wear-

out) are discussed.   

1.3 Condition Based Maintenance (CBM)  

Nowadays, a huge shift in maintenance strategies has been directed towards CBM due to its 

adequate solutions for scheduled preventive actions. These actions optimize the system’s 

availability against its degradation as long as possible (Liu, Yunpeng, Xu, Li, Xia, & Gao, 2019). 

The CBM combines different methods and tools that go through procedures in order to distinguish 

the fault events for triggering preventive actions (Tahan, Tsoutsanis, Muhammad, & Abdul Karim, 

2017). Briefly, the CBM procedures are done through perceiving, first the fault event, then 

understanding and anticipating its future manifestation by assigning preventive actions accordingly 

(Bianchini, Rossi, & Antipodi, 2018). The success of CBM tasks are centred on identifying and 

controlling the fault root-causes that affect the fault evolution over time.  

The fault diagnosis and prognosis are the two main pillars of a CBM strategy. They are analytical 

procedures that provide expert with comprehensive knowledge to understand, identify and 

anticipate the fault’s behavior. Fault diagnosis is a causality analysis process that involves the 

system’s historical failures, which are deeply analyzed through fault detection, isolation and 

identification steps, as follows:  
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• Fault Detection: The fault detection step is a task that recognizes the fault’s occurrence. 

This is realized by determining and verifying specific system indicators related to the fault 

inside the system process (Habibi, Howard, & Simani, 2019).  

• Fault Isolation: The fault isolation step is a task that separates the faulty internal event 

from the normal internal events of the system. This isolation is done by assigning a set of 

particular causes related to the faulty event occurrence (Javed, Chen, Farrag, & Xu, 2019).  

• Fault Identification: The fault identification focuses on how the fault impacts the system 

by understanding the fault causality structure and its cause-effect relationship (Kordes, 

Wurm, Hozhabrpour, & Wismuller, 2018).   

Hence, the fault diagnosis aims to provide essential causality knowledge about the fault event 

occurrence at a certain period over the system’s life. However, the development of a future fault 

and its impact on the system are still missing. Since complex industrial systems are subject to 

deterioration, those events are subject to developing over the period as the system ages. 

Consequently, the limitation of the fault diagnosis is complemented by the fault prognosis for 

understanding the future behavior of the fault. The fault prognosis is an anticipatory analysis that 

predicts the future development behavior of the fault event. It uses available knowledge about the 

system to forecast future fault behaviour (Jiang, Wu, Lu, & Mao, 2018).  

Both a fault’s diagnosis and prognosis are combined to mange the fault through the CBM strategy. 

They provide essential knowledge extracted from the previous system’s evidence of faults and are 

treated as posterior comprehension knowledge. This knowledge anticipates the manifestation of a 

future fault and forms the decision-making core of the CBM strategy by deploying preventive 

actions. This extracted knowledge is preserved and captured in the CBM by the fault diagnosis and 

prognosis embedded models. Recognizing and analyzing those events are executed by continually 

monitoring the state of the system health conditions. The system’s stream data is verified by those 

models to identify the faulty events and then the related decision actions are taken accordingly. As 

depicted in figure 1.4, the CBM strategy adapts three main steps to achieve this objective (Jardine, 

Lin, & Banjevic, 2006). 
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Figure 1.4 Main steps of CBM  

 

Step 1 - Data acquisition: Data is organized and collected from the system’s operational control 

histories and its measured performance sensors network is distributed over the system processes to 

explain its general state.  

Step 2 - Data processing: This consists of two tasks: signal processing and data cleaning. Signal 

processing is more related to the sensors’ signal outputs, where signal pre-processing techniques 

and feature extraction are applied to preserve only useful knowledge. Data cleaning is applied to 

all of the collected data, and outliers’ observations are verified and classified into meaningful and 

noisy observations. In addition, this task removes redundant variables and deals with the missing 

values in data observations (Loukopoulos et al., 2017).  

Step 3 - Decision making: The system’s faulty states are verified through the processed data by 

the fault diagnosis and prognosis of embedded models. Those models are trained to recognize the 

deviation in the system’s operation states outside its recommended limitations. According to the 

model's description and analysis results, sets of preventive and intrusive actions are performed to 

treat the causes of the fault and control its future consequences (Manling et al., 2019). The fault 

diagnosis and prognosis of embedded models in CBM can be built and trained based on two 

different approaches: model-based and data-driven.  

The model-based approach is built based on the physics of the system. It is an analytical model 

that captures the relation between inputs and outputs of the system. Moreover, it can be developed 

from a set of equations or graphical causal models such as diagrams and trees. It is constructed 

based on the expert’s experiences. The model’s represented knowledge is mainly influenced by 

experts’ understanding of the system (Luo et al., 2005).  

Step 1

Data acquisition

Step 2

Data processing

Step 3

Decision making
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As reported in (Ayyub, 2014; Baig, Ruzli, & Buang, 2013), the fault tree analysis (FTA) is one of 

the more well-known model-based approaches that is commonly used in risk management and 

reliability analysis. The FTA provides many advantages. First, it is easy to understand and interpret. 

Second, it is a flexible approach to represent the fault hierarchical structure. Third, the FTA is a 

probability-based method that depicts the probability in a bottom-up approach, starting from basic 

and intermediate event probabilities, reaching up to the probability of the top event. These 

probabilities provide the decision makers with a quantitative estimation of how the cause events 

are combined together to influence the probability of the top faulty event’s occurrence. 

On the other hand, the data-driven approach is built based on the system’s historical data in order 

to discover the relations and dependences of the system elements on each other. It uses machine 

learning and pattern recognition techniques to extract knowledge that map the data measurements 

with the fault event occurrence. It is self-constructed in models where an expert’s intervention is 

limited to validation and improvement, unlike the model-based approaches in which the expert will 

need to be involved during the construction process (Yuchen, Shen, & Kaynak, 2018).  

Granger causality is one of the well-known causality analysis techniques for fault diagnosis 

(Alizadeh, E., El Koujok, M., Ragab, A., & Amazouz, M., 2018; Ntalampiras, 2018). It describes 

the statistical dependencies between variables depicted with arcs in a graph. The graph describes 

the interaction between system variables and information flow. This causal relationship between 

the system processes measurements is very useful to understand the fault occurrence and determine 

its related root-causes. Moreover, the represented knowledge is unbiased and an essential 

advantage for complex systems when the expert’s knowledge has become too limited to understand 

the system’s complex structure. 

1.4 Problem statement 

Significant development had been made in the fault diagnosis and prognosis domain that has helped 

the experts to build a reliable model that can be implemented and form the core of the CBM 

decision-making process. Model-based approaches are able to represent the fault causality 

knowledge in an interpretable manner, which facilitates the decision-making process.  

However, building a model by the expert with an accurate understanding of representing complex 

fault events with its related causes is a challenging task. In addition, the construction of such a 
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model is a tedious and a time-consuming task, as long as the complexity of the system increases. 

Such a task requires the involvement of expertise from different domains. With a simple system, 

the faults have a straightforward relationship with the associated causes and building its model is 

relatively accurate. 

On the other hand, the graphical data-driven approach is able to extract useful and unbiased 

knowledge easily from complex systems. It summarizes the huge amount of data in a useful 

predictive model or meaningful knowledge. The data-driven graphical models attempt to represent 

the fault’s causality knowledge with a graph or tree to describe the interaction between system 

variables. However, those models lack the decomposition capability of the model-based to 

represent the fault into hierarchical causes. Therefore, those models are relatively accurate in 

predicting the fault’s quantification and only represents its initial causes. Table 1.1 summarizes the 

advantages and limitations for the both model-based and data-driven approaches.   

Table 1.1 Model-based and data-driven advantages and limitations 

 Model-based approach Data-driven approach 

Advantages 
Easily demonstrating the fault 

causality structure. 

Automatic constructed models that extract  

unbiased causality knowledge from the data. 

Limitations 
Limited in complex systems and 

could reflect biased knowledge. 

Missing the expert logic to easily  

demonstrating the causality structure. 

Accordingly, this thesis addresses the following two major challenges: 

1. In complex systems, building a model based on the experts is very complex, as it is hard to 

depict the fault causality structure that finds the relationship between the main event, the 

intermediate events and the root-causes. Therefore, a new methodology that is able to 

automatically construct the models for complex systems has to be developed to take 

advantage of the interpretability of the model-based approach. 

2. In contrast, the current data-driven approaches lack the capability to interpret the industrial 

faults problems, discover dependencies and build the causality structure, which represent 

crucial links between the preserved knowledge in the data and the expert’s understanding. 

Therefore, the need to develop a new methodology is strongly recommended, to unlock the 

data value in an appropriate, interpretable manner to represent and discover the hidden fault 

causality from the data. 



13 

 

1.5 Main objective and contributions of the thesis 

This thesis aims to propose an approach for building a graphical data-driven fault tree model that 

links the model-based with the data-driven approaches. The novelty of this thesis is to use the FTA 

logic for decomposing the fault to its causality structure as a graphical interface that represents the 

automatically discovered fault knowledge by the data-driven patterns. Therefore, the proposed 

methodology introduces an automatic construction approach for a model that is similar to FTA, but 

builds directly from the data. This new, hybrid version of a model will be able to overcome the 

limitations of the data-driven and model-based approaches to maximize the diagnosis and 

prognosis of a fault in a complex system.  

The construction procedures start by extracting the patterns from the dataset and connecting them 

using Boolean logic gates to model and describe the main fault causality. The patterns that represent 

the different fault causality events are extracted automatically from the system’s database. 

Consequently, the expert’s role is only to validate or enrich the obtained model. 

In this thesis, the proposed approach aims to build models that are able to well diagnose and 

prognose the fault through achieving a set of objectives. The easiness of model construction and 

the easiness of demonstrating the fault hierarchical causality structure for the fault diagnosis task. 

While, modeling the degradation over the fault causality structure and modeling the changes in that 

causality structure over time for the fault prognosis task. 

This thesis proposes three contributions toward understanding the problem statement and achieving 

the main objectives noted above. Three scientific papers were prepared and submitted in the Expert 

Systems with Applications journal, where one of the papers has already been published and the 

two others are under review.  

Contribution 1. One-level interpretable logic tree analysis model (ILTA-model) 

Contribution 1 develops the one-level ILTA-model, which is able to construct a one level tree that 

diagnoses the root-causes of simple systems. This paper proposes an automatic approach for 

constructing the fault tree based on the extracted knowledge from the system database. It provides 

an estimation of fault occurrence with a set of control rules for managing the consequences of the 

fault occurrence. The model’s performance is validated based on simulated data from a simple 

actuator system. 
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Contribution 2. Multi-level interpretable logic tree analysis model (MILTA-model) 

Contribution 2 develops the MILTA-model that addresses the fault diagnosis challenges in 

complex systems. The model improves the ILTA-model to address the fault diagnosis where the 

causality structure between the root-causes, intermediate causes and the fault event is complex. 

The model construction and exploitation are validated using a complex fault of a real actuator 

installed in sugar production processes. 

Contribution 3. Interpretable time causality analysis model (ITCA-model) 

Contribution 3 develops the ITCA-model that addresses the fault prognosis challenges in complex 

systems over time. The ITCA-model considers the effect of the system aging on the changing of 

the fault causality structure at different periods of time. The model integrates the results of the 

ILTA and MILTA models over the system’s life. The model performance is validated based on the 

NASA dataset for turbofan engine performance degradation. Table 1.2 summarizes and links the 

thesis objectives with contributions. 

Table 1.2 Thesis contributions 

 Fault diagnosis Fault prognosis 

Objectives 
Easiness of model 

construction 

Easiness of 

demonstrating the 

fault hierarchical 

causality structure 

Modelling the 

degradation over 

the fault causality 

structure 

Modelling the 

changing in the 

causality structure 

over the time 

Model name 

ILTA model    

MILTA model   

ITCA model 

Contribution 

Construct the FTA 

directly from the 

data with the 
minimal expert 

involvements. 

The fault 
decomposition 

process is 

achieved with the 

same manner as 

the expert did. 

The degradation 

and its effect on 

the fault causality 

structure is 
automatically 

captured over 

time. 

The changing in 

the fault causality 

structure over 

time are 
graphically 

represented in one 

model.  
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1.6 Thesis organization 

This thesis is divided into seven chapters. Chapter 2 reviews the methods and techniques of model-

based and data-driven approaches for fault diagnosis and prognosis. It focuses on recent related 

developments and highlights the research gaps. Chapter 3 provides an overview of the proposed 

methodology that addresses the three aforementioned objectives, as well as the common thread 

between the three models. Chapter 4 presents the first contribution of the thesis, the ILTA-model 

construction, validation and exploitation. Chapter 5 presents the second contribution of the thesis, 

the MILTA-model for fault diagnosis in complex systems. Chapter 6 presents the third contribution 

of the thesis, the ITCA-model, which provides a time causality analysis of a complex fault. Finally, 

Chapter 7 and 8 provides a general discussion and the conclusions about the three models proposed, 

followed by future research.  
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 CRITICAL LITERATURE REVIEW 

 

A fault is an internal system event that concerns one or more parts of a system, which results in the 

system response deviating from its expected behavior. Consequently, a fault produces performance 

drifts from the expected outputs such as defective products, low quality and service outage reaching 

to accidents.  

In this chapter, the current fault diagnosis and prognosis approaches and models are investigated 

to manage the fault risk and its consequences in complex industrial systems. Section 2.1 depicts 

the fault diagnosis and prognosis procedures and the main challenges of their application in real 

situations. Section 2.2 reviews the data-driven and model-based approaches in fault diagnosis and 

prognosis domains. The main differences between these two main approaches are highlighted and 

the data exploitation to build their models is discussed. Sections 2.3 and 2.4 focus on the literature 

review of fault diagnosis and prognosis using the data-driven models. Similarly, sections 2.5 and 

2.6 address the fault diagnosis and prognosis model-based models. Finally, Section 2.7 summarizes 

the limitations and weaknesses in the different fault diagnosis and prognosis models, leading to the 

conclusion about the research motivation for this thesis.  

2.1 Fault diagnosis and prognosis approaches 

Fault events may occur due to internal or external causes. External causes could be harsh and 

abnormal operating conditions or factors of a working environment, such as extreme temperature 

and humidity. Whereas the internal causes could be, for instance, missing lubrication that leads to 

early wear-out (Isermann, 2006). Fault occurrence could be classified as an abrupt, incipient or 

intermittent fault. An abrupt fault appears suddenly and has a continuous effect on the system (e.g. 

connection cut off). While an incipient fault happens gradually (e.g. gradually increasing the wear-

out of mechanical gear) and has a progressive effect on the system. Finally, an intermittent fault 

occurs and disappears frequently (e.g. a computer software fault).  

Meanwhile, the fault impact on the system’s performance could be classified into permanent and 

temporary. The permanent impact cannot disappear, while the temporary impact may be resolved 

with corrective action (Zolghadri, Henry, Cieslak, Efimov, & Goupil, 2014). The evolution of the 

faults events over time without interaction with the correction or prevention actions could lead to 
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a failure, which is a set of functions and objectives that the system failed to achieve them due to 

the fault occurrence and development (Hamill & Goseva-Popstojanova, 2009). Figure 2.1 depicts 

a flowchart for supervising and controlling the causes of a fault and its impact on the system 

according to (Isermann, 2006).  

 

Figure 2.1 Supervision and control flowchart (Isermann, 2006) 

With regards to monitoring and protection, only certain variables are selected from the system’s 

internal processes that have a direct relation with the fault occurrence (fault indicators), such as the 

variables (U and Y), as depicted in Figure 2.1. The fault indicators are employed to define the fault 

tolerance threshold that will trigger the system’s alarm to recall the operators (Amin & Hasan, 

2019; Cui et al., 2018). A protection subsystem is automatically activated once those fault tolerance 

thresholds are violated (Rui & Lie, 2018).  

However, monitoring and protection provides an expert with fault knowledge to indicate the fault 

occurrence without deeply investigating the fault corresponding causality. This is very superficial 
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knowledge to support the expert in understanding the fault’s root causes and taking an appropriate 

action. 

Supervision with CBM fault diagnosis and prognosis provides an expert with all of the required 

knowledge about the fault’s characteristics, occurrence and behaviour. CBM helps propose more 

fault management actions. The fault indicators such as (U and V) with other included process 

variables are collected, since this level needs more explainable variables to provide deep fault 

analysis (Wurzel & Hasbroucq, 2015).  The analysis result diagnoses the fault via its root causes 

(Omidi & Liu, 2018) and forecasts its future development and impacts on the system (Zhengxin, 

Xiaosheng, Changhua, & Yaguo, 2018). Based on an understanding of the current system’s 

situation, an operator can take a set of preventive actions such as repairing, maintenance, 

reconfiguration, change operation or protective actions. 

2.1.1 Fault diagnosis and prognosis methods 

Fault management using CBM fault diagnosis and prognosis provides much better knowledge 

about the fault occurrence and fosters the expert’s decisions taken through its deep knowledge 

representing the fault causality. The fault diagnosis and prognosis procedures in CBM include a 

sequential steps flowchart, as depicted in the flowchart in Figure 2.2 (Sikorska, Hodkiewicz, and 

Ma (2011). These procedures are divided into two main steps. The fault diagnosis step defines the 

affected components and the related causes for the fault’s appearance. The fault prognosis step 

describes the evolution of the fault and its expected impact on a system’s health condition. The 

prognosis step heavy relies on the diagnosis step output (e.g., the fault type, root causes and the 

affected components).  

Fault diagnosis objectives are achieved through three sequential tasks: fault detection, fault 

isolation and fault identification (Liu, B., Ding, Wu, & Yao, 2019). Fault detection recognizes  the 

fault’s appearance by monitoring the system’s operation conditions (Miljković, 2011). Fault 

isolation insolates the fault’s occurrence in the system by determining the affected components and 

sub systems (Biswas, Dash, Choudhury, & Sahoo, 2018). The fault identification characterizes the 

fault’s nature and mode, besides discovering its main root causes (Gao, Jie & Zhao, 2019). 

 



19 

 

 

Figure 2.2 Fault diagnosis and prognosis flowchart (Sikorska et al., 2011) 

Those three tasks can be performed through various methods in which an expert’s involvement and 

the data utilisation can be different. One of the methods mainly relies on an expert’s knowledge 

and his experience with the system’s structure and the possible causes of fault occurrences. The 

expert builds a model, such as FTA, that reflects his understanding of how the fault may be 

detected, isolated and quantified (Srivastava & Sinha, 2012). However, by increasing the system’s 

complexity, he can partially rely on the data by selecting certain variables to assign the trend check 

or the threshold range for more precise fault detection (Amin & Hasan, 2019). In addition, he can 

use fault pattern recognition methods such as a neural network or self-organizing map as a support 

tool to isolate and identify the evidence of the fault. On the other hand, the task of a diagnosis can 

be performed by mainly using the system’s data, where expert systems extract knowledge from the 

data to isolate, identify and characterize the fault’s occurrence (Guo, Y. et al., 2019), while the 

human expert’s role is limited to only supervision.  



20 

 

After completing the fault diagnosis, the fault prognosis comes as a complemented anticipation 

analysis task to predict the diagnosis results. The future fault impact on the system behavior is 

investigated to understand how quickly the affected components and subsystems are degraded and 

progressed for complete failure over time (Sikorska et al., 2011). With the same analogy of the 

fault diagnosis task, the fault prognosis task can be achieved using various methods that involve 

specific expert roles and data exploration. 

In a fault prognosis, the expert relies on his knowledge to build a mathematical model that describes 

the degradation phenomenon within the system and then uses such a model to estimate the 

remaining useful life (RUL) of the system. However, such a method is too limited for simple 

degradation phenomenon (Lin, Wen-Chiao & Ghoneim, Youssef A., 2016). Meanwhile, the expert 

can rely more on the data to determine the expected lifetime of some critical components or 

subsystem individually by using statistical models such as the proportional hazards model (PHM) 

(Ding & He, 2010). Moreover, the expert can train a neural network to automatically calculate the 

RUL of those components or subsystems (Wu, Q., Ding, & Huang, 2018). From another side, the 

human expert can only monitor expert or fuzzy systems that compare the similarity between the 

current fault situation and the historical system failure to explain the system RUL (Zarei, 

Shasadeghi, & Ramezani, 2014).  

2.1.2 Fault diagnosis and prognosis in complex systems 

Achieving CBM fault diagnosis and prognosis tasks in complex systems creates a new challenge 

that necessitates the proposal of appropriate solutions. A complex system can be seen as multiple 

interdependent subsystems that imply interrelated internal processes, which are very difficult to 

understand. 

Figure 2.3 depicts two examples of Canada's oil production and the pipeline transportation systems. 

Gas and oil are extracted from the wellheads and travel through the gathering pipelines to gas 

processing or oil batteries. The crude oil and the liquid gas are processed and continue traveling 

through the feeder pipelines, which deliver them to the transmission pipelines, which is the main 

gateway to the pipeline consuming network. From the transmission pipelines, the oil can be refined 

or shipped, whereas the gas can be distributed to homes, businesses and various industries. 
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Figure 2.3 Oil production and pipeline system overview (Board, 2017) 

When one of the fault causes (e.g. missing the lubrication) happens in an internal process of the 

explained system, it triggers the occurrence of a corresponding fault event. The fault can be 

detected by a change in pressure or vibrations. Thus, the instability of this internal process affects 

the output state of the external process, which can be measured with the change in mass flow. 

Depending on the significant role of this internal process, the system output can be affected, for 

example, with defection in the production output. Without understanding the fault causality 

structure and the interdependence between those internal processes, inappropriate maintenance 

actions can be taken. Therefore, the fault can progress and become a contagious event that effects 

other internal processes, which leads to a massive fault and service outage of the system (Isermann, 

2006). 

In complex systems, the faults and failures occur due to the joint appearance of multiple internal 

faults over the different interconnected internal processes. Meanwhile, the diagnosis and prognosis 

of those complex faults independently lead to a partial understanding of the failure causality. 

Hence, a successful fault diagnosis and prognosis in a complex system have to consider this joint 

causality knowledge that represents the processes’ interdependency as well as the internal faults’ 

influences. Therefore, fault diagnosis and prognosis models have to strongly rely on the collected 

data over the system’s peripherals. Since the extracted knowledge from the data enables the 

discovery of hidden fault phenomena, this helps an expert grasp fault causality in an interpretable 

manner (Cook, 1998). 
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2.1.3 Industrial data for fault management 

Previous research has focused on the use of the domain knowledge to build CBM fault diagnosis 

and prognosis embedded models. Those models offer several advantages such as simplicity, 

interpretability and ease in development (Duvvuri, 2019). With an increase in system complexity, 

such models are susceptible to disturbances in detecting, characterizing and anticipating the fault 

in those systems. The drawback of the expert’s knowledge on complex systems underlines the 

limitation in understanding dependent processes, in addition to a bias analysis due to the partial 

understanding of the fault causality.  

From another point of view, the increase in system automation, connectivity and machine 

intelligence have helped to exponentially grow the amount of collected data (Xu, Sun, Wan, Liu, 

& Song, 2017). Therefore, massive amounts of data have been employed to fit the gap and the 

limitations of the domain expert to describe complex systems. Thus, a shift in research orientation 

is happening; instead of completely relying on an expert to manage a fault, the collected data is 

used to extract hidden knowledge and phenomena on the fault occurrence. This will assist the 

expert with understanding the complex fault structure (Bingamil, Alsyouf, & Cheaitou, 2017). An 

emphasis on relying on data and its extracted knowledge for fault diagnosis and prognosis 

overcomes an expert’s limited knowledge. Moreover, using data boosts the automatization and the 

intelligence of the system when managing the faults by CBM.  

The collected system data can be grouped into two main classes: structured and unstructured data. 

The structured data is organized information that has a specific architecture according to the 

defined objectives that the data has been collected for. The highly arranged structure of the data 

enables analytics and expertise to easy extract knowledge and hidden phenomena related to the 

analysis objectives (Yuan, Zhang, & Duan, 2018). The unstructured data comes from leveraging 

different data sources that have different structures. It includes a huge diversity in data formats, 

such as image, text and numbers, which mainly caused by the system connectivity and its IOT over 

a system network. It represents the raw data source from which different structures of data with 

different objectives can be defined (Corcoglioniti, Rospocher, Cattoni, Magnini, & Serafini, 2018). 

Most industrial data has a structured form, related to defined objectives and collected from different 

sources. Wang, J., Zhang, Shi, Duan, and Liu (2018) review the structured data types for different 
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objectives such as CBM, energy management, supply chain, customers and services. They have 

classified the collected data for CBM objectives into five categories:  

(1) Environmental data, which mainly includes the working operation conditions such as 

temperature, humidity and topography.  

(2) The task data, which contains the type of the performed task by the machine or internal process.  

(3) The operation data, involving measurements and reading from sensors that are distributed over 

the different systems’ internal processes in order to represent the current system state.  

(4) The performance data, which are state data collected from sensors that are specially placed to 

capture a system’s performance indicator measurements, such as production flow.  

(5) The maintenance data, which are related to all of the maintenance activities and the preventive 

actions. 

The five data categories are employed to create rational data through a data management 

framework (e.g. NoSQL) that connects different structured data based on their relations. This data 

includes valuable information and knowledge about the hidden degradation and the fault patterns 

that improve the fault diagnosis and prognosis models. For instance, the operations data that 

represent the current system operation conditions can be labelled with a state variable from the 

performance data to extract useful knowledge about the different system states.  

The rational data improve its performance and availability in close loop, where the data are used 

to construct and improve the CBM fault models that accordingly decisions are taken. The system 

reaction regarding the taken decision is capture by the new collected data, which are reanalyzed by 

the CBM information system. Figure 2.4 depicts the architecture of the CBM information system 

and knowledge flow for the complex system.  
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Figure 2.4 The architecture of CBM information system (Wang, L., Qian, Li, & Liu, 2017) 

Accordingly, the five structured data categories are collected in the form of datasets that represent 

the system’s current state. The datasets are employed as inputs of the data management system to 

perform a fault diagnosis and prognosis analysis. Thus, the hidden knowledge and phenomena 

about the fault causality and its impacts can be extracted to support a CBM decision maker to 

enhance the current system’s state. 

2.2 Fault diagnosis and prognosis models 

Fault diagnosis and prognosis models for complex systems can rely on system data to better 

manage the consequences of a fault. This dependence on the data is utilized in two forms: historical 

and streaming data.  

Historical data is utilized for constructing or improving the fault diagnosis and prognosis models 

in order to adapt with the system’s complexity and its changes. On the other hand, streaming data 

is employed to verify and describe the current system’s state and to validate the fault occurrence 

according to the constructed fault diagnosis and prognosis model (Kumar, A., Shankar, & Thakur, 

2018).  

Generally, constructing the fault diagnosis and prognosis models can be done using data-driven 

and model-based techniques. The data-driven techniques transform the large amount of historical 
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data into useful knowledge. The algorithms and statistical analysis explore and extract the hidden 

patterns, trends and behaviors from the data to form the model’s knowledge for the fault diagnosis 

and prognosis (Md Nor, Che Hassan, & Hussain, 2018). On the other hand, the model-based 

techniques mainly use an expert’s prior knowledge about the system’s physics, its internal process 

structures and the dependency between them to build a mathematical formula or graphical models 

to diagnose and prognose the fault. The expert’s knowledge, which is the cornerstone for those 

models, can be enriched by extracting the hidden phenomena from the system’s historical 

observations to adapt to the system’s complexity (Balasubramanian & Muthu, 2017). Figure 2.5 

depicts common and different features between the two fault diagnosis and prognosis techniques. 
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Figure 2.5 Data-driven and Model-based techniques 

The historical data is mainly employed for constructing the data-driven models, while in the model-

based, this historical data is used to enhance the expert’s prior knowledge to improve the 

constructed models. Therefore, the historical data produces two different kinds of knowledge used: 

training data for model construction in data-driven techniques, and enriching the expert’s 

knowledge in model-based techniques. Thus, the model processing, verification and validation 

have a direct and significant impact on CBM decision making.  
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From another point of view, constructing the data-driven models based on historical data does not 

need any modelling effort on the part of the expert. This is because the mapping process between 

the system measurements, with its different health states, is mainly done based on the system 

database (Md Nor et al., 2018). Consequently, these models provide unbiased knowledge and are 

very reliable in predicting and anticipating the fault in a complex system if the collected data 

samples are representative of the different system states (Tao & Alves, 2019). 

In addition, interpretable knowledge can be extracted from the historical data, which adds 

explainability to those models, aside from their predictability power (Guo, Y. et al., 2019). This 

knowledge is able to explain certain fault causality structures and their dependence individually. 

However, they may miss the logic that explains the fault causality structure by decomposing the 

fault to its root-causes, in addition to the change of that structure over the system’s life. Therefore, 

we may strongly rely on data-driven models to predict the fault states in a complex system.   

On the other hand, historical data in the model-based techniques is used to assist an expert in 

building models that reflect his understanding about the system’s physics that explain a fault 

occurrence. Those models are mainly constructed based on the expert’s knowledge, which is able 

to provide an interpretable model capable of thoroughly explaining the fault’s hierarchical 

structure. To overcome the expert’s knowledge limitations in complex system, fault knowledge is 

extracted from historical data, which enriches the expert’s prior knowledge on the complex system 

structure and its possible faults. The extracted knowledge contributes to discovering the fault’s 

hidden phenomena, which could be overlooked by an expert due to the system’s complexity 

(Badida, Balasubramaniam, & Jayaprakash, 2019). 

When building a model-based model, the expert has to model his prior knowledge, which explains 

the essential fault causality, and then integrate the knowledge discovered from the data to improve 

the constructed model. However, due to the system’s complexity, he might face challenges in 

combining this discovered knowledge in his constructed model. In this case, we can strongly rely 

on the model-based in understanding the fault causality structure for a subsystem or certain 

processes in a complex system.  

Figure 2.6 depicts the different models for fault diagnosis and prognosis. The statistical and 

artificial intelligence algorithms are used to build the variant fault data-driven models, while 

quantitative and qualitative analysis is employed to build variant fault model-based models. In the 
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next section, recent achievements in both techniques will be discussed, and their models’ 

advantages and limitations will be highlighted.  

 

 

Figure 2.6 Fault diagnosis and prognosis models’ tree 

2.3 Data-driven models for fault diagnosis 

Several data-driven techniques are proposed to achieve the three fault diagnosis steps, which can 

be classified into statistical and artificial intelligence models. 

2.3.1 Statistical models  

Statistical fault diagnosis models are mainly deployed for fault monitoring based on statistical 

analysis. The models can be constructed using univariate and multivariate statistical analysis. 

The univariate analysis evaluates the related variables in the fault occurrence, which are commonly 

known as fault indicators, to discover specific trends related to the fault occurrence and to assign 

the control limits to identify the fault event. The Shewhart control charts, the cumulative sum 

(CUSUM) control charts and the exponentially weighted moving average (EWMA) control charts 
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are the most common univariate analyses for statistical process control (SPC) (Alauddin, Khan, 

Imtiaz, & Ahmed, 2018; Vera do Carmo, Lopes, & Souza, 2004).  

To address the complex dependency of a system’s internal processes, a multivariate analysis 

considers the cumulative effects of the data variables that dominate their dependency and 

correlation for diagnosis. Principal components analysis (PCA) and Partial Least Squares (PLS) 

are the most well-known multivariate analysis methods for fault diagnosis (Qin, 2009). The main 

advantage that supports their implementation concerns their ability to handle highly correlated data, 

which includes error measurements and missing values. Those algorithms transform the original 

data into another, lower dimension domain, and they do not require defined inputs and outputs data 

(Alauddin et al., 2018). 

The PCA algorithm is mainly applied in fault detection and isolation in complex systems. Bakdi, 

and Kouadri (2017) addressed the problem of a false alarm in a complex system by fault monitoring 

a PCA. The assigned PCA threshold at a fixed significant level needs to be more flexible when 

adapting dynamics in complex system. Thus, an adaptive threshold based on an exponentially 

weighted moving average (EWMA) control chart statistic is developed to reinforce PCA 

performance. Zhong, Dong, and Ye (2018) combined PCA with a BP neural network to build a 

robust fault diagnosis model that is less sensitive to the noise. The extracted principal components 

(PCs) are used to train the BP neural network instead of the original data to mitigate the noise 

sensitivity problem.  

A major drawback on PCA is that it cannot work with non-gaussian and non-linear data, which 

limits its application, especially in complex systems. This problem is addressed by using kernel 

methods such as kernel principal component analysis (KPCA) (Lawrence, 2005; Liang & Lee, 

2013). Similar to PCA, PLS suffers from the non-gaussian and dynamic problems. Accordingly, 

Rui, and Lie (2018) introduced a new statistical approach based on kernel partial least squares for 

improving the fault detection process. The data first mapped into a feature space to overcome the 

non-gaussian challenge, then two statistical methods are used to monitor the fault’s appearance. 

Zhang, Yingwei, Zhou, Qin, and Chai (2010) proposed a fault diagnosis framework based on the 

multiblock kernel partial least squares (MBK PLS). The contribution of the MBK PLS is able to 

present non-linear interpretation for fault diagnosis, aside from fault monitoring, by dividing the 

system variables into several significant blocks.  
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2.3.2 Artificial Intelligence models  

Using artificial intelligence, the data-driven models are able to achieve efficient fault diagnosis 

tasks compared to the statistical models by including optimization and statistical learning. 

Regarding the fault detection task, machine learning classification algorithms are used. He, D., Li, 

and Zhu (2012) employed the k nearest neighbor in the plastic bearing fault detection, in which 

first the frequency and time domain features are extracted by the envelope analysis and EMD, and 

then the frequency domain features are used to identify bearing outer race faults, and time domain 

features are used to build a k-NN classifier to identify other types of bearing faults. Gul, Imran, 

and Khan (2018) applied the support vector machine (SVM) to the vibration signals to detect and 

classify faults in rotating machines. To address the challenge of changes in data over time due to 

system wear out, the authors use an incremental approach to the SVM. 

Regarding the fault isolation task, the interpretable knowledge (if-then rules) are used to isolate the 

fault from the system processes. Mortada, M. A., Yacout, S., and Lakis, A. (2014) apply the logical 

analysis of data (LAD) algorithm on the power transformers’ historical data to distinguish the 

difference between the normal and fault operations modes by extracting a set of patterns that 

characterize each mode. On the other hand, Yang, and Yu (2019) integrate the rough sets theory 

(RST) with the neural network (NN) to simplify the complexity of an NN structure in the fault 

diagnosis task. The RST preprocesses the data by removing its redundancy, then uses it to build 

the NN model.  

Regarding the fault identification task, graphical models can be constructed to understand the 

possible fault causality and the cause and effect relationships between the variables of the system. 

Han, He, Zheng, and Wang (2019) introduce hybrid approach based on a three-layer Bayesian 

intelligent fault inference model (BIFIM) for inverters, in which the first layer includes the main 

fault event, the second layer expresses the possible symptoms of the fault, and the final layer 

contains the possible causes, which are enriched by the expert’s domain knowledge. Abid, Sallem, 

and Braham (2019) integrate Optimized Stationary Wavelet Packet Transform (Op-SWPT) with 

the decision tree (DT) to diagnose the bearing faults. The data is first transformed by Op-SWPT to 

relevant knowledge, then is used to build a DT model that represents the fault’s relevant knowledge 

in an interpretable graphical model. 
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2.4 Data-driven models for fault prognosis 

The majority of the data-driven techniques for the fault prognosis task focus on the prediction of 

the remaining useful time of the system’s life, using both statistical and artificial intelligence 

models. 

2.4.1 Statistical models 

Quantifying the system’s performance using the reliability knowledge information using time-to-

failure data is one of the most common statistical applied techniques in the industry to prognose a 

fault occurrence. These techniques are able to work with censored and small data sets. Based on 

the probability density function for a group of identical components, the occurrence of the system 

failure can be predicted. Several parametric and non-parametric functions are used to build the 

density function. Zhicai, Dongfeng, and Xinfa (2014) introduce a three-step methodology to predict 

the RUL of equipment using the Weibull Proportional Hazards Model (WPHM) to adjust the state 

parameters to the data and the regression model to fit the failure rate curve and then to predict the 

RUL of the equipment. Sun et al. (2019) aggregate the electric and mechanical failures for 

describing the failures in a CNC machine. First, the Weibull distribution parameters are estimated 

based on the maximum likelihood method, which combines both failure types. Then, the Pearson 

correlation coefficient is used to determine the dependency of the failure types on the CNC failure. 

Forecasting future system deterioration based on historical data is another alternative for prognosis 

of the fault. The Autoregressive integrated moving average (ARIMA) is a very common technique 

for capturing development trends in time series data. It is able to deal with temporal trends and 

autocorrelation through the following three recursive steps: model identification, parameter 

estimation and model validation (Mehrmolaei & Keyvanpour, 2016). Yi, Yun, Chuan, and Yan-Ni 

(2018) apply ARIMA to forecast the fault trend in gearbox using nonlinear and non-stationer data. 

Meanwhile, the obtained fault trend through the ARIMA model is validated by comparing the 

extracted knowledge with the outlet pressure of the gearbox oil pump. Yuhensky, Munadi, and 

Hafiddudin (2016) proposed a methodology that models the fault formulation in customer premise 

equipment (CPE) segment on broadband network system. The ARIMA is selected thanks to its 

lower cumulative mean square error (CMSE) that is able to forecast the fault amounts per type of 

disturbances in the broadband network segment. Bezerra Viana, Sandoval Goes, and Conceicao 
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Rocha (2013) proposed a hybrid approach for the fault prognosis based on time series indicative 

parameter that denote the equipment condition. The fault development is divided into different 

scenarios. The ARIMA model is constructed for each valid scenario to provide a fault prognosis 

model.  

Proportional Hazards Modelling (PHM) is another model used to prognose the fault. PHM extracts 

a set of covariates that express the contribution of the model covariates on the equipment’s lifetime. 

It considers the multiplicative relationship in the system as the product of a linear function and the 

baseline hazard rate. The linear function normally refers to the operation conditions or environment 

(Kumar, D. & Klefsjo, 1994). Guo, C.-x., He, Zhang, Lu, and Yang (2014) use the PHM to 

characterize the faults in an oil-immersed transformer. The model focuses on temperature-based 

aging, which denotes the deterioration of classifiable health status. The obtained comprehensive 

knowledge from the model demonstrates thermal aging and its effect on a system’s health. Jian, 

Huifang, Dongyang, and Benteng (2016) proposed a stratified proportional hazard model (PHM) 

that maximizes the equipment service age through extracting a set of covariances. The extracted 

covariances are employed then to categorize the equipment life cycles into multitype recurrent 

events. Xiaochuan, Fang, Bennett, and Mba (2018) identify the fault root-causes and the expected 

lifetime for reciprocating compressors in oil and gas industries. The proposed methodology 

integrates canonical variate analysis (CVA), cox proportional hazard (CPHM) and support vector 

regression (SVR) models to determine the fault features importance and forecasting the equipment 

remaining useful time. 

2.4.2 Artificial Intelligence models 

Expert system (ES) is a program or a set of programs that imitate human logic to manage fault 

diagnosis and prognosis. The ES decision consists of a set of rules that produce a set of particular 

outputs from the delivered inputs. Acquiring these rules requires the involvement of one or more 

experts over the years in order to develop a solid and adaptable set of rules that represent the 

system’s behaviour (Chidaravalli, Jenila Livingston, & Manjunath, 2017). However, due to system 

complexity, human experts’ knowledge is replaced with fuzzy logic to overcome that problem 

(Debnath, Reddy, Jagadish, & Das, 2019). Garga et al. (2001) propose a hybrid reasoning approach 

for an industrial gear box to predict the RUL. The approach integrates the domain knowledge with 

fuzzy logic and neural network to introduce an automated reasoning method. Mahdaoui et al. 
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(2019) propose a temporal neuro-fuzzy system (TNFS) to predict the RUL in preheater cement 

cyclones plant. The core of the TNFS is a set of temporal fuzzy rules that interpret the fault causality 

and fit the prognosis task. The time factor is added to the rules to capture the dynamics of the 

process and estimate the RUL. Boukra (2015) address the challenge of selecting relevant features 

in the fault prognosis task and to estimate the RUL. The proposed method uses the Particle Swarm 

Optimization algorithm to select the relevant features and particle filtering for forecasting the RUL, 

which is later integrated to the Neuro-Fuzzy System. 

Artificial Neural Networks (ANN) is a very efficient and effective technique for both fault 

diagnosis and prognosis. It is able to deal with different input types of data to train the ANN 

network (Chen, Y. et al., 2019). Kui, Laghrouche, and Djerdir (2018) build a predictive model that 

predicts the degradation of the proton exchange membrane fuel cell (PEMFC) and estimates its 

RUL. The back propagation neural network model has 4 neural layers with 2 hidden layers. 

Moreover, the model highlights the important variables for describing the system degradation such 

as stack current, stack temperature, air pressure, hydrogen pressure and air humidity. 

Zangenehmadar, and Moselhi (2016) estimate the deterioration rates in water distribution networks 

based on predicting the RUL in the pipeline. ANN model is constructed based on Levenberg-

Marquardt backpropagation algorithm. Accordingly, the model identifies the pipeline age, 

condition, length, diameter, material, and breakage rate as the contributed variables on the 

pipelines’ degradation. 

Deep learning is one of the most recent machine learning techniques that shows great performance 

in overcoming the deficiencies in current data-driven models due to its state-of-the-art accuracy 

(Rengasamy, Morvan, & Figueredo, 2018). Jin, W. (2016) addresses the challenge of a lack of 

complete lifecycle data in predicting the RUL based on Accelerated Degradation Tests (ADT). The 

model improves the accuracy of the RUL, since the degradation trends have become evidence at 

the end of the system’s life. The feature enhancement is based on the Restricted Boltzmann 

Machine (RBM) method and similarity-based method to predict the RUL. Cheng Geng, Xiang Yu, 

Hong Zhong, and Yan Feng (2019) address the effect of the interference and noise in operational 

conditions’ data to predict the RUL. The proposed prognostic method is based on Bi-Directional 

Long Short-Term Memory (BLSTM) network. The operation data is first preprocessed to 

sequences of data with a fixed length, and then it feeds the BLSTM. Jichao, Zhenpo, and Yongtao 

(2019) proposed a predictive maintenance framework based on mechanical equipment and 
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recurrent neural network (RNN). The RNN uses the long short-term memory (LSTM) to forecast 

the faults in air booster compressor (ABC) motor and suggests a set of predictive maintenance 

actions. Jichao et al. (2019) proposed a methodology for predicting the battery system states in 

electric vehicles. The battery voltage is selected to be the main characterisation parameters for 

forecasting the battery faults. Long short-term memory(LSTM) recurrent neural network model is 

built to anticipate the fault and predict the possible battery states over time. The RNN model is 

constructed based on real data collected from electric taxi belonging to the Service and 

Management Center for Electric Vehicles (SMC-EV) in Beijing. 

Based on the literature, statistical and AI models have been able to predict fault occurrence and 

forecast its impact on the system efficiently. However, the above-mentioned techniques are 

considered to be black box, where their mapping process needs to be unlocked and represented in 

an interpretable manner. This limitation is addressed by the rules-based and graphical models (glass 

box) that enable the discovery of possible fault causalities in the form of interpretable knowledge. 

Their exploitation in complex systems are too limited, since the models do not address the fault’s 

hierarchical structures. In addition, capturing its influences of the system wear-out and the changes 

in the causality structure over time is a big challenge. 

2.5 Model-based fault diagnosis 

Model-based fault diagnosis captures fault physics, using a mathematical expression or graphical 

model. According to the literature, quantitative and qualitative models are employed in model-

based fault diagnosis. 

2.5.1 Quantitative models 

Quantitative models are mainly used for monitoring the fault occurrence, in which a mathematical 

model is employed as a reference to capture the current system’s behavior and its deviation. 

Residual analysis is one of the most common types of analysis for quantitative models, in which 

residual, or the symptom signal, is generated based on the differences between the system’s inputs 

and prior knowledge represented by the mathematical model. Several techniques are employed for 

monitoring the fault occurrence, such as parity relations and Kalman filters (Venkatasubramanian, 

Rengaswamy, Yin, & Kavuri, 2003). 
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Sun et al. (2019) propose a hybrid approach for fault detection in closed loop control systems based 

on parity space. The original stream data is transformed into the parity space based on a stable 

kernel matrix to overcome the noise in the data and to improve the residual analysis results. Rigatos 

et al. (2019) implement the differential flatness theory based on a Kalman filter for faults in the 

gas-turbine and of a synchronous generator in the electric power generators. The Kalman filter is 

employed as a linearized equivalent model to the system simulation, while the system’s output is 

compared with the current turbine output to generate the residuals that are later used for monitoring 

and detecting the fault. 

2.5.2 Qualitative models 

Unlike quantitative analysis, qualitative analysis underlines the fault identification and 

quantification steps regarding the fault causality structure and the cause-and-effect relationships 

between the fault events. This knowledge is usually represented by graphical models, which 

represent a fault’s causality and qualify its occurrence in an interpretable manner (Mutlu, Arnold, 

Franchek, & Meraz, 2017).  

Fault tree analysis (FTA) is an analytical qualitative model that selects an undesired event in the 

system and then performs an analysis, such as checking the system’s environment and operating 

conditions to find all of the possible ways that led to the occurrence of that selected event. It is a 

graphical model of parallel and sequential faults, which leads to the selected event. The FTA uses 

Boolean logic gates to describe how those parallel and sequential faults are connected together to 

describe the occurrence of the selected event (Srivastava & Sinha, 2012). Halloul, Chiban, and 

Awad (2019) introduce an adaptive fuzzy fault tree hybrid approach to enrich the expert’s 

knowledge using the fuzzy set theory to overcome the lack of probability calculations for basic 

events. Mukherjee, and Chakraborty (2007) proposed a hybrid approach for enhancing the 

construction of the FTA model by analyzing the related knowledge from maintenance data in the 

form of text reports. The proposed methodology addresses the challenge of diagnosing the complex 

faults using the system’s historical maintenance reports.  

Additionally, the causal graphs focus on the physical cause-and-effect relationship between the 

system process variables, where nodes represent the variables and directed edges depict the 

causality relationship between the variables (Huang, Gao, & Gao, 2013). Jie, Mengyuan, Xiong, 

Liang, and Kaixiang (2017) propose a hybrid approach that quantifies a causal graph based on an 
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expert’s prior knowledge. After the construction of the causal graph, the correlation index (CI) 

based on the partial correlation coefficient is employed to quantify the variable cause-and-effect 

relationship. 

2.6 Model-based fault prognosis 

Model-based fault prognosis relies heavily on domain knowledge to describe the faulty conditions 

of a system over time (Lin, Wen-Chiao & Ghoneim, Youssef A, 2016). It is classified into 

qualitative and quantitative models (Schwabacher, 2005). 

2.6.1 Quantitative models  

Celaya, Kulkarni, Biswas, Saha, and Goebel (2011) introduce a capacitor empirical degradation 

model based on accelerated data. The model is able to predict and quantify the RUL while 

determining the capacitor lumped-parameter and the capacitance equivalent series resistance (ESR) 

during the degradation process. Xiang, Chen, He, Li, and He (2005) propose a model-based to 

quantify the nature frequent crack faults by determining the crack parameters based on 

experimental data. Based on the crack element of B-spline wavelet on the interval (BSWI), the 

crack equivalent strength and its location data are employed as input data to quantify the crack size 

and location. Kawatsu (2019) develops a hybrid approach model-based for a rocket engine to 

optimize maintenance costs as well as to sustain its reliability and safety. Due to the limited amount 

of rocket engine failure data, the model-based quantitative assessment is built based on the 

Modelica modelling language. The model simulates the operation of the engine, and the generated 

data is compared with actual measurements of sensors using the Dynamic Time Warping (DTW) 

algorithm. Then, the hierarchical clustering technique is applied to categorize the possible failure 

model based on this dissimilarity. Hu, Zhang, and Wang (2016) introduced a quantitative safety 

framework for fault prognosis and early warning. In that framework, the expert represents the fault 

causality chain based on the GTST-DMLD (goal tree success tree, GTST; dynamic master logic 

diagram, DMLD) models for anticipating the future fault behavior and quantify its associated risks 

in the petroleum system. 
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2.6.2 Qualitative models  

The qualitative models focus more on qualitative functions, centred on different units in a system. 

Kim, and Mylaraswamy (2006) propose an algorithm to monitor fault development over time in 

gas turbine engines. The model is able to generate evidence based on three selected events that 

monitor the speed at peak EGT (exhaust gas temperature). Lu, Jiang, Wang, Lu, and Chen (2012) 

address the drawback of the system downtime due to fault evolution in complex industrial process. 

The proposed hybrid methodology estimates the time delay in the process industry. First, time-

delayed mutual information (TDMI) is employed to model the fault causality in the form of a time-

delayed signed digraph (TD-SDG) mode. Then, a general fault prognosis strategy is used to 

optimize the system’s downtime based on TD-SDG and PCA. Chen, B., Matthews, and Tavner 

(2013) combine the expert’s prior knowledge with the data to improve fault prognosis in wind 

turbine fans based on a hybrid approach. The expert’s prior knowledge is modeled and enriched by 

unseen or overlooked events that are discovered from the data. 

Djeziri, Ananou, and Ouladsine (2013) proposed a hybrid approach for managing the possible 

faults in mechatronic system. The RUL is estimated based on the fault trend reconstruction by 

integrating the Principal Component Analysis (PCA) and the fault direction matrix with qualitative 

multi-physical model. Liu, S., Zhu, Zhang, and Wu (2016) proposed a methodology for health 

status assessment in the high-speed railway catenaries system. The health index is calculated based 

on the AHP and entropy method, subjective and objective weights of the catenary. Then, grey 

clustering method is employed to define the different health states that each state is analyzed 

through qualitative and quantitative analysis to understand the state evolution over time. 

Indeed, model-based fault prognosis is interpretable and a relatively accurate model that could 

build from the first principle of the system’s faults. It is mainly applicable on a simple system with 

well-known causes, for which the human knowledge about the faults, their occurrence and 

development are clear. Its limited implementation in complex system was overcome by enriching 

those models based on data-driven techniques, in which the unseen events are discovered and added 

to the model’s prior knowledge. However, forming the model skeleton prior knowledge by the 

expert in complex system is a challenging task to identify the principal causality structure of the 

faulty situation and combining the extracted hidden fault knowledge from the data.  
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2.7 Research motivations 

Data-driven and model-based research goes in parallel to construct efficient fault diagnosis and 

prognosis models, which form the decision-making engine in the condition-based maintenance 

(CBM) for fault management. This research field aims to automate the fault management process 

with minimal involvement of experts.  

Data-driven models are able to accurately predict the fault state due to the power of data in 

industrial systems. However, to diagnose the fault in a complex system well, human experts look 

for models that are able to explain and represent the fault causality structure in addition to having 

prediction capability. Understanding the fault causality structure based on the represented 

interpretable knowledge is an essential feature in complex systems, of which experts and operators 

can understand the dependencies and the complex relations between faults in internal processes. 

Ensuring that the fault and its impact and consequences are well represented to human experts 

guarantee optimal CBM decisions and preventive actions.  

Another challenge in a complex system with regards to data-driven fault prognosis models is 

graphically modeling the deterioration and performance degradation. Consequently, the fault 

causality structure can be changed over a system’s life. Therefore, the complex systems need 

models that are able to capture these changes in an interpretable manner. It is a crucial feature that 

helps anticipate the impacts of a fault and provides more precise knowledge about the processes 

that will be affected in the future by a currently occurring fault. 

These limitations can be partially overcome by model-based models, by providing interpretable 

models that summarize an expert’s knowledge and his experience. This research field aims to 

maximize understanding of the fault management process. However, the expert’s enriched 

knowledge is limited when it comes to demonstrating the fault causality structure and its 

development well over time. Although mapping system inputs and outputs is done in an 

interpretable manner by an expert, it is not accurate, as it done in data driven models, especially in 

highly complex system structures. In addition, it is biased knowledge, reflecting the expert’s own 

beliefs and understanding of the system.  

In nutshell, the following features are required by complex systems for fault diagnosis and 

prognosis models:  
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1. Models should be able to model complex fault causality in an interpretable manner to 

represent the collected system data for fault diagnosis tasks. 

2. Models should be able to represent, in an interpretable manner, the changes in a complex 

fault causality structure over time for fault prognosis tasks. 

The proposed ILTA in this thesis aims to link the data-driven approach with the model-based 

approach in order to overcome their limitations and to achieve a complex system’s needs, in which 

fault knowledge is extracted directly from data and represented in an interpretable manner, similar 

to model-based representations. Its methodology is able to automatically build a data-driven 

graphical tree model, similar to the classic FTA, in which the fault is decomposed to its hierarchical 

causality structure (indicator, intermediate and root causes). In addition, the Boolean logic gates 

are employed to connect those different causes for exhibiting the fault occurrence in a top-down 

manner. Furthermore, quantifying its occurrence is done by assigning probabilities for the included 

causes to the tree and deriving a set of control rules to manage its consequences. ILTA methodology 

is applied in fault management by providing two advanced tree models, which are the following: 

the Multi-level interpretable logic tree analysis (MILTA) for fault diagnosis and Interpretable time 

causality analysis (ITCA) for fault prognosis in a complex system. In the next chapter, the research 

methodology will be illustrated in order to depict the generation of those graphical trees for 

diagnosis and prognosis tasks. 
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 SYNTHESIS OF THE WORD  

 

This thesis provides graphical, data-driven fault tree models for achieving fault diagnosis and 

prognosis in complex system. The proposed methodology utilizes the FTA model-based interface 

logic, which can easily depict fault causality to represent extracted knowledge from databases 

(KDD). Therefore, the FTA model-based limitations, such as dependency on an expert’s biased 

knowledge, is overcome through the unbiased KDD. Meanwhile, the challenges regarding 

constructing interpretable data-driven models is overcome by representing data knowledge through 

the FTA interface logic. 

This chapter depicts an overview of the methodology for constructing the proposed data-driven 

fault trees. Section 3.1 introduces the three data-driven fault trees, the ILTA-model, the MILTA-

model and the ITCA-model. The ILTA-model is a one-level tree that represents the fault causality 

in simple system, whereas the MILTA-model is a multi-level tree designed for a complex fault 

diagnosis task. Similarly, the ITCA-model is a multi-level tree, developed for the complex fault 

prognosis task. The ITCA-model considers the effect of time on the changes in the fault causality 

structure. Section 3.2 presents an overview of the three construction methodologies, in which the 

ILTA-model is used as the construction engine to build the other two advanced trees: the MILTA 

and ITCA models. Accordingly, the MILTA and ITCA models are a collection of selected ILTA-

models that depict the complex fault causality structure in a multi-level tree. 

3.1 Basic elements of the data-driven fault tree 

The proposed methodology introduces three data-driven fault trees models, ILTA, MILTA and 

ITCA. The ILTA-model provides a one-level tree where the fault event has a direct relation with 

the root-causes. The fault is represented through three layers: the solution, pattern and condition 

layers, which represent the fault causality knowledge in a bottom-up manner.  

The condition (C) is the basic block to form the KDD, it includes three elements; data variable, 

inequality sign and cut point value (e.g. 𝐶1: 𝑋1 >  10). The combination of those three elements 

are able to isolate certain data observations and summarize their common characteristics. The 

pattern (P) is a conjunction of some conditions that discriminate one class of observations from the 

other classes (e.g. 𝑃1: {𝐶1: 𝑋1 >  10} 𝐴𝑁𝐷 {𝐶2: 𝑋3 >  200} ). The solution (S) is defined as a 
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combination of certain patterns that cover the observations of the same class (e.g. 𝑆1 =

𝑃1: {𝐶1: 𝑋1 > 10} 𝐴𝑁𝐷 {𝐶2: 𝑋3 > 200}  𝑂𝑅 𝑃2: {𝐶3: 𝑋1 ≤ 10} 𝐴𝑁𝐷 {𝐶4: 𝑋3 ≤ 200} ).  

The solution (S) selection is done by choosing the best patterns (P) that maximize the class 

observation coverage. Therefore, this solution is capable of depicting the class causality knowledge 

based on its included patterns and conditions. Finally, visualizing the solution is achieved through 

the three accumulated layers: the solution, pattern and condition layer. Figure 3.1 depicts an 

example of the ILTA tree structure with the solution, pattern and condition layers.  

 

Figure 3.1 The ITLA-model construction layers 

Indeed, the ILTA-model one level tree is employed in this methodology as the construction block 

for building the MILTA and ITCA trees. Each tree uses several ILTA-models that are connected 

together to represent the cause-and-effect relationship of faults. The MILTA-model is developed 

for fault diagnosis in complex system, which mimics the classic FTA graphical representation. The 

MILTA-model depicts the discovered fault causality knowledge and its cause-and-effect 

relationship directly from the system databases using a multilevel tree. The obtained tree 

characterizes the causality hierarchical structure related to the fault at a certain time period. The 

MILTA-model is composed of different connected ILTA-models, where the cause-and-effect chain 

is represented by the relation between the lower decomposition level and the upper ones, until 

reaching the fault event. Moreover, the first levels of the MILTA-model carry the causality 

knowledge about the fault indicators followed by the causality knowledge of the intermediate 

causes and then by the root causes.  

The ITCA-model is developed for fault prognosis in complex systems, which replicate the MILTA-

model in time. Thus, the ITCA-model characterizes the fault causality evolution and the changes 
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of the causality structure over several periods of time to achieve the fault prognosis task. The ITCA 

tree has similar structure and functionality of the MILTA-model to diagnose the fault at a certain 

time, but it replicates the MILTA-model over time to catch the evolution of the causality structure 

over time.  

3.2 Methodology overview 

The three trees can be put in order according to the simplicity of their structure, starting with an 

ILTA-model that provides only a one-level tree for simple faults. Then, an MILTA-model 

characterizes the complex fault causality structure without considering the system wear-out effect 

(aging) on a change in the tree structure. Reaching the ITCA-model, this has the most complex 

tree, since it includes a time multi-level causality tree that captures the evolution of the fault 

causality at different periods of time over the system aging.  

Since the ILTA-model is the simplest tree (Figure 3.1), it is employed in the MILTA-model to 

decompose the complex fault into sequential, simple sub-trees that are connected at different 

decomposition levels. Figure 3.2 depicts an example of the ILTA-model’s functionality in building 

the MILTA-model. Starting from the main event, the ILTA1-model is constructed to initiate the 

first level of the MILTA-model. Then, the discovered root-causes (𝐶1 and 𝐶2) consider the new 

events that need two new ILTA-models. The ILTA2 and ILTA3 models characterize the causality 

structures related to 𝐶1 and 𝐶2 at level 2, respectively. This decomposition process continues until 

the root causes of the fault are found.  
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Figure 3.2 The MILTA-model construction process 

With the same analogy, the ITCA-model characterizes the fault causality structures at different 

periods of time over the fault evolution to capture the effect of the system’s aging on the causality 

structure’s changes. Figure 3.3 presents an example of the ITCA-model construction process over 

three periods of time 𝛥1, 𝛥2and 𝛥3, which uses the ILTA-model functionalities at each period and 

decomposition level. 

 

Figure 3.3 ITCA construction process 
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The next three chapters (chapter 4, 5 and 6) will present the three construction methodologies in 

detail. The results of the ILTA, MILTA and ITCA models are discussed. In addition, a case study 

is performed for each model to illustrate its usefulness in a fault causality analysis. 
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Abstract: 

This paper proposes an effective hybrid-based methodology, called interpretable logic tree analysis 

(ILTA), which characterizes and quantifies event causality occurring in engineering systems with 

the minimum involvement of human experts. It integrates two concepts: knowledge discovery in 

database (KDD) and fault tree analysis (FTA). The KDD extracts the root-causes in the form of a 

set of interpretable (meaningful) patterns and then is exploited to automatically construct a logic 

tree. Only the feasible solutions consisting of non-redundant patterns that cover the maximum 

number of observations in the dataset are selected using a burn-and-build algorithm. These 

solutions are employed first to visualize the discovered knowledge under the interpretable logic 

tree and second, to estimate the probability of an event given the occurrence of its root-causes. An 

actuator system dataset is used to illustrate and validate the proposed methodology. Moreover, the 

ILTA methodology allows the tuning of the system states based on Bayesian control rules that 

characterize the nature of the discovered root-causes. 

 

Keywords: Causality Analysis; Fault Tree Analysis (FTA); Knowledge Discovery in Database 

(KDD); Decision Support System (DSS). 
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4.1 Introduction 

Managing the health of complex systems such as those found in telecommunications, military, 

airplanes, chemical plants and heavy equipment involves a high level of human expertise to 

diagnose the system behaviour over time. The diagnosis aims to analyze the system abnormalities 

(faults) compared to the normal situation and to identify the main root-causes that have a serious 

impact on the overall system reliability and safety (Liu, R., Yang, Zio, & Chen, 2018). It supports 

the decision-maker with timely, actionable information that improves the performance of the 

targeted process (Li, H.-C., Wu, Gao, & Zhang, 2006; Yin, Ding, & Zhou, 2016).  

Fault tree analysis (FTA) is a probability-based technique in which the Boolean logic gates are 

used to estimate the risk of an undesired top event in the system based on the probability of its root-

causes (Baig et al., 2013). Two main advantages are supporting its wide use in system engineering. 

First, the FTA is a team-based problem modelling technique that can pool multiple expert opinions 

to identify the problem and its related root-causes (Levy, 1997). Second, the FTA searches for 

specific combinations of the root-causes and their probabilities of providing a consensual analysis 

that improves the targeted system reliability (Mayer & Hennings, 2008). The FTA is commonly 

applied in a multitude of domains such as risk management (Chemweno, Pintelon, Muchiri, & Van 

Horenbeek, 2018), reliability engineering (Mi, Li, Peng, & Huang, 2018; Zampino & Packard, 

2005) and system safety (Peeters, Basten, & Tinga, 2018) to improve both the design and certainty 

of systems. The FTA helps engineers understand how faults occur in the system so that they can 

provide efficient solutions to avoid or reduce the effects of the identified root-causes (Ayyub, 

2014).  

Although the FTA provides relevant analysis of system faults, it requires the involvement of 

experts from different fields with detailed system knowledge to properly build a fault tree (FT). 

For many applications, this requirement is costly, particularly when they have to consider the 

outsourcing of domain experts. Moreover, the expert’s knowledge can limit the deployment of the 

FT by focusing only on certain sequential causalities of root-causes and omitting others. 

Accordingly, the obtained FT may lead to partial identification and analysis for the root-causes, 

which can be inefficient in diagnosing the system conditions. An improvement on the FT 

construction approach that automatically captures hidden knowledge within the system’s historical 

dataset is therefore needed. 
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Knowledge discovery in database (KDD) is an emerging approach that allows extracting useful 

information from a system’s past experiences. The cornerstone of the KDD approach is predictive 

and descriptive machine learning methods that discover the hidden phenomena by exploiting the 

system’s historical data (Choudhary, Harding, & Tiwari, 2009). Logical analysis of data (LAD) 

(Boros, Endre et al., 2000) and rough set theory (RST) (Pawlak, 1982) are two common descriptive 

machine learning methods that are based on discovering patterns within a labelled dataset. The 

discovered patterns are represented as sets of if-then rules that are readable (interpretable) to the 

human. The coverage of a pattern is an important parameter, defined as the number of data 

observations that are covered by that pattern.  Those patterns represent the system characteristics, 

boundary and causality between the explicative variables in the dataset (Chikalov et al., 2013). An 

advantage of LAD over RST is that LAD allows discovering comprehensive and comprehensible 

rules in many real-world classification problems (Jocelyn, Chinniah, Ouali, & Yacout, 2017; 

Ragab, Ahmed, El-Koujok, Poulin, Amazouz, & Yacout, 2018) (Mortada, Yacout, & Lakis, 2011).  

LAD is applied to industrial chemical processes in (Ragab, Ahmed et al., 2018) and shows great 

performance over other comparable methods to analyze the faulty states due to the structure of its 

interpretable patterns. Mortada et al. (2011) and Jocelyn et al. (2017) applied LAD to diagnose 

faults in rolling bearings by using a modified pattern generation method and machinery-related 

occupational accidents, respectively. For large-scale systems with a large number of interacting 

variables in the data, the number of extracted patterns becomes large. Some of these patterns may 

represent the main root-causes, while other patterns are redundant and represent irrelevant 

knowledge. As reported in (Kiraly, Laiho, Abonyi, & Gyenesei, 2014; Lucchese, Orlando, & 

Perego, 2010), pattern overlapping is a quality measurement for the presence of repetition and 

redundancy in the discovered knowledge. Therefore, the selection of relevant patterns that capture 

the major part of hidden knowledge in the system becomes a big challenge, which requires a tedious 

amount of effort to summarize the discovered knowledge. 

This paper aims to develop an effective hybrid-based methodology, called interpretable logic tree 

analysis (ILTA), which merges the KDD represented by LAD with the FTA to characterize and 

quantify the system causality with a minimum expert involvement. Unlike conventional FTA, the 

proposed ILTA methodology can automatically explore the system’s event causality in an efficient 

way. For a given system state (referred later to a class), the LAD method is employed to extract 

the hidden root-causes, in the form of interpretable patterns, within the system’s historical dataset. 
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The overlapping and coverage of patterns are used as quality criteria in this work to select the 

relevant patterns. They are mathematical artifices, which help rank the discovered patterns 

according to their significance. The selection problem is formulated such that it only selects some 

of the combinations of patterns that maximize the coverage in a certain class while minimizing the 

overlap between selected patterns. An algorithm called burn-and-build is developed in this paper 

to solve the pattern selection formulation.  

The occurrence probability of a given top event occurring in the system can be calculated as the 

coverage of the selected patterns resulting from the obtained feasible solution. The calculated 

probability can therefore fully or partially describe the system state according to the selected pattern 

coverage. Moreover, these probabilities allow a quantitative causality analysis to be performed on 

the system top event. The probabilities of patterns are calculated in (Jocelyn, Ouali, & Chinniah, 

2018) using the occurrence of its constituent attributes. In that method, the patterns are ranked 

according to their coverages (probabilities) that reflect the risk of harm severity. In the proposed 

ILTA methodology, the above estimation technique is modified to calculate the probability of each 

combination of patterns that characterize a given event using Bayes’ theorem.  

The proposed hybrid-based methodology has two basic benefits. First, it automatically visualizes 

and interprets the system behaviour (cause-effect) without any expert involvement during the 

model construction. Second, it enables the occurrence probability of system events to be set by 

tuning their root-cause variabilities for the system diagnosis. The ILTA methodology is comprised 

of four stages. Stage 1 extracts the patterns from the system’s historical dataset using the LAD 

method. Each pattern is a conjunction of conditions (root-causes). Stage 2 searches for feasible 

solutions for the pattern selection formulation while maximizing the observation coverage in a 

certain class. Stage 3 uses the Boolean logic gates of the FT as building blocks to construct the 

ILTA model based on the involved conditions, patterns and feasible solutions. Finally, Stage 4 

assigns the occurrence probability of each system state based on the probabilities of its conditions, 

patterns and solutions.  

The rest of the paper is organized into six sections. Section 2 classifies and reviews the application 

of the FTA models and their limitations. Section 3 provides an overview of the LAD approach and 

describes its terminologies. Section 4 presents the details of the proposed ILTA methodology and 

its constituent stages. Section 5 illustrates the proposed methodology using an actuator system 
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database and discusses the robustness of the obtained ILTA model in the system control. Section 6 

concludes the paper and discusses the pros and cons of the proposed methodology along with future 

research. 

4.2 Review of Fault Tree Analysis models 

The FTA model was first developed at Bell Laboratories in 1962 by H.A. Watson, later improved 

by Boeing and then applied in several domains such as nuclear power plants (Kwag, Oh, & Lee, 

2018), chemical processes (Xiao-Ping & Wei-Hua, 2017), and power electronics (Saponara, Ciarpi, 

& Fanucci, 2018). The FTA requires human expertise to identify a system’s event causality in a 

deductive top-down way based on the detailed knowledge of each system (Beresh, Ciufo, & 

Anders, 2007). According to the literature and practice, three categories in the FTA have been 

identified: the classical fault tree analysis (FTA), computer-aided fault tree (CAFT), and more 

recently the fault tree based on knowledge discovery (FTKD). 

The fundamental concept of the FTA is to transform the physical state description for a system into 

a logic diagram. The root-causes of a selected top event in the system are connected to the Boolean 

logic gates in a deductive way. There are two main characteristics of the FTA. First, it provides a 

qualitative evaluation of the system’s state by finding the minimal paths that lead to such a top 

event (Zeng, Kang, Wen, & Zio, 2018). Second, it provides a quantitative evaluation by assessing 

the likelihood probabilities of the root-causes, therefore the expected occurrence probability of the 

top event can be determined (Kabir, 2017; Lee, Grosh, Tillman, & Lie, 1985).  

The FTA was used extensively in the literature to address the risk management issues related to 

distinct events. Burkhalter, Martani, and Adey (2018) used the FTA to determine the optimal risk-

reducing intervention strategy for railway lines based on the system states and budget availability. 

Sihombing, and Torbol (2018) proposed a FTA model for the risk assessment of components and 

subsystems of nuclear power plants. Melani, Murad, Caminada Netto, Souza, and Nabeta (2018) 

developed a FTA model to identify the critical components within a system and to prioritize the 

maintenance actions. Sule, Khan, Butt, and Yang (2018) studied the safety and reliability 

assessment of a managed pressure drilling operation by investigating the kick control operation 

based on a FTA model. Thapaliya, Jeong, and Kwon (2018) characterized the failure state of a 

railway level crossing system using a FTA model and highlighted preventive maintenance actions 
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to reduce the probability of failure. Bensaci, Zennir, Pomorski, and Mechhoud (2017) applied the 

failure mode effects and analysis (FMEA) method and the FTA to ensure high precision of the 

robot's navigation to avoid dangerous accidents when moving chemical products. 

The limitation of building an FTA model is that it is time-consuming and it requires tremendous 

effort from the human experts from multiple engineering domains to investigate the root-causes, 

based on detailed knowledge and laboratory tests. Moreover, the FT becomes very tedious to build 

when many events are considered under the study. Human experts have to select high risk and 

frequent events. Therefore, some significant and unexpected fault scenarios may be overlooked. 

To address this limitation, the computer-aided fault tree (CAFT) methods are proposed in the 

literature. The CAFT automatically generates an FT using a set of predefined blocks. Therefore, 

the CAFT becomes more suitable to analyze multiple dependent failure events and helps engineers 

to track common root-causes that add relevant diagnosis information related to such events.  

Similar to the FTA, the CAFT model needs a full system description. Two strategies of the CAFT 

models are distinguished in the literature. The first philosophy uses only a predefined set of 

standard failure modes for the automatic FT construction. Fussell (1973) is one of the first 

instigators of this strategy. He constructed the FT using the system boundary conditions and the 

failure transfer function to describe the failure modes. Lapp, and Powers (1977) developed an FT 

construction method based on an oriented digraph. The second category of CAFT improves the 

interaction between the analyst and the model, such that he or she can formalize abnormal situations 

and control the entire system’s behaviour. Mhenni, Nguyen, and Choley (2014) generated a CAFT 

for a system based on the SysML models. Zhang, Yanhua, Ren, Liu, and Wang (2015) used the so-

called Go Model method to build the FT. The method defines a set of mapping rules from the 

common Go operators to FT nodes. Then an algorithm is used to transform the complete Go graph 

into its equivalent FT. Bhagavatula, Tao, Dunnett, and Bell (2016) developed a method based on 

the multi-state input/output tables, the component library and mark library to redraw the system 

description in a graphical form, then build the CAFT. Although the CAFT model is able to generate 

a generalized FTA model for a given system, it requires a full system description. This may not be 

flexible enough to model the complexity of present-day industrial systems. It poses another 

limitation with regards to the interaction between the analyst and the CAFT model since some 

phenomena could be overlooked depending on an expert’s knowledge and background.  
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The third category of FTA is motivated by the revolution in the domain of knowledge discovery in 

database (KDD). It is the fault tree based on knowledge discovery techniques (FTKD). The main 

concept of this category is to use descriptive machine learning and artificial intelligence (AI) 

methods to build an FTA that reflects the hidden phenomena in the dataset. The FTKD helps the 

expert enrich the obtained FTA models. Khoo, Tor, and Li (2001) used rough set theory as a 

descriptive machine learning method to rank the basic events within an FTA based on their 

importance. The method allows learning from experience and expert knowledge. Li, R., Li, and Su 

(2005) applied the rough set theory to FTA in order to calculate the relative significance of the 

bottom events and the occurrence probability of a top event. Tu, Duan, and Dong (2010) developed 

a fault tree using a rough set theory that work proposes a fuzzy clustering algorithm to select the 

most important data variables and to draw a dynamic clustering map for the fault samples and then 

transform this map into a fault tree. Yiu, Cheung, and Lok (2015) introduced a fuzzy fault tree 

framework (FFTA) to conceptualize the root-causes of the failure of negotiation in a construction 

dispute. Papadopoulos et al. (2011) developed an automated construction tool of Fault Trees and 

Failure Modes and Effects Analyses (FMEAs) based on  Hierarchically Performed Hazard Origin 

& Propagation Studies (HiP-HOPS). The tool optimizes the selection of the system components 

based on a compromise between the improvement of the system reliability and the reduction of 

solution cost. 

In the FTKD models, the role of the KDD is to help highlight the root-causes that are difficult for 

human experts to observe. Such causes can be observed from the system’s historical data; the role 

of experts is to validate the obtained tree and analyze its applicability. However, the automation of 

the FT construction process based on KDD without the involvement of a committee of experts is 

strongly needed in real applications and has not been addressed in the literature.  This is the main 

objective of the current paper. We automate the FT construction process based on the interpretable 

patterns of LAD.  

4.3 Logical Analysis of Data for KDD 

Logical Analysis of Data (LAD) is a supervised pattern generation and classification method 

introduced by Peter L. Hammer in 1986 (Hammer, P., 1986). The main concept of LAD is to extract 

human interpretable patterns from a labelled dataset. It is based on some concepts from the theory 

of Boolean functions, artificial intelligence and combinatorial optimization (Chikalov et al., 2013). 
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It consists of three main steps; data binarization, pattern generation and theory formation  (Boros, 

Endre et al., 2000). In data binarization, LAD converts the variables in the datasets, whether 

numerical or categorical, to binary attributes using a set of cut points. More details about the 

binarization step and the optimization of the number of cut points are found in (Boros, Endre, 

Hammer, Ibaraki, & Kogan, 1997). The pattern generation is the most significant step in LAD. The 

aim is to extract a set of positive (+) and negative (-) patterns that distinguish between (+) and (-) 

observations. In the theory formation step, the extracted patterns are used to build a decision model 

that classifies the new observations that have not been seen in the training data. Interested readers 

can refer to (Boros, Endre et al., 2000) for more details about these steps. In what follows, the 

pattern definition and its main properties are presented. 

The pattern is defined as a logical conjunction of some literals. The literal characterizes a binary 

attribute or its negation in a pattern. The extracted patterns could be pure or non-pure (or fuzzy) 

(Bonates, Hammer, & Kogan, 2008). The pure pattern covers some observations of one class and 

none of the observations in the opposite class. The fuzzy pattern covers some observations in one 

class and is allowed to cover some others in the opposite class due to constraining relaxation. Three 

parameters are used to define the pattern quality: degree, prevalence, and homogeneity. The degree 

is the number of literals that constitute the pattern. A high degree pattern is more likely to cover a 

small set of observations, while a low degree pattern is more likely to cover a larger set of 

observations (Boros, Endre et al., 2000). The absolute prevalence of the pattern is defined as the 

number of observations covered by that pattern. The relative prevalence of the pattern (coverage) 

is defined as the ratio between the absolute prevalence and the number of observations in the entire 

dataset. The homogeneity is the ratio of the absolute positive prevalence to the absolute prevalence 

of the pattern (Alexe & Hammer, 2006). LAD pattern types are defined according to the 

characteristics found in (Hammer, Peter L., Kogan, Simeone, & Szedmák, 2004): The prime 

pattern is such that if we remove any of its literal, it will no longer be a pattern. The strong pattern 

is a pattern that has the largest coverage with respect to the other patterns. More details about the 

types of patterns are found in (Hammer, Peter L. et al., 2004). 

In this paper, the notion of literal in patterns is adapted to be used and understood by the researchers 

and practitioners in the domains of condition monitoring and fault diagnosis. Accordingly, the 

pattern is represented as a conjunction (simultaneous occurrences) of certain conditions. Each 

condition compares the variable with the cut point which represents the transition between the 
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different classes of data (condition: variable ≤ (or >) cut point). Thus, the condition represents the 

range of variables in a certain class.  

There are three common methods to generate patterns: enumeration-based methods (Alexe & 

Hammer, 2006), heuristics-based methods (Bonates et al., 2008) and mixed integer linear 

prograV2g (MILP)-based methods (Ryoo & Jang, 2009). The enumeration-based methods are 

convenient for small datasets only since they are time-consuming. The heuristic-based methods 

extract the patterns iteratively until all the observations in the dataset are covered. However, these 

methods do not give optimal solutions but can give feasible ones, without requiring computational 

efforts such as the MILP-based methods. The MILP have the ability to extract strong patterns that 

satisfy user-specified requirements related to the prevalence, homogeneity and complexity quality 

criteria (Ryoo & Jang, 2009). The accuracy of LAD over the other common machine learning 

techniques, namely artificial neural networks (ANN), Decision Tree (DT), Random Forest (RF), 

k-nearest-neighbors (kNN), quadratic discriminant analysis (QDA) and support vector machine 

(SVM), is highlighted in (Ragab, Ahmed et al., 2018) and (Mortada, M.-A., Yacout, S., & Lakis, 

A., 2014).  

4.4 The Proposed ILTA Methodology 

The proposed ILTA methodology enables building a logic tree model automatically based on a set 

of patterns extracted from the dataset using LAD. The main strength of the methodology is that it 

does not require the involvement of any human expert in the construction stage. The expert should 

verify the relevance of obtained model and keep or remove redundant discovered knowledge if 

necessary. In this paper, we focus on the construction of only one-level tree as a simple case in 

order to exhibit the effectiveness of the proposed methodology. The one-level ILTA model consists 

of three layers (i.e. condition, pattern and solution) that explain each event class. For complex 

systems, the one-level ILTA model will be employed in future research as an engine module to 

build a multi-level ILTA model. Figure 4.1 depicts the one-level ILTA construction methodology. 

It consists of four sequential stages. 
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Figure 4.1 The proposed four-stage ILTA methodology 

4.4.1 Stage 1-Knowledge discovery in the system’s historical data 

The purpose of this stage is to discover hidden knowledge within the dataset using the two-class 

LAD as pattern generation and selection technique. The extracted patterns characterize a specific 

class of observations representing a certain phenomenon against the opposite class. The patterns 

describe some combinations of conditions during the system’s operation. The software LAD-

WEKA is an open source software available at (Gomes & Bonates, 2014b), which extracts the 

patterns by using heuristics-based methods. The number of discovered patterns using LAD-WEKA 

is usually high. However, it can be constrained by tuning a parameter called the minimum class 

coverage, which is the minimal acceptable pattern coverage for its class to consider it in the final 

pattern set.  

The discovered patterns may include two types of variables in their conditions: independent and 

dependent. The independent variables are the ones that can be directly control or influence the 

system without depending on any other variables. They represent independent root-causes in the 

dataset and are a way to define the system control boundaries. The dependent variable characterizes 

an output variable of a hidden relationship or interaction between some independent variables or 

not within the dataset. It can be used to define the system alert boundary. An extracted pattern may 

contain both independent and dependent variables within its conditions.  
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As mentioned previously, LAD can generate both types of patterns, pure and fuzzy. We exploit the 

concept of fuzziness and purity on the pattern conditions. However, in this case, the intersection 

between two or more fuzzy conditions can form a pure pattern. As shown in Figure 4.1, pattern 3 

in the first stage consists of two fuzzy conditions for the variables Y and Z, as each fuzzy condition 

covers observations in both classes (+ and -). Both of the two fuzzy conditions form a pure pattern 

𝑃3. 

4.4.2 Stage 2-Obtaining feasible solutions 

This stage selects feasible solutions from a set of formed ones, where a solution is a group of 

selected patterns, discovered in Stage 1. Each pattern involves some specific root-causes that can 

represent partial casualty for a given system state. The solution is defined as a combination of some 

patterns that cover the observations of the same class. It explains how the patterns are combined to 

depict the class event. Each solution can be characterized by its coverage and overlap percentages. 

The solution coverage denotes the percentage of observations that are covered by any patterns of 

the formed solution. It may be interpreted as the representability of discovered knowledge. While 

the solution overlap denotes the percentage of the class observations, which are covered by more 

than one pattern of the solution. It may be interpreted as redundant knowledge within the formed 

solution. The feasible solution is defined as a solution which maximizes the coverage percentage 

and minimizes the overlap percentage. The search for all the feasible solutions allows the ILTA 

model to maximize the representability of the discovered knowledge while reducing their 

redundancy.  

Figure 4.2 explains how the solution are formed and the feasible solutions are selected using the 

all combinations of the discovered patterns in Stage 1. From the example of Figure 4.1, there are 4 

discovered patterns (P1, P2, P3 and P4) that explain the system class (+). Accordingly, when n=1, 

meaning that each solution consists of a single pattern, there are 4 possible solutions (S1 to S4). For 

each solution, the coverage (Cov) and the overlap (OL) percentages are calculated and saved. For 

example, S1 consists of pattern P1 which covers 3/3 observations of the class (+) with 0/3 overlap. 

However, S4 covers 2/3 observations with 0/3 overlap. When n=2, each pair of patterns forms a 

solution. There are 6 solutions (S5 to S10).  For example, S7 combines P1 and P4. It covers 3/3 of the 

observations with 2/3 overlap. There are 4 solutions (S11 to S14) that combine three patterns (n=3). 

For example, the S12 superposes P1, P2 and P4. It covers 3/3 observations with 3/3 overlap. Finally, 
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there is a single solution S15 that combines the four discovered patterns (n=4). S15 covers 3/3 

observations with 3/3 overlap. Based on the coverage and overlap percentages of the above-

enumerated solutions, S1 and S8 are the two only feasible solutions. Indeed, they maximize the 

coverage of the observations of the system state (+) (Cov=3/3) with a minimum overlap (OL=0/3). 

 

Figure 4.2 Form and select feasible solutions using the all combinations of discovered patterns 
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When the number of discovered patterns increases, the all pattern combination method becomes 

time-consuming. To overcome this problem, an iterative Burn-and-build algorithm is proposed. It 

finds almost all the feasible solutions in efficient way. Figure 4.3 depicts the algorithm flowchart 

in three steps. Step 1 initializes the algorithm parameters: the set of discovered patterns (Pgen); the 

overlap threshold (); the pattern index (i=1); and the number of combined patterns (n=1). Step 2 

forms the solutions. Starting with a selected pattern Pi, the algorithm calculates the coverage 

percentage of Pi and assigns Pi to the solution Si,n. The algorithm removes (burns) all the patterns 

Pj (ji) that overlap Pi according to the predefined threshold . For each solution that combines Pi 

with its non-overlapped patterns (n>1), the algorithm chooses (builds) Si,n that gives the maximum 

coverage. This step is repeated for each starting pattern Pi  until the all the formed solutions Si,n are 

obtained. Finally, Step 3 selects the feasible solutions Si,n that maximize the coverage over all the 

formed solutions.  

Start

Initialize:

Pgen,  , i=1 and n=1

If n = L

End

Select a start pattern (Pi) from the 

set (Pgen)

Calculate the coverage of (Pi) and 

assign it to the solution (Si,n)

   Remove any pattern (Pj) i  j 

that overlaps (Pi) based on the 

overlap threshold  

Calculate the coverage of each n 

pattern combination with (Pi) that 

respects the overlap threshold  

Choose the combination that 

maximizes the coverage and 

assign the combination to (Si,n)

 (n=n+1)

Step 1

Step 2

2.1

2.2

2.3

2.4

2.4.1

2.4.2

2.4.3

i= i + 1

n =1

Select the feasible solution (Si,n) 

that maximizes the coverage over 

all the formed solutions

Step 3

If i = L

YESNO

YESNO
2.5

Inputs:

Pgen

Overlap threshold ( )

Where:

Pgen = {P1, P2, P3,     PL} is the set of the 

discovered patterns.

(Pi) is a start pattern, where i = {1, 2, 3,    L}

(n) is the number of combined patterns with 

the start pattern Pi, where n = {1, 2, 3,    L}

(Si,n) denotes a formed solution that includes Pi  

Form solutions with more than 

one pattern

Initialization 

Form solutions Select feasible solutions

 

Figure 4.3 Form and select feasible solutions using the Burn-and-Build algorithm 
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Figure 4.4 illustrates the search for the two feasible solutions of the example of Figure 4.2 using 

the proposed algorithm. At the sub-step 2.1, consider for example discovered pattern P2  (i=2) as 

a start pattern. Then, at the sub-step 2.2 we calculate its coverage percentage and form the first 

solution S2,1 (n=1). At the sub-step 2.3, we remove the patterns P1 and P4 because they overlap P2 

according to the overlap threshold =0%. Then we build the solution S2,2  that combines P2 and P3 

(n=2) at the sub-step 2.4. Once all the solutions are formed regarding to each start pattern, we select 

S1,1 and S2,2 as the only two feasible solutions because they maximize the coverage of the class 

observations over all the formed solutions. 

 

Figure 4.4 Illustration of the Burn-and-build algorithm 

4.4.3 Stage 3-Logic tree construction 

The feasible solutions found by the Burn-and-build algorithm are used in this stage to construct the 

one-level ILTA model using the OR and AND gates. The ILTA model is constructed in a top-down 

approach in three layers: solution, pattern and condition. At the solution layer, an upper OR gate is 

used, expressing the multiple feasible solutions related to the occurrence of the system class. The 

solution that has only one pattern is connected directly to that OR gate (see 𝑃1 in orange, Figure 

4.1, Stage 3). At the pattern layer, for any feasible solution that has a combination of more than 
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one pattern, such patterns are connected to solution with an OR gate (see 𝑃2 in green and 𝑃3 in 

yellow). At the condition layer, if the pattern has only one condition, such condition is connected 

directly to the previous OR gate (solution or pattern OR gate, see 𝐶1 in light orange and 𝐶2 in light 

green). If the pattern has more than one condition, those conditions are connected together using 

an AND gate since they have to occur simultaneously (see 𝐶3 and 𝐶4 in light yellow). Figure 4.5 

shows the flowchart of the ILTA construction stage methodology. 

For each main 
event class (CLi)

If the discovered 
solutions (Si) are one 

solution

Connect all the (Si) 
by OR gate to the 
main event class

Connect (Si) 
directly to the 

main event class

For each solution 
(Si)

YesNo

If (Si) 
consist of one pattern 

(Pi)

Connect all (Pi) by 
OR gate to (Si)

Connect (Pi) 
directly to (Si)

For each pattern 
(Pi)

YesNo

If (Pi) 
has one condition (Ci)

Connect all (Ci) by 
AND gate to (Pi)

Connect (Ci) 
directly to (Pi)

YesNo

Start

End

 

Figure 4.5 Time-OR gate functionality in the ITCA model 

To illustrate the flowchart of Figure 4.5, let us consider a toy example consisting of 10 observations 

divided in two classes (Table 4.1). Observations 1 through 5 belong to the class (+), the other ones 

belong to the class (-). 𝑋1and 𝑋2 are two variables. 𝐶1 through  𝐶5 represent the five conditions that 

characterize the three discovered patterns 𝑃1, 𝑃2 and 𝑃3. Therefore, the green cells represent the 

observations that are covered by each condition. While the green cells with the red boarders 

represent the conjunction of the conditions of each pattern that cover only the observations of the 
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positive event class (+). The ILTA model is constructed from two feasible solutions, namely 𝑆1 

and 𝑆2, each one fully covers the event class (+). The solution 𝑆1 consists of only one pattern 𝑃1 

identified by a conjunction of the two fuzzy conditions (𝐶1 and 𝐶2). The pattern 𝑃1 covers all 

observations of the class (+), defined as: 𝑃1: 𝐶1  ∩ 𝐶2. The solution 𝑆2 comprises the following two 

patterns: 𝑃2 is identified by one pure condition 𝐶3 and 𝑃3 is identified by a conjunction of the two 

fuzzy conditions (𝐶4 and 𝐶5). The pattern 𝑃2 covers the observations (1, 2, 4, and 5) and the pattern 

𝑃3 covers observation 3. 

Table 4.1 Observations and obtained feasible solutions of the toy example 

 

Figure 4.6 visualizes the two solutions 𝑆1 and 𝑆2 in the form of a one-level logic tree based on the 

flowchart of Figure 4.5. 

X1 X2 X1 X2 X1 X2

L1 L2 L3 L4 L5

1 4.8 0.3 4.8 0.3 4.8 0.3 +

2 5.1 0.4 5.1 0.4 5.1 0.4 +

3 5.5 0.2 5.5 0.2 5.5 0.2 +

4 4.8 0.2 4.8 0.2 4.8 0.2 +

5 4.7 0.2 4.7 0.2 4.7 0.2 +

6 6 1 6 1 6 1 -

7 6.1 1.2 6.1 1.2 6.1 1.2 -

8 5.7 1.2 5.7 1.2 5.7 1.2 -

9 5.5 1.3 5.5 1.3 5.5 1.3 -

10 5.6 1.3 5.6 1.3 5.6 1.3 -

 P1: (X1 ≤ 5.55) AND (X2 ≤ 1) P2: (X1 <= 5.3) P3: (X1 > 5.3) AND (X2 ≤ 0.7)

S1+ = P1 S2+ = P2 ∪ P3

Obs. Class

P1 P3P2
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Figure 4.6 Visualization of the one-level ILTA model of the toy example 

4.4.4 Stage 4-Probability calculations 

After constructing the logic tree by connecting the solutions, patterns and conditions using the 

Boolean logic gates, the occurrence probability of each solution is then estimated using the 

occurrence of its constituent patterns and conditions. At the condition layer, the probability of each 

condition 𝐶𝑖, 𝑖 = 1. . 𝐼 is equal to the ratio given by the number of observations 𝑁𝑖 covered by 𝐶𝑖 

divided by the total number of observations 𝑁𝑇 in the dataset sample. 

𝒫(𝐶𝑖) =
𝑁𝑖

𝑁𝑇
        (1) 

At the pattern layer, the probability of each pattern 𝑃𝑗, 𝑗 = 1. . 𝐽 is equal to the product (intersection) 

of the probabilities of its conditions, where 𝑛𝑗 is the number of conditions in 𝑃𝑗:  

𝒫(𝑃𝑗) = ∏ 𝒫(𝐶𝑖 ∩ 𝐶𝑖+1)

𝑛𝑗−1

𝑖=1

         (2) 

Using Baye’s theorem (Bernardo & Smith, 2001), the pattern probability 𝒫(𝑃𝑗) is given by: 

𝒫(𝑃𝑗) = ∏ 𝒫(𝐶𝑖|𝐶𝑖+1). 𝒫(𝐶𝑖+1)

𝑛𝑗−1

𝑖=1

        (3) 
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The value of 𝒫(𝐶𝑖|𝐶𝑖+1) represents the degree of intersection (dependency) between the two 

conditions 𝐶𝑖 and 𝐶𝑖+1 with respect to the occurrence of 𝐶𝑖+1. Equation (3) represents the 

occurrence of the pattern by using only one of its conditions. Therefore, controlling the occurrence 

of the pattern can be done in different ways based on its conditions. This is an advantage of the 

proposed methodology. 

At the solution layer, the probability of a feasible solution is calculated in terms of the union of 

probabilities of its combined patterns by using the Poincaré formula (Chelson, 1971). That formula 

states that for n events P1, P2, ... Pn pertaining to S and having intersections or not, the probability 

of their union is given by: 

𝒫 [⋃ 𝑃𝑗

𝐽

𝑗=1

] = ∑ ((−1)𝑘+1 ∑ 𝒫(𝑃𝑗1 ∩ 𝑃𝑗2 ∩ … ∩ 𝑃𝑗𝑘)

1≤𝑗1<𝑗2<⋯<𝑗𝑘≤𝑛

)

𝐽

𝑘=1

         (4) 

 

Finally, the probability of a given event class 𝐶𝑊 is given by the union of all probabilities of its 

feasible solutions 𝑆𝑙𝑞(𝑞 = 1,2, …  𝑄) that are calculated using Equation (4). For 𝑄 feasible 

solutions, the probability 𝒫(𝐶𝐿𝑊) of the top event class 𝐶𝐿𝑊 is given by: 

𝒫(𝐶𝐿𝑊) = 𝒫 [⋃ 𝑆𝑞

𝑄

𝑞=1

]                 (5) 

4.5 Illustrative example 

This section applies the ILTA methodology on an actuator system dataset generated from the 

DAMADICS benchmark simulator model (DAMADICS, 2002). The intention is to validate the 

constructed ILTA model since the simulator documentation provides the prior knowledge about 

the fault generation based on a logic equation that includes the involved root-causes. Therefore, it 

will be easy to compare the obtained root-causes based on the ILTA model and the ones already 

used by the simulator. In addition, we can estimate the accuracy of the obtained ILTA model based 

on a random sampling of the labelled observations.  
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The actuator system consists of two main parts: pneumatic linear servomotor and positioner (Figure 

4.7). The pneumatic linear servomotor adjusts the valve flow according to the positioner control 

signal. 

 

Figure 4.7 The actuator system (DAMADICS, 2002) 

4.5.1 Data simulation 

The DAMADICS Actuator Benchmark Library (DABLib) is a Simulink Matlab library that 

includes different tools. We generate a two-class labelled data: normal and fault. Regarding the 

fault class, we choose the fault F7 (medium evaporation or critical flow) among 19 possible faults. 

Because F7 is a simple and quite explicit fault. According to the benchmark, the physical 

interpretation of F7 is “two-phase flow (a mixture of fluid and steam) caused when local fluid 

pressure drops down to steam evaporation pressure level. This manifests in flashing or cavity 

phenomenon” (DAMADICS, 2002). The database comprises six numerical variables (CV, P1, P2, 

X, F and T1) and one categorical (F7) (Table 4.2). Note that the numerical variables are normalized. 

Table 4.3 lists a sample of eight observations chosen randomly from the generated database: the 

first four observations are normal and the others belong to the fault class.  
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Table 4.2 Description of the actuator database variables 

Variable ID Description 

CV Control variable is the output signal from the controller. 

P1 The value of the pressure on the control valve inlet. 

P2 The value of the pressure on the control valve outlet. 

X The disturbed value of the rod displacement. 

F The disturbed medium flow. 

T1 The temperature of medium. 

Fault (F7) Class variable: Medium evaporation or critical flow fault 

 

Table 4.3 A sample from the actuator simulation data 

CV P1 P2 X F T1 F7 

0.5 0.87683974 0.65083184 0.0015904 1 0.2145533 normal 

0.51569763 0.90065326 0.65603315 0 1 0.2150963 normal 

0.53133330 0.9156675 0.64501173 2.26E-05 0.999757 0.2142761 normal 

0.546845329 0.91753540 0.65034119 0 1 0.21405824 normal 

… … … … … … … 

0.51569763 0.90193477 0.64356580 0.0006583 1 0.99925627 fault 

0.53133330 0.91587598 0.65442129 0.0015826 0.9962099 1 fault 

0.54684532 0.91528355 0.65277880 0.0013790 1 0.99848085 fault 

0.56217247 0.90064185 0.64421054 0.0012165 1 1 fault 

… … … … … … … 
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Figure 4.8 depicts the first two components based on the principal component analysis (PCA) (Abdi 

& Williams, 2010). It visualizes all the generated data in 2D space according to the normal and 

fault classes. 

 

Figure 4.8 2D visualization for the actuator dataset 

2401 observations labelled by the class variable (F7) are generated. The normal class portion is 

53% and the fault one is 47%. Then a training and a testing datasets are randomly sampled. The 

training (respectively, testing) dataset contains 70% (respectively, 30%) of the observations. Table 

4.4 summarizes the number of observations in each sample. 

Table 4.4 Number of observations of the training and testing datasets 

 Training dataset Testing dataset Total 

Normal-class (+) 891 382 1273 

Fault-class (-) 790 338 1128 

Total 1681 720 2401 
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 In what follows, the four stages of the proposed ILTA methodology are illustrated using the 

actuator training dataset. 

4.5.2 ILTA model building 

Stage 1-Knowledge Discovery in the actuator dataset  

Based on the training dataset, the LAD-WEKA software discovers 11 (respectively, 29) patterns 

that discriminate the normal (respectively, fault) class (see Appendix 1). Since LAD-WEKA uses 

a heuristic technique to select the patterns, the minimum pattern coverage parameter is set to 2%, 

which means only the patterns with coverage higher or equal to that threshold will be selected. 

 Stage 2- Obtaining the feasible solutions. 

At this stage, the Burn-and-build algorithm finds two feasible solutions for the normal class and 

only one for the fault class (Table 4.5). Note that each obtained feasible solution is fully covered 

its class without any overlapping between its constituent patterns. 

Table 4.5 Feasible solutions for the normal and fault classes 

Feasible solutions for Normal-class (+)  Feasible solutions for Fault-class (-) 

𝑆1
+ 𝑃1 ∪ 𝑃2  𝑆1

− 𝑃12 

𝑆2
+ 𝑃6  

 

For the normal class, 𝑆1
+ includes two patterns 𝑃1 and 𝑃2, 𝑃1 consists of only one condition (𝐹 <

0.228). 𝑃2 includes two conditions: (𝐹 > 0.228) 𝐴𝑁𝐷 (𝑇1 > 0.219). Figure 4.9 illustrates the 

solution 𝑆1
+. Figure 4.9-A plots the variables T1 and F values versus the data index sorted by the 

class label (green for the normal class and red for the fault one). T1 has a constant value equal to 

0.2 in the normal class and jumps to 1 in the fault class. F has a wavy behavior in the normal class 

and become steady to 1 in the fault class. Figure 4.9-B (respectively, Figure 4.9-C) plots the 

coverage of 𝑃1 (respectively, 𝑃2). Figure 4.9-D shows the coverage of the combined patterns that 

form the solution 𝑆1
+. By the same way, 𝑆2

+ consists of one pattern 𝑃6 that includes a single 

condition (𝑇1 ≤  0.607). Figure 4.10 plots the variable behaviour (Figure 4.10-A) and the 

coverage of 𝑆2
+ (Figure 4.10-B).  
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For the fault class, Figure 4.11 illustrates the only one feasible solution  𝑆1
− with respect to its single 

condition (𝑇1 > 0.607). 

   

Figure 4.9 Illustration of the feasible solution 𝑆1
+ 

 

Figure 4.10 Illustration of the solution 𝑆2
+ 
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Figure 4.11 Illustration of the solution 𝑆1
− 

Stage 3-ILTA model construction 

Figure 4.12 presents the constructed ILTA model. It visualizes the system causality that 

characterizes the normal and fault classes in a three-layer logic tree. At the solution layer, 𝑆1
+ and 

𝑆2
+ (respectively, 𝑆1

−) are connected to the normal class (respectively, the fault class) using the OR 

gate. Similarly, at the pattern layer, 𝑃1 and 𝑃2 are connected to 𝑆1
+ using an OR gate; and 𝑃6 is 

directly connected to 𝑆2
+. However, at the condition layer, the two conditions (𝑇1 ≤ 0.219) and 

(𝐹 > 0.228) are connected to 𝑃2 using the AND gate; and 𝑃12 is connected to the fault class 

without any logic gate because it is alone to explain that class.  



68 

 

Actuator 

system

Normal Fault F7

T1 > 0.607

P12P2

T1         

P6

F > 0.228 T1         

P1

F        

C1 C2 C3 C4 C5

Solution layer

Pattern layer

Condition layer

S1+ S2+ S1-

 

Figure 4.12 The one-level ILTA model of the actuator system 

𝑇he obtained ILTA model has the ability to visualize the system causality in a one-level logic tree 

in which the conditions, patterns and solutions layers are simultaneously represented. It explains 

how the conditions, patterns and solutions are combined to interpret the normal and fault classes 

using only one model. 

Stage 4- Probability calculations 

Table 4.6 summarizes the results of the probability calculations of the ILTA model. The equations 

(1), (3), (4) and (5) are used to estimate the probability of each condition, pattern, feasible solution 

and class event, respectively. 
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Table 4.6 Probability results at each layer of the one-level ILTA model 

Condition 

layer 

Condition# 
𝐶1: 𝐹
≤ 0.228 

𝐶2: 𝐹
> 0.228 

𝐶3: 𝑇1
≤ 0.219 

𝐶4: 𝑇1
≤ 0.607 

𝐶5: 𝑇1
> 0.607 

𝒫(𝐶#) 0.09 0.91 0.53 0.53 0.47 

Pattern 

layer 

Pattern# 𝑃1: 𝐶1 
𝑃2: 𝐶2 ∩ 𝐶3  𝑜𝑟 𝑃2: 𝐶3

∩ 𝐶2 
𝑃6: 𝐶4 𝑃12: 𝐶5 

𝒫(𝑃#) 0.09 0.44 0.53 0.47 

Solution 

layer 

Solution# 𝑆1
+: 𝑃1 ∪ 𝑃2 𝑆2

+: 𝑃6 𝑆1
−: 𝑃12 

𝒫(𝑆#) 0.53 0.53 0.47 

 
Class# Normal: 𝑆1

+ ∪ 𝑆2
+ Fault: 𝑆1

− 

𝑃(𝐶𝐿#) 0.53 0.47 
 

At the pattern layer, note that the pattern 𝑃2 consists of the conjunction of 𝐶2: 𝐹 > 0.228 and 

𝐶3: 𝑇1 ≤ 0.219. The probability 𝒫(𝑃2) = 0.44 can be estimated using 𝒫(𝐶2|𝐶3)𝒫(𝐶3) =

0.836𝒫(𝐶3) or 𝒫(𝐶3|𝐶2)𝒫(𝐶2) = 0.483𝒫(𝐶2).   

4.5.3 ILTA model for system control 

This section discusses the usefulness of the proposed ILTA model from the perspective of system 

control. The ILTA model allows controlling the probability of the system event by tuning the 

probabilities of its root-causes. Two categories of control rules (full and partial) can be 

distinguished. The full control rule uses the solutions in which all their conditions are pure. The 

partial control rule uses solutions with a mixture of pure and fuzzy conditions or solutions with 

only fuzzy conditions. Figure 4.13 presents the system control rules that characterize the two 

classes. For examples, it is easy to note from Table 4.6 that the probability of the normal-class is 

fully controlled by the probability of its pure condition 𝐶4: 𝑇1 ≤ 0.607 when the value of 𝑇1 is 

tuned from 0 to 1, according to Rule 1: 𝒫(𝐶𝐿𝑛𝑜𝑟𝑚𝑎𝑙) = 𝒫(𝑆2
+) =  𝒫(𝑃6 ) =  𝒫(𝐶4). In the same 

manner, the probability of the fault-class is controlled by the probability of the pure condition 𝐶5 

according to Rule 4. However, because 𝐶2 and 𝐶3 are two fuzzy conditions, they can control in part 

the probability of the normal-class according to the rules 2 and 3.  
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System

Normal Fault F7

 R2:  P(Normal) = P(C1) + 0.483 P(C2)
 R3:  P(Normal) = P(C1) + 0.836 P(C3)

R1:  P(Normal) = P(C4)

Fully control

Partial control

 R4:  P(Fault F7) = P(C5)

Fully control

 

Figure 4.13 The one-level ILTA control rules 

4.5.4 Validation of the ILTA model 

In this section, the obtained ILTA model is validated through the prior knowledge about the 

occurrence of the fault F7 in the data generation tool and the mean error of the predicted probability 

of a given class based on the testing dataset.  

According to the fault simulation equation given in (DAMADICS, 2002), the main cause of F7 is 

related to the fluid temperature 𝑇1𝑓. In the normal operation, the fault strength value 𝑓𝑠  is equal to 

0 and the fluid temperature 𝑇1𝑓 is normal, equal to 𝑇10. The fault F7 occurs when the 𝑇1𝑓 exceeds 

𝑇10. This happens when the fault strength 𝑓𝑠 is greater than 0.  

 

𝐹𝑎𝑢𝑙𝑡 (𝐹7) 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛: {
𝑇1𝑓 = 𝑇10                                     𝑖𝑓  𝑓𝑠 = 0

𝑇1𝑓 = 𝑇10 + 200 + 100 ∗ 𝑓𝑠    𝑖𝑓  𝑓𝑠 > 0
   

(𝑇1𝑓)𝑓𝑙𝑢𝑖𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒                   

(𝑇10) 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑓𝑙𝑢𝑖𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

(𝑓𝑠 ) 𝑓𝑎𝑢𝑙𝑡 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ                             

     (6) 

 

From the ILTA model, the two pure conditions 𝐶4 and 𝐶5 detects the changing within the data 

based on the fluid temperature 𝑇1. According to 𝑆2
+, if 𝑇1 ≤ 0.607 then the actuator operates 

normally. However, according to 𝑆1
−, if 𝑇1 > 0.607 then the fault F7 is detected. Thus, the ILTA 
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methodology detects the fault F7 in the effective way.  Nevertheless, the ILTA model proposes 

another feasible solution (𝑆1
+), which cannot be verified using the equation (6). 𝑆1

+ involves 𝑇1 and 

the disturbed medium flow (F) to characterize the normal operatin state. Therefore, the human 

expert is free to keep or remove 𝑆1
+ since this solution may represent useful or redundant causality 

knowledge about the normal state. 

From another side, we use 1000 random data samples generated from the testing dataset of 720 

observations (see Table 4.4) to estimate the mean error between the predicted probability of a given 

class based on its control rules and the actual probability of the same class. Each random data 

sample has a fixed size of 314 observations with 95% of confidence level. The mean and the 

standard errors of the two fully control rules 1 and 4 are equal to zero, which indicate that the 

solutions 𝑆2
+ and 𝑆1

− fit well the data. Because each one of the above solutions depends on only 

pure condition. Figure 4.14 provides only the error distribution for the rules 2 and 3. The mean and 

standard errors are less than 2% and 1%, respectively.   

   

Mean Error = 0.0195 and Standard error = 0.0145 Mean Error = 0.0112 and Standard error = 0.0083 

Figure 4.14 The performance of the control equations 

4.5.5 Discussion 

After the validation of the ILTA model, the discovered root-causes can be ranked according to their 

importance in controlling the probability of the corresponding class (Table 4.5). The ranking of the 

root causes (conditions) is based on the associated conditional probability value that describes the 

occurrence of the involved pattern in the control rule. For instance, the conditions 𝐶1: 𝐹 ≤

0.228; 𝐶4: 𝑇1 ≤ 0.607 and 𝐶5: T1 > 0.607 have the highest importance (equal to 1) due to their 
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pureness. However, 𝐶3: 𝑇1 ≤ 0.219 and 𝐶2: 𝐹 > 0.228 have the lowest scores 0.836 and 0.483. 

The ILTA root-causes ranking is similar to Birnbaum importance measurement (Miziula & 

Navarro, 2019), which ranks the basic event based on their contribution on modifying the total risk 

level. 

Table 4.7 The root-causes ranking for normal and fault classes 

Normal-class 

Solution Root-cause Rule Ranking 

𝑆2
+ 𝐶4: T1 ≤ 0.607 1 1 

𝑆1
+ 

𝐶1: F ≤ 0.228 2 or 3 1 

𝐶3: T1 ≤ 0.219 3 0.836 

𝐶2: F > 0.228 2 0.483 
 

Fault-class 

Solution Root-cause Rule Ranking 

𝑆1
− 𝐶5: T1 > 0.607 4 1 

 

Hence, the proposed ILTA model is effective in the actuator case because the generated database 

represents a simple system in which the root-causes have a direct influence on the system states. 

Thus, the ILTA model can easily represent the actuator causality in one-level logic tree. 

Accordingly, if the responsible variables for increasing the fluid temperature 𝑇1𝑓 are included in 

the database, then the ILTA model will easily select the fault indicator (T1) of the actuator 

regarding F7.  

However, in case of complex systems, such as nuclear power plan (Vesely, Goldberg, Roberts, & 

Haasl, 1981) and aerospace systems (Stamatelatos et al., 2002; Stamatelatos. & Dezfuli., 2011), 

where several sub-systems and characteristic variables may have interdependency relations 

between each other, the fault diagnosis using one-level ILTA model is insufficient. To overcome 

this challenge, a multi-level ILTA model is necessary to address complex causality. Therefore, the 

one-level ILTA approach proposed in this paper will be employed as a cornerstone module in 

building the multi-level tree for complex causality analysis. Furthermore, after addressing the 

diagnosis problem, the big challenge remains the prognosis of the future health conditions of the 

system over the time. Consequently, the ILTA methodology needs to be improved by including the 

time as an inherent global variable to the system aging. Also, this future development aims to 

discover and represent the temporal dependencies between the system events.  
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4.6 Conclusion 

This paper developed an effective causality analysis methodology, named interpretable logic tree 

analysis (ILTA). It addresses the diagnosis of an undesirable event, fault or failure based on the 

probabilities of the discovered root-causes. The ILTA methodology builds a logic tree directly by 

exploiting the database, without the involvement of human expertise in the construction stage. 

Intuitively, it visualizes the extracted knowledge in the form of an interpretable logic tree. This 

way, the analysts can view hidden system causalities, interpret them, explore their impacts on 

system behaviour and control the system states.  

The ILTA model is an un-bias interpretable logic tree against the expert knowledge. Unlike the 

FTA, CAFT and FTKD models, the ILTA model does not involve the expert to construct the FT. 

The expert has to analyze the obtained FT. It offers more flexibility to address different facets of 

the system. It can diagnose any event that characterizes the system’s behaviour. Moreover, the 

ILTA methodology can generate multiple feasible solutions and system control rules to help the 

analyst tune the system’s behaviour. It offers several alternatives for system modelling, in addition 

to many explanations of how the knowledge discovered in the dataset is fully exploited to describe 

the system states.  

However, the ILTA model needs a representative data sample of the system states, similar to any 

data-driven model, to provide relevant and accurate results. If the data sample does not contains 

sufficient information about the system states, then the ILTA methodology will construct a partial 

interpretable logic tree that reflects only the causality within that sample. In such case, the experts 

should double their efforts to complete the obtained ILTA model by adding the unobserved 

scenarios due to the limitation of the sample representability. 
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Abstract: 

This paper presents a data-driven approach for a hierarchical causality analysis of faults in a 

complex system, named a multi-level interpretable logic tree (MILTA). From a representative 

faults dataset, this approach constructs dependent trees that explain the relation structure between 

the root-causes, intermediate causes and faults with the minimum expert involvement. The MILTA 

model combines the discovered knowledge in dataset (KDD) in the form of feasible solutions and 

the fault tree analysis (FTA), level after level, as long as the root-causes are not completely 

uncovered. A burn-and-build algorithm is developed to maximize the representability of the 

feasible solutions with a minimum number of patterns. Using Bayes’ theorem, the hierarchical 

causality between the root-causes and the fault is captured through different causality rules that 

quantify the effects of the root-causes on the fault occurrence. An actuator system dataset that 

consists of complex fault and normal operation states is used as an illustrative example. The 

MILTA model finds the same documented root-cause and uncovers other root-causes with higher 

accuracy.  

 

Keywords: Fault Diagnosis, Causality Analysis; Knowledge Discovery in Dataset; Fault Tree; 
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5.1 Introduction 

The inherent complexity of industrial systems makes a fault diagnosis (FD) problem very difficult 

to apprehend due to the variability of usage conditions, the noisy environment and the 

interdependency relation between the system failure modes (Duan, Hu, & Lin, 2017). Peng, Ma, 

and Zhang (2017) highlight the importance of FD in such complex systems to ensure their 

sustainability and to avoid expensive maintenance costs. The FD consists of three main tasks: fault 

detection, fault isolation and fault identification. The causality analysis (CA) aims to accomplish 

these three tasks by identifying the fault occurrence by finding its root-causes. The CA is 

commonly accomplished using elicitation, event-based or data-driven methods. The elicitation 

methods take reporting forms to record relevant information about the causes of complex incidents 

(Johnson, CW, 2002). Event-based methods use graphical constructed tools to describe the 

occurrence of a top incident based on their intermediate events and root-causes (Leimeister & 

Kolios, 2018). On the other hand, the data-driven methods extract the fault causality knowledge by 

mapping the relations between the system input and output records  (Li, P. c., Zhang, Dai, & Li, 

2017). These methods involve human experts from different engineering domains to model and 

construct the CA models and to interpret the obtained fault causality structure knowledge within a 

complex system. They may lead to partial CA in cases in which there is a lack of expertise, depth 

of analysis or the non-representability of the historical data.  

Fault tree analysis (FTA) is common event-based method that helps engineers intuitively identify 

the faults of a complex system, find their root-causes and quantify their effects on system behaviour 

in terms of risks (Srivastava & Sinha, 2012). They are used first at the system design stage and 

then revised periodically when new faults are reported during usage (Jin-San, Jin-Sung, Jae-Goo, 

& Feel-soon, 2017). Building a Fault Tree (FT) model for a complex system is a difficult and time-

consuming task because a fault may be related to the dependent root-causes and unstructured 

combination of intermediate events that could explain it. Furthermore, expert knowledge can 

become limited and biased when eliciting the causality structure of a complex fault, even if its root-

causes are known.  

Knowledge Discovery in Dataset (KDD) offers an innovative modeling perspective of fault 

diagnosis in a complex system from historical data. Ragab, Ahmed et al. (2018) provide a new 

methodology for automatic enrichment and updating existing FT in order to achieve accurate fault 
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detection and isolation in industrial processes with minimal human involvement. The authors 

discuss the main challenges in combining qualitative FT, descriptive machine learning techniques 

and expert knowledge to deep understanding abnormal events in real situations. The KDD offers 

to experts some counterintuitive solutions that enrich their prior root-causes analysis. Waghen, and 

Ouali (2019) develop a data-driven fault diagnosis methodology, called Interpretable Logic Tree 

Analysis (ILTA), for automatic FT construction and root-cause probability assessments based only 

on historical data, as well as a supervised machine learning technique, named logical analysis of 

data (LAD) (Boros, E. et al., 2011). In a one-level tree, the ILTA model depicts the factual 

combinations of root-causes, in the form of feasible solutions, which explain the fault event. 

Bayesian probability rules are derived from the ILTA model to control the occurrence of the fault 

event based on the probabilities of its root-causes. However, the one-level ILTA model may hide 

the hierarchical structure of intermediate events (causes) that may occur between the fault event 

and its root-causes in a complex system.  

This paper proposes a multilevel ILTA model (MILTA) that would be able to discover the 

hierarchical structure of causes within a complex system from a set of representative historical 

data. The MILTA model uses the ILTA methodology (Waghen & Ouali, 2019) as a construction 

cornerstone of the multilevel model with minimal involvement of a human expert. The MILTA 

model searches for all feasible combinations of intermediate causes that explain the fault event in 

cascade, level after level until the root-causes discovery. Thus, the discovery of these sequences of 

causes will define the causality structure between the fault event and its root-causes. The MILTA 

model will construct non-redundant knowledge within the logic tree so that each identified cause 

at one level will be explained at the subsequent level, and so on. This decomposition will be stopped 

when there is no more available information in the dataset that could explain the final discovered 

causes, or when the coverage of the feasible combinations of causes at that level is less than a 

minimum acceptable threshold. Finally, a set of causality rules is deduced from the final MILTA 

model in order to describe the structure of the causal sequences between the fault event and its 

root-causes.   

The remainder of this paper is organized into six sections. Section 2 reviews the available methods 

of CA used in the fault diagnosis of a complex system; the main challenges are underlined and 

discussed. Section 3 presents the MILTA methodology to construct a logic fault tree and discover 

the causality sequences between the fault event and its root-causes. Section 4 presents a two-state 
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illustrative example of an actuator system dataset and discusses the obtained MILTA model. 

Section 5 focuses on the validation of the MILTA model from the point of view of human expertise 

and model accuracy. Section 6 concludes the paper and discusses the pros and cons of the proposed 

MILTA model. 

5.2 CA methods for fault diagnosis  

A fault is a physical defect that occurs within any component of the system due to natural ageing 

or abnormal load and usage conditions, which leads to the deviation of system behavior (error) and 

may cause its failure later (Choi, Edwards, Ko, & Kim, 2016). Lower productivity and quality or 

total service outage may occur when faults are not diagnosed and removed. The fault diagnosis 

procedure first detects the abnormal situations (faults) that happen during normal operations, then 

isolates each fault by identifying its location and causes, and finally quantifies the effects of causes 

on the occurrence of the fault (Willersrud, 2015). CA methods aim to discover the cause-effect 

sequences that rely on the causes to the selected fault that serve those procedures. Three categories 

of CA methods can be distinguished in the literature: the elicitation, event-based and data-driven 

methods. In what follows, these methods are discussed and their strengths and limitations are 

summarized help clarify the research gap.  

The elicitation method is a high-level framework of thinking about the number of possible causal 

factors that explain a selected event. It takes the form of an analysis report that collects and 

describes the evidence and its causes to better understand an event’s occurrence. Johnson, Chris 

(2003) discusses a barrier analysis method to understand the event occurrence, elicit the appropriate 

prevention and assign a flow path between the event and its consequences. Ramzali, Lavasani, and 

Ghodousi (2015) analyze the possible barriers in terms of success or failure to prevent the failure 

of oil and gas drilling systems in offshore oil rig activities. Noh, and Shortle (2018) propose an 

automatic approach for identifying the best candidates’ barriers to include in a risk model related 

to aviation safety. Wu, G. G., Yang, Song, and Li (2016) develop a quick causality analysis tool 

for complex faults in engine systems based on the change analysis elicitation method. Wu, G. G., 

Yang, Li, and Song (2017) propose a 3CA change analysis method that integrates other elicitation 

methods such as first principle-best practices, barrier failure analysis and prioritization rating code 

(PRC) matrix to perform control analysis. 
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The event-based method focuses on representing the interaction between causes that lead to the 

occurrence of the undesired event. Therefore, it enables a human expert to identify the reasons that 

explain what happens using graphical tools. The event tree analysis (ETA) and fault tree analysis 

(FTA) are the two most common event-based methods for fault diagnosis. The ETA is an inductive 

causality analysis diagram that tracks the evolution of low-level events towards the main event 

based on the conditional probabilities (Riyadi, 2014). Picoco et al. (2017) develop dynamic event 

trees (DETs) for fault diagnosis in a nuclear power plant, based on the simulation of generated 

scenarios, rather than rely directly to experts. Hidayat, and Hermansyah (2018) perform an ETA in 

a complex gas pipeline distribution network. The proposed tree tracks the pivotal causes by 

constructing a multilevel tree to identify the possible failure scenarios. The FTA is a top-down 

deductive causality analysis chart that uses Boolean logic gates to decompose the main event to its 

possible root-causes. Cao et al. (2019) propose a methodology for extracting belief rules base 

(BRB) from the constructed FTA model. The BRB rules summarize the FTA in a set of 

interpretable IF-Then rules and use them in a complex fault diagnosis. Kumar and Ghosh (2017) 

combine the FTA and ETA models to better identify the dependent fault causes in mining systems. 

Piadeh et al. (2018) develop a framework that integrates both an FTA and ETA model to identify 

the fault and recovery actions in wastewater treatment systems, assess the reliability of fault 

detection and prioritize the recovery actions.  

The data-driven causality analysis methods explore historical data in order to discover the physical 

relations and influences between system components. They aim to describe the statistical 

dependencies between variables and the system performances. Direct graph (DG), decision tree 

(DT), Granger causality (GC) and Bayesian network (BN) are the most common data-driven 

methods that graphically diagnose the fault in complex systems. Ma, and Li (2017) combine a 

signed directed graph (SDG) and neighbourhood rough set (NRS) technique to improve the 

efficiency of the fault diagnosis in complex systems. The SDG nodes are fuzzified to describe the 

variables states and overcome low diagnosis accuracy. The SDG paths are transcribed in the form 

of a decision table and introduced into the NRS rule extraction module. Meckel, and Obermaisser 

(2018) propose a component-based framework, called the diagnostic directed acyclic graph 

(DDAG), which allows for a fault diagnosis of dependent components using different adaptive 

diagnostic modules of the system inputs.  
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The DT is a descriptive machine learning method that is able to perform interpretable fault 

diagnosis thanks to the simplicity of its graphical representation (Alkinani, Al-Hameedi, Dunn-

Norman, Alsaba, & Amer, 2019). Ashok, and Yadav (2018) develop a DT diagnosis model of 

electrical transmission lines using the discrete cosine transforms of the current and voltage signals. 

Yu et al. (2018) introduce a hybrid approach that combines expert knowledge and DT to diagnose 

the faults in a variable refrigerant flow system. The DT first extracts the causality structure within 

the system, then the human expert enriches it to make it more representative. The GC is a common 

causality analysis method that uses an interpretable graphical causality tree using time series inputs 

(Amblard & Michel, 2013). Chen, H.-S., Yan, Zhang, Liu, and Yao (2018) propose a multivariate 

GC analysis methodology, which measures the degree of dependency between the process 

variables in order to construct a causal map between them and extract the maximum spanning tree 

to easily identify the system root-causes. Alizadeh, Esmaeil, El Koujok, Mohamed, Ragab, Ahmed, 

and Amazouz, Mouloud (2018) develop a multivariate time series causality analysis tool for fault 

diagnosis based on time series stationarity tests and GC. The tool provides a pairwise causality 

relationship graph validated by the Tennessee Eastman Process benchmark (Bathelt, Ricker, & 

Jelali, 2015). The BN is a probabilistic directed graph that is able to model the influence and 

dependency between the system variables (Yazdi, 2019). Gao, J., and Zhao (2018) model the fault 

propagation pathways using a multilevel BN. The model first extracts the strong causality 

relationship between the nonstationary variables that later linked the global causality model (multi-

level BN) for connecting the stationary variables and nonstationary variables. Chen, X., Wang, and 

Zhou (2018) develop a BN prediction model of system alarms and apply it to the Tennessee 

Eastman Process benchmark.  

With regards to the three categories of causality analysis methods presented above, the following 

limitations might arise when dealing with fault diagnosis in a complex system. The elicitation 

methods involve an important effort from human experts to provide specific details about the 

causality structure of causes. The experts use a nonstandard form of elicitations with different 

levels of detail, which involve advanced artificial intelligence techniques to extract valuable 

decision knowledge. In such cases, the causality structure may be superficial or incomplete. The 

event-based models improve the previous methods because they involve standard forms of 

elicitation. However, the methods remain very dependent on prior human knowledge and their 

domains of expertise. They may lead to partial CA models in a case where faults are omitted. The 
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data-driven methods are less dependent on human expert knowledge to build the causality models 

compared to the elicitation and event-driven methods. The obtained causality graphs or charts 

mainly describe the information flow and dependency given by the system variables rather than 

the fault’s hierarchical decomposition into its causality structure. Therefore, human experts should 

recover this problem, derive the system root-causes and interpret the causality structure from those 

data-driven models. 

To overcome the above limitations, a data-driven fault tree methodology, called the interpretable 

logic tree analysis (ILTA), is proposed by Waghen and Ouali (2019) as the first work in addressing 

the causality analysis in complex systems. The novelty behind the ILTA model is to use the FT as 

a graphical representation and interpretable analysis technique, which assists an expert in grasping 

the fault causality from KDD. The discovered root-causes are interconnected using logic gates to 

explain a selected fault in the system. This model deals with a direct or one level cause-effect 

relation between the root-causes and the fault event. To discover the hierarchical structure of causes 

in a complex system, a multilevel ILTA model is proposed in the following section.  

5.3 MILTA Methodology 

Figure 5.1 depicts the three-phase methodology used to build the architecture of the MILTA model 

and quantify its elements from root-causes to the fault’s events. Phase 1 iteratively uses the ILTA 

methodology to build and quantify the one-level logic tree based on a given labeled dataset. Phase 

2 constructs as many levels as there are unexplained causes in the logic tree. Phase 3 derives the 

causality rules that characterize the causality structure between the root-causes, intermediate causes 

and faults. 
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Figure 5.1 The three-phase MILTA methodology 

5.3.1 Phase 1-One level ILTA model construction 

Step 1 considers a labeled dataset in which each label represents a specific class event (CL) and 

the variables depict the indicators associated with an observation. Each indicator may reflect the 

effect of a cause or a root-cause that may explain a given fault class. Four stages are required to 

build a one level ILTA model: discover knowledge, obtain feasible solutions, construct the logic 

tree and estimate the probabilities (Waghen, and Ouali (2019)).  

• Stage 1: Discover knowledge. The knowledge is extracted in the form of patterns within the 

dataset using the two-class LAD as a pattern generation and selection technique (Alexe & 

Hammer, 2006). Each pattern (P) is a conjunction of some conditions that discriminate one 

class (CL) of observations from the other classes. Each condition (C) compares the value of the 

variable (indicator) with the cut point that represents the transition between two different 

classes of observations (condition: variable ≤ (or >) cut point). Thus, each pattern can totally 

or partially cover certain observations of the same class. The percentage of coverage 

characterizes the knowledge represented by that pattern. In turn, the observations belonging to 

the same class can be covered by more than one pattern, inducing an overlap between the 

coverage of these patterns. The percentage of the overlap corresponds to the number of 

observations that are covered simultaneously by at least two patterns over the total number of 

observations of the class. This percentage represents the redundant knowledge within that class. 
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• Stage 2: Obtain feasible solutions. The solution is defined as a combination of certain patterns 

that cover the observations of the same class. Each solution could be characterized by its 

coverage (Cov) and overlap (OL) percentages. The Cov denotes the percentage of observations 

that are covered by any pattern in the solution formed, whereas the OL denotes the percentage 

of observations that are covered by more than one pattern in the solution. In other words, the 

Cov corresponds to the percentage of observations covered by the union of the solution’s 

patterns, while the OL is the percentage of observations covered by the intersection of the 

solution’s patterns. The feasible solutions are a group of solutions that deploy a minimum 

number of patterns while maximizing the coverage percentage and minimizing the overlap 

percentage at the same time. Therefore, these feasible solutions will maximize the 

representability of the discovered knowledge while reducing their redundancy in the ILTA 

model using the minimum knowledge. The search for these feasible solutions involves an 

improved burn-and-build algorithm. Note that the new burn-and-build algorithm is slightly 

different from the original one presented in (Waghen and Ouali, 2019). It searches for the 

feasible solutions that comprise a minimum number of patterns. This improvement aims to 

provide sequential one level logic trees that may explain the hierarchical causality in the 

MILTA model. The sub-step 1.3 of the improved algorithm selects the optimal combination 

for each starting pattern. The step 4 compares the selected combinations with respect to 

different starting patterns. 

Improved burn-and-build algorithm: 

Searching for feasible solutions comprised of a minimum number of patterns 

Input.  

i) Set of generated LAD’s patterns: Pgen = {P1,P2,…., Pl}; where (l) is the number of the 

discovered patterns 

ii) Overlap Threshold 

Step 1. Select a start pattern (Pi) and calculate its coverage 

1.1. Remove the overlapped patterns with Pi based on preset overlap threshold 

i. At number of combination (n) = 2 

ii. Select the combination with Pi  that has the maximum coverage 

1.2. Repeat (the sub-steps 1.1-i and ii) until the number of combinations (n) = number 

of the discovered patterns 
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1.3. Compare the selected combinations at each n and select the combination that 

maximizes the coverage with a minimal number of patterns  

Step 2. Select another pattern (Pi) as a start point and repeat 1.1, 1.2 and 1.3. 

Step 3. Repeat 2 until considering each pattern as a start point. 

Step 4. Compare the selected combinations over the start patterns Pi  and select the 

combination that maximizes the coverage with a minimal number of patterns  

Output.  

Set of feasible solutions: Sol = {S1, S2,…., Sk }; where (k) is the number of the formed 

solutions. 

• Stage 3: Construct the logic tree. The feasible solutions found at Stage 2 are visualized in a 

logic tree consisting of three distinguished layers related to the solution, pattern and condition 

using the OR and AND gates. At the condition layer, all of the conditions that form a pattern 

are connected to that pattern using an AND gate. At the pattern layer, all of the combinations 

of patterns that constitute a feasible solution are connected to that feasible solution using an 

OR gate. Similarly, all of the feasible solutions that explain a given class are connected to that 

class using an OR gate.  

• Stage 4: Estimate the probabilities. Based on the constructed logic tree, the occurrence 

probability of each class event 𝒫(𝐶𝐿) is estimated using the occurrence of its constituent 

feasible solutions 𝒫(𝑆𝑞) 𝑞 = 1,2, …  𝑄, patterns 𝒫(𝑃𝑗) 𝑗 = 1. . 𝐽 and conditions 𝒫(𝐶𝑖) 𝑖 = 1. . 𝐼 

as follows. The probability of a given 𝐶𝑖 𝑖 = 1. . 𝐼 condition is estimated using the ratio of the 

number of observations 𝑁𝑖 covered by 𝐶𝑖 and the total number of observations 𝑁𝑇 in the dataset 

sample, 𝒫(𝐶𝑖) =
𝑁𝑖

𝑁𝑇
 (Eq. 1). The probability of a pattern 𝑃𝑗 𝑗 = 1. . 𝐽 corresponds to the 

probability of the intersections of its conditions 𝐶𝑖 𝑖 = 1. . 𝐼, 𝒫(𝑃𝑗) =

∏ 𝒫(𝐶𝑖|𝐶𝑖+1). 𝒫(𝐶𝑖+1)
𝑛𝑗−1

𝑖=1
 (Eq. 2) where 𝒫(𝐶𝑖|𝐶𝑖+1) represents the degree of dependency 

between the two conditions 𝐶𝑖 and 𝐶𝑖+1 with respect to the occurrence of 𝐶𝑖+1. The probability 

of a solution 𝑆𝑞  𝑞 = 1,2, …  𝑄 corresponds to the probability of the union of its patterns 𝑃𝑗 𝑗 =

1. . 𝐽, 𝒫(𝑆𝑞) = 𝒫[⋃ 𝑃𝑗
𝐽
𝑗=1 ] (Eq. 3).  Thus, the probability of a class event is equal to the 

probability of the union of its feasible solutions 𝑆𝑞  𝑞 = 1,2, …  𝑄, 𝒫(𝐶𝐿) = 𝒫[⋃ 𝑆𝑞
𝑄
𝑞=1 ] (Eq. 

4). 
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Figure 5.2 depicts a typical example of the one level ILTA model architecture based on the 

discovered knowledge from a two-class dataset. The model represents the causality structure of the 

two classes 𝐶𝐿(+) and 𝐶𝐿(−) in three layers. One feasible solution 𝑆1 explains the causality of 

class 𝐶𝐿(+) with its two patterns 𝑃1 and 𝑃2 and three conditions 𝐶1 to 𝐶3. While, two feasible 

solutions 𝑆2 and 𝑆3 characterize 𝐶𝐿(−). 𝑆2 consists of one pattern 𝑃3 with one condition 𝐶4. 

However, 𝑆4 combines two patterns 𝑃4 and 𝑃5. 𝑃4  consists of one condition 𝐶5 and 𝑃5 conjuncts 

𝐶6 and 𝐶7.   

 

Figure 5.2 A typical example of the ILTA model 

In a case in which the dataset represents a one cause-effect relation between the variables and the 

fault event, the conditions denote the root-causes and only one level ILTA model is required to 

diagnose the fault event. However, when the dataset hides different cause-effect sequences, the 

extracted patterns at a given level may involve intermediate causes rather than the root-causes. In 

that case, the one level ILTA model is not able to capture the causality structure. Each variable that 

appears at the condition level of the logic tree needs to be further explained until finding the root-

causes. To address this issue, we need to consider each variable shown at the condition level as a 

new two-class sub-dataset and try to find the feasible solutions that explain the occurrence of each 
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variable class. Using the improved burn-and-build algorithm of Phase 1 – Stage 2, some selected 

feasible solutions that may characterize different causality relations may be found and represented 

in the MILTA model. Other unselected solutions that do not satisfy the coverage and the overlap 

criteria may hide significant amounts of causality knowledge. Consequently, this ignored 

knowledge may be rediscovered in the lower decomposition levels of the logic tree with stronger 

reformed feasible solutions.  

5.3.2 Phase 2-The MILTA model construction 

The MILTA model assembles, in a sequential up-bottom structure, several ILTA models by each 

unexplained cause at a given level as a new two-class cause event. Phase 2 consists of two stages: 

verify the ILTA model construction  and generate a new two-class cause event sub-dataset when 

further variables are available to explore the cause event at the condition layer.  

• Stage 1: Verify the ILTA model construction. This stage verifies the quality of the knowledge 

representability at the solution layer in the last ILTA constructed model and decides whether 

further decomposition of its conditions are needed or not. This quality of the represented 

knowledge is characterized by the coverage extended by each feasible solution that may explain 

a given cause event in the ILTA model. It is important to avoid the decomposition of any low 

coverage feasible solution, which may lead to weak information branches to explain a given 

cause event in the MILTA model. It may not carry useful knowledge that will explain the cause 

event. Therefore, removing those low-quality feasible solutions from the start helps trim and 

prune the MILTA model in addition to the impact on its general depicted knowledge of cause 

events. Thus, the coverage of the feasible solution is utilized to measure the quality of the 

knowledge representability of the ILTA model at each decomposition level. Accordingly, 

stopping or exploring a cause in a further decomposition level is made based on its solution's 

coverage percentage compared to a given investigation threshold. For a given cause event, if 

any of its feasible solutions’ coverage is less than this threshold, then the ILTA model 

associated with that cause is removed from the MILTA model. Therefore, only the feasible 

solutions with coverage that exceeds this threshold are considered in the subsequent 

decomposition level of the cause event. If no feasible solution respects the coverage threshold, 

the associated conditions with those feasible solutions are considered the final root-causes of 
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the fault event. Also, there is no further root-cause exploration if all of the variables are used 

in the previous decomposition levels of the fault event. 

 

Figure 5.3 MILTA objective for a fault causality analysis 

• Stage 2: Generate a new two-class cause event sub-dataset. In a case where the ILTA model 

contains intermediate causes at the condition layer, a new sub-dataset is generated for each 

involved condition and labeled in a two-class condition event based its variable cut point value. 

Figure 5.4 presents a simple example of a two-level ILTA model constructed from an initial 

dataset 𝐷1. 𝐷1 includes all of the variables that may explain a given fault event. Figure 5.4-A 

(iteration 1) builds the first level ILTA model. The model has only one feasible solution 𝑆2, 

which consists of only one pattern 𝑃3 that involves one condition 𝐶4: 𝑉1 ≤ 4 to explain 𝐶𝐿(−). 

If the coverage of 𝑆2 exceeds the expected investigation threshold, then the condition 𝐶4: 𝑉1 ≤

4 will be considered as a new cause event at the 2nd level of the MILTA model. Therefore, a 

new sub-dataset 𝐷2 is generated for 𝐶4. 𝐷2 is labeled into (+) and (-) classes according to 𝑉1 ≤

4 and 𝑉1 > 4, respectively.  𝐷2 has the same format as 𝐷1 where the fault event is replaced 

by the new condition event. Then, 𝐷2 is introduced to phase 1 of the methodology for a second 

iteration (Figure 5.4-B (iteration 2). The probability of each condition, pattern and feasible 

solution at each decomposition level is estimated using Stage 4 of Phase 1. It is important to 
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note that, if the feasible solution has more than one condition to explain, the generated sub-

dataset for that condition excludes the variables involved with the other conditions. 

5.3.3 Phase 3-Derive the causality rules  

This phase extracts the causality rules (CR) in the form of conditional probability equations that 

characterize the cause-effect sequences from the root-causes to the fault event. At each 

decomposition level of the MILTA model, the probabilities of the conditions, patterns and feasible 

solutions are calculated using the equations defined in Stage 4 of Phase 1. Accordingly, using the 

logic gates of the final MILTA model, it is possible to derive the probability of a given fault event 

based on the probabilities of the conditions involved at the final decomposition levels. Such an 

equation expresses the causality rule between the fault, the intermediate causes and the root-causes. 

For example, from the final MILTA model of figure 5.4-B, only one causality rule is derived for 

𝐶𝐿 (−). CR1: 𝒫(𝐶𝐿 (−)) = 𝒫(𝐶5) +  𝒫(𝐶7|𝐶6). 𝒫(𝐶6).  

 

Figure 5.4 Form of the final MILTA model 
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5.4 Case study  

5.4.1 Dataset description 

This case study deals with a common complex fault of actuators used to control valves, servomotors 

and positioners in industrial processes. These actuators work in harsh environments and their 

defects may have serious effects on the system performance. The dataset is extracted from the 

actuator 3, which is employed to control the water inflow into the fourth boiler drum in a sugar 

production process (Wasiewicz, 2001). It consists of 10 numeric variables, as depicted in Table 5.1 

(Syfert, 2002).  

Table 5.1 Description of the actuator 3 variables 

P1 Water pressure (valve inlet) X Servomotor rod displacement 

P2 Water pressure (valve outlet) PV Process value (water level in steam boiler) 

T Water temperature (valve outlet) SF Steam flow (steam boiler outlet) 

F Water flow (steam boiler inlet) SP Steam pressure (steam boiler outlet) 

CV Control value (controller output) ST Steam temperature (steam boiler outlet) 

 

The dataset is labeled in normal and fault F16 (the positioner supply pressure drops on Actuator) 

classes. It counts 582 observations, which are randomly split into the training and testing datasets. 

The training dataset represents 65% of the observations for building the MILTA model, while the 

testing dataset is used to validate the final model. Figure 5.5 visualizes the observations of the 

training dataset using a parallel coordinates plot (PCP) (Inselberg, 2009) and random forest 

classification (Breiman, 2001) to rank the variables according to their importance in separating the 

normal and the fault F16 classes. Accordingly, the variables ST and SF have the full ability to 

distinguish the two classes compared with the other variables. However, as described in (Bartyś & 

Syfert, 2001), the drop in the positioner supply pressure, which controls the flow through the valve, 

is the main indicator of F16. The servomotor rod displacement (variable X) represents the root-

cause variable that is able to quantify the pressure drop by measuring the related positioner rod 

displacement. Therefore, the challenge is to build a MILTA model for F16 and search for a 

causality relationship between the variables that explain its occurrence. 
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Figure 5.5 PCP multivariate visualization for the dataset variables 

5.4.2 MILTA model construction 

In what follows, we apply the three-phase MILTA methodology to the actuator training dataset. 

Phases 1 and 2 are repeated at each level of the MILTA model. The WEKA-LAD software (Gomes 

& Bonates, 2014a) is employed to extract the patterns that separate the normal class from the F16 

class. The minimum class pattern coverage is set to 30%, meaning that only the patterns with a 

coverage greater or equal to that threshold will be included in the pattern set. Note that it is possible 

to employ other pattern extraction techniques, such as rough set theory patterns (Thangavel & 

Pethalakshmi, 2009), patterns extracted from decision tree branches (Berger, Merkl, & Dittenbach, 

2006), assembled patterns from the random forest model (Fokkema & Strobl, 2019) or any other 

technique that adheres to the pattern condition format (variable, inequality sign and cut point).  

Figure 5.6 presents the final MILTA model that explains the occurrence of the normal and F16 

classes. Four decomposition levels depict the casualty structure between the variables of the 

actuator. Note that at each level, the minimum solution overlap and coverage percentages are set 

to 0% and 95%, respectively. At Stage 1 of Phase 1, the overlap threshold controls the knowledge 

redundancy between the patterns of a given solution, while the coverage threshold is employed as 
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a decision criterion, at Stage 1 of Phase 2, to avoid further decomposition of a weak, explainable 

solution.  

At the 1st level, two ILTA models are built for the normal and F16 classes. The obtained feasible 

solutions 𝑆1 and 𝑆2 (respectively, 𝑆3 and 𝑆4) involved in the normal (respectively, the fault) class 

have 100% coverage and 0% overlap. For both classes, level 1 of the MILTA model includes, at 

the condition layer, the same variables ST and SF found with the PCP results (Figure 5.5). At the 

2nd level, a new two-class dataset is generated for each condition 𝐶1 and 𝐶2 of the normal class, 

and 𝐶3 and 𝐶4 of F16 class. The solution 𝑆5 that explains both conditions 𝐶1 and 𝐶2 has a coverage 

of 99% and 0% overlap. 𝑆6 characterizes the conditions 𝐶3 and 𝐶4 has a 96% coverage and 0% 

overlap. At level 3, five sub-datasets are generated for 𝐶5 to 𝐶9. Then the ILTA model is constructed 

with each sub-dataset. As no feasible solution that respects the coverage and overlap thresholds 

explain 𝐶5, 𝐶8 and 𝐶9, these conditions represent the root-causes of their respective class. While 

for 𝐶6 and 𝐶7, the feasible solutions 𝑆7 and 𝑆8 have a coverage of 99% and 0% overlap. Thus, their 

respective ILTA models are added to the tree. The same procedure continues at the 4th level. Two 

sub-datasets are generated for 𝐶10 and 𝐶11 leading to two feasible solutions, 𝑆9 and 𝑆10 with a 

coverage of 98% and 0% overlap. Then, the corresponding ILTA models are added to the tree. 

However, no feasible solution satisfies the coverage and overlap thresholds to explain 𝐶12 and 𝐶13. 

Then, no more levels will be added to the tree. Therefore, 𝐶12 and 𝐶13 represent the root-causes of 

the normal and F16 classes. In addition, 𝐶12 and 𝐶13 share the same variable X but with disjunctive 

intervals. The final MILTA model has 4 levels and finds 5 different root-causes.  

Moreover, as described in (Bartyś & Syfert, 2001), the fault F16 occurs when the positioner air 

supply pressure decreases, which leads to a drop in pressure. The variable X (servomotor rod 

displacement) is known as the root-cause variable of F16 without any information about its 

boundary or other hidden root-causes. However, the obtained MILTA model discovers not only 

the same root-cause and its boundary value (𝑋 ≤ 50.7) at the 4th level, but also two other root-

causes at the 2nd level 𝑇 > 100.05 and 𝑆𝑃 > 2411.2 are found. 
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Figure 5.6 The actuator MILTA model 

Table 5.2 summarizes the probability calculations associated with the MILTA model. At each level, 

the probabilities of each condition, pattern, solution and class are estimated using the equations 1 

to 4, formulated at Stage 4 of Phase 1, respectively.  
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Table 5.2 Probability results for each layer in MILTA’s four levels 

Class# Normal Fault (F16) 

𝑃(𝐶𝐿#) 0.479 0.520 

Leve1 

1 

Solution 

layer 

S# 𝑆1 : 𝑃1 𝑆2 : 𝑃2 𝑆3: 𝑃3 𝑆4 : 𝑃4 

𝒫(𝑆#) 0.479 0.479 0.520 0.520 

Pattern 

layer 

P# 𝑃1: 𝐶1 𝑃2: 𝐶2 𝑃3: 𝐶3 𝑃4: 𝐶4 

𝒫(𝑃#) 0.479 0.479 0.520 0.520 

Condition 

layer 

C# 𝑆𝑇 > 403 𝑆𝐹 > 15.4 𝑆𝑇 ≤ 403 𝑆𝐹 ≤ 15.45 

𝒫(𝐶#) 0.479 0.479 0.520 0.520 

Leve1 

2 

Solution 

layer 

S# 𝑆5 : 𝑃5 𝑆6 : 𝑃6  ∪ 𝑃7 

𝒫(𝑆#) 0.474 0.313 0.510 

Pattern 

layer 

P# 𝑃5: 𝐶5 ∩ 𝐶6 𝑃6: 𝐶7 𝑃7: 𝐶8 ∩ 𝐶9 

𝒫(𝑃#) 0.474 0.313 0.339 

Condition 

layer 

C# 
𝑆𝑃
≤ 2411.2 

𝑃2
≤ 2677.4 

𝑃2
> 2677.4 

𝑇
> 100 

𝑆𝑃
> 2410.2 

𝒫(𝐶#) 0.557 0.686 0.313 0.353 0.482 

Leve1 

3 

Solution 

layer 

S#  𝑆7 : 𝑃8 𝑆8 : 𝑃9   

𝒫(𝑆#)  0.672 0.309   

Pattern 

layer 

P#  𝑃8: 𝐶10 𝑃9: 𝐶11   

𝒫(𝑃#)  0.672 0.309   

Condition 

layer 

C#  𝐹 ≤  27.7 𝐹 >  27.7   

𝒫(𝐶#)  0.672 0.309   

Leve1 

4 

Solution 

layer 

S#  𝑆9 : 𝑃10 𝑆10 : 𝑃11   

𝒫(𝑆#)  0.658 0.300   

Pattern 

layer 

P#  𝑃10: 𝐶12 𝑃11: 𝐶13   

𝒫(𝑃#)  0.658 0.300   

Condition 

layer 

C#  𝑋 >  50.7 𝑋 ≤  50.7   

𝒫(𝐶#)  0.658 0.300   
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The causality rules are derived from the main logic tree in the form of mathematic expressions. 

Each causality rule expresses the cause-effect relations between the root-causes, the intermediate 

causes and the class event. It helps the expert diagnose each state by grasping the contribution of 

the discovered root-causes in an interpretable way. Figure 5.7 presents the four causality rules. R1 

and R2 express the causality rules of the normal class, while R3 and R4 concern the fault F16. 

system

Normal Fault F16

 R1: P(Normal) = 0.8599 * P(SP   2411.2)
 R2: P(Normal) =  0.686 * P(X > 50.7)

 R3: P(Fault F16) = P(X   50.7) + 0.960 * P( T > 100.05) –      
 R4: P(Fault F16) = P(X   50.7) + 0.703 * P(SP > 2410.25) –      

 

Figure 5.7 The derived causality rules 

5.4.3 Validation of the MILTA model 

The accuracy of the obtained MILTA model is estimated using a mean error between the predicted 

probability of a given class and the actual probability. 1000 random samples of 146 observations 

that give a 95% confidence interval are generated from the test dataset. The mean error distribution 

of each causality rule is plotted on Figure 5.8 where Merror and Serror denote the mean and the 

standard errors, respectively.  
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Figure 5.8 Error distribution of each causality rule 

According to Figure 5.8-A, the mean errors of R1 and R2 follow a normal distribution, whereas the 

mean errors of R3 and R4 have an exponential distribution (Figure 5.8-B). Furthermore, the 𝑀𝑒𝑟𝑟𝑜𝑟 

of the fault F16 is lower than the 𝑀𝑒𝑟𝑟𝑜𝑟 of the normal class. In addition, the causality structure 

between the root-causes, the intermediate causes and the fault F16 are clearly depicted in Figure 

5.9. At the 1st level, the coverage of 𝑆3 and 𝑆4 is shown through coverage of their respective 

conditions 𝐶3 (A) and 𝐶4 (B) which distinguish the fault F16 from the normal class. At the 2nd level, 

the feasible solution 𝑆6 that explains both 𝐶3 and 𝐶4 has the depicted coverage (C) of the 

combination of 𝑃6 and 𝑃7 as depicted in D and E. Meanwhile, 𝑃6 has the same coverage (G) of its 

condition 𝐶7. However, the coverage of 𝑃7 conjuncts the coverage of its two conditions 𝐶8 and 𝐶9 

as shown in E and F. At the two final levels (3 and 4), the coverage of the solutions 𝑆8 and 𝑆10 is 

depicted through the coverage of 𝐶11(H) and 𝐶13 (I), respectively. Thus, the MILTA model tracks 

the causality of F16 and isolates the intermediate causes (plots A, B, F and I) iteratively until 

reaching its the root-causes (plots G, H and J) 

Since there is no prior information about the two other root-causes at the 2nd level (𝑇 > 100.05 

and 𝑆𝑃 > 2411.2) in the data documentation, the contribution of T and SP on the occurrence of 

the fault F16 is verified by calculating their correlation with the main root-cause X individually 

(Table 5.3).  

R1 R2 R3 R4 



95 

 

Table 5.3 Pearson correlation between the fault root-causes 

Correlation between the fault root-causes 

R3 X – servomotor rod displacement and T - water temperature (valve outlet) 0.00069 

R4 
X – servomotor rod displacement and SP - Steam pressure (steam boiler 

outlet) 
-0.011 

 

The correlation values of T with X and SP with X are too low. Therefore, T and SP are more 

independent than X. The MILTA model does not further explore these two variables, yet they 

correspond to fault indicators rather than to root-causes. Consequently, some missing variables 

need to be measured and added into the dataset to depict the role of T and SP in the fault F16 

occurrence. 
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Figure 5.9 MILTA subtree for the fault F16 

5.4.4 Root-cause analysis 

The causality rules of F16 can be also employed to rank the importance of each root-cause to 

explain the occurrence of fault F16. The ranking criterion averages three normalized scores:  

• The mean coverage of the solutions’ path from the fault event to the root-cause. A high score 

indicates a strong contribution of the root-cause on the fault event occurrence.  

 

Fig. 9. MILTA subtree for the fault F16 
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Fig. 9. MILTA subtree for the fault F16 
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• The location (i.e. depth) of the root-cause in the tree. The closer the depth score is to 1, the 

more the root-cause has a specific power to discriminate the fault event. The score value is 

normalised against the total number of obtained levels. 

• The importance of the root-cause conditional probability in the causality rule. A high value 

means a strong effect of that probability on the fault event occurrence.  

Table 5.4 details the calculation of the ranking values of the five root-causes founded through the 

four levels. For instance, the root-cause 𝑋 ≤  50.7 has a mean coverage of 0.89, a total depth score 

of 1 (0.25 for each level depth) and an importance conditional probability of 1 based on the 

causality rules R3 and R4 that characterize the fault F16 event. Thus, the ranking value of 𝑋 ≤

 50.7 is equal to the average scores between 0.89, 1 and 1. Based on the raking values, it is clear 

that the root-cause X has an important effect on the occurrence of the normal class and the fault 

event. Indeed, the ranking value of 𝑋 >  50.7 has a higher value compared to that of 𝑆𝑃 ≤ 2411.2 

in the normal class. Also, the ranking value of 𝑋 ≤  50.7 exceeds those of 𝑇 > 100.05 and 𝑆𝑃 >

2411.2 in the fault class.  

Table 5.4 MILTA root-causes analysis 

 

5.5 Conclusion 

This paper has proposed a multi-level interpretable logic tree for the hierarchical causality analysis 

of faults in a complex system. It is a data-driven model that combines the knowledge discovery in 

a dataset and fault tree analysis. The model uses an iterative burn-and-build algorithm to select the 

feasible solutions that reflect the causality structure between the fault event and its intermediate 

causes, level after level, until the root-causes are uncovered. Unlike the event-based causality 

approaches, the three-phase MILTA methodology does not require any human expert involvement 

to construct the model. The expert has to fix the decision criteria regarding the coverage and overlap 

Cond.

Score Coverage Depth Cond. Prob. Coverage Depth Cond. Prob. Coverage Depth Cond. Prob. Coverage Depth Cond. Prob. Coverage Depth Cond. Prob.

Level  1 1 0.25 0.99 0.25 1 0.25 1 0.25 1 0.25

Level  2 0.99 0.25 1 0.25 0.6 0.25 0.36 0.25 0.36 0.25

Level  3 0.99 0.25 0.99 0.25

Level  4 0.98 0.25 0.98 0.25

Score value 0.99 1 0.69 1 0.5 0.86 0.89 1 1 0.68 0.5 0.96 0.68 0.5 0.7

Ranking value

Fault class (F16)
(X > 50.7) (Sp ≤ 2411.2)

Normal class

0.790.89

(X ≤ 50.7) (T > 100.05)

0.96 0.71

(Sp > 2411.2)

0.63
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percentages that are essential to build a knowledge-rich model, and then to provide an appropriate 

level of interpretability to the MILTA model. Supported by the results of the MILTA model, a 

human expert continues to play the role of decision-maker with regards to the validation of the 

root-causes revealed by the model, to remove certain useless branches of the tree or to enrich others. 

However, the main limitation of the MILTA model is related to the fact that the causality rules are 

static in time. They represent the fault event occurrence at a certain time. When the system 

undergoes a degradation in time, the MILTA model needs to be improved to catch the fault event 

evolution through that time. Thus, there is a need for a new tree that considers the system’s aging 

effect on the change in the fault causality structure, and is depicted in an interpretable manner, 

similar to a MILTA model, to perform the fault prognosis task in a dynamic system well. 
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Abstract: 

This paper develops a data-driven fault tree methodology that addresses the problem of fault 

prognosis of aging systems based on graphical time causality model. It merges the concepts of 

knowledge discovery in dataset (KDD) and fault tree (FT) to develop an interpretable time causality 

analysis model (ITCA). The ITCA model overcomes the limitation of the current graphical models 

by predicting the occurrence of the fault event based on the changing of its causality structure over 

time. At periodic times, the ITCA model captures the cause-effect relations in the form of 

interpretable logic trees, then summarizes in the ITCA models to reflect the changing in the 

causality structure over the time. The obtained root-causes from ITCA model are actualized and 

depicted the fault development over the time causality structure in bottom up manner. The well-

known NASA turbofan engine dataset is used as an illustrative example of the proposed 

methodology.  
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6.1 Introduction 

The system aging is a progressive deterioration in its initial performance over time, mainly caused 

by the occurrence of faults that adversely affect the system’s reliability. Causality analysis methods 

aim to diagnose the fault through identifying, isolating and quantifying the effect of the root-causes 

on the system performance so that the appropriate maintenance actions can be performed to restore 

the system to good conditions (Ming, Heng-Chao, Bin, Jun-Hong, & Chee Khiang, 2015). Prior 

knowledge about future fault behaviour and its drawback on the system’s performance are essential 

in order to optimize the maintenance decision-making (de Jonge, Bram, 2019). The fault prognosis 

task provides this prior knowledge that depicts the progression of a specific failure mode from its 

inception until the time of failure (Wang, K. S., 2014). The time causality analysis is an extension 

from the causality analysis methods, where able to build a prognostic model that demonstrate this 

prior knowledge through capturing the fault causality structure evolution over the time (Bousdekis, 

Magoutas, Apostolou, & Mentzas, 2018).  

Those prognostics models able to represent the fault development over the time by a mathematical 

expression that quantified the general fault evolution or a graphical model that graphically 

demonstrate the changing in the causality structure over the time (Schwabacher, 2005). The expert 

prior knowledge regarding the future fault development can be modeled to demonstrate the fault 

causality structure progress. However, this knowledge could be biased and reflect only the expert 

understanding regarding the fault development (Aggab, Kratz, Avila, & Vrignat, 2018). On the 

other hand, the fault evolution knowledge can be extract directly from the data, which is unbiased 

knowledge and reflect the fault causality. However, it is missing the interpretability and the expert 

representation for the fault hierarchical causality knowledge over the time (Schwabacher & Goebel, 

2007).  

Waghen, and Ouali (2019) develop a data-driven fault tree method for causality analysis that 

address the lack in the data-driven model interpretability and overcome the model-based limitation 

that influenced by the expert prior knowledge. The method visualizes the fault causality 

architecture in one level that composed three layers. The condition layer identifies the fault root-

causes and their coverage ranges within the dataset. The pattern layer arranges the root-causes in 

the form of interpretable conjunctions. The solution layer combines some selected patterns that 

depict the fault event. Although the proposed tree is interpretable for the expert, the model hides 
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the fault hierarchical cause and effect relationships in a complex system that should represented in 

multilevel tree. Besides, it reflects the fault causality in a static way without taking into account 

the influence of a system’s aging on the change in the fault causality structure over time. 

In this paper, an interpretable time causality analysis (ITCA) methodology is developed to address 

the problem of fault prognosis in aging systems using a data-driven fault tree model. It aims to 

build a time-dependant multilevel causality model based on the selection of the feasible solutions 

that characterize the fault occurrence at a certain period of time, from a set of representative time 

series historical datasets, to address the causality analysis over time in a meaningful way. The ITCA 

time-dependant multilevel structure based on combination of different one level common fault trees 

that connected together for depicting the fault time hierarchical structure. At each defined period, 

an ILTA model is build for identifying and isolating the possible causes of the fault event at that 

period, compared to the fault state observations. Those constructed ILTA for each period are 

summarized in a one level common fault tree that graphically summarized the changing in the 

causality structure over the time and initiate a level in ITCA model. This process is iteratively 

repeated until the final ITCA time-dependant multilevel structure is constructed. While this process 

is monitored in order to ensure that redundant knowledge is eliminated within the ITCA model, 

while maximizing its interpretability over the time. Finally, a set of causality rules are deduced 

from the ITCA fault tree that characterize the dynamic change effect of the causality structure in 

the causes of a fault occurrence. 

The rest of the paper is organized into four sections. Section 2 reviews the available methods for 

achieving fault prognosis based on time causality analysis and discusses the main challenges. 

Section 3 develops the ITCA methodology. It explains the data preparation, the construction of the 

fault tree models over time and the deduction of the time causality rules for fault prognosis. Section 

4 illustrates the ITCA methodology using the NASA turbofan engine degradation dataset. The 

performance of the ITCA model to predict the fault is demonstrated through the fault trend over 

time. Section 5 concludes the paper and discusses the contribution of the ITCA methodology in 

achieving the fault prognosis task.  
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6.2 Time causality analysis approaches 

Time causality analysis is a causal interference over the time, where the temporary dependency 

over the stochastic process is captured and modelled. It is an analytical tool that provide the expert 

with the essential knowledge regarding the fault evolution and the changing in the fault causality 

structure over the time for better achieving the fault prognosis task (Chen, H.-S. et al., 2018). Two 

categories of time causality analysis approaches can be distinguished in the literature: model-based 

and data-driven approaches (Schwabacher, 2005). In what follows, these approaches are discussed, 

and their strengths and limitations for prognosing the fault are summarized help clarify the research 

gap. 

The model-based time causality approach relies heavily on human expertise to describe the 

system’s behaviour over time in degraded conditions (Vania, Pennacchi, & Chatterton, 2013). It 

able to capture the fault physics developments, using a mathematical expression or graphical 

model, where they able to underline the fault time causality structure due to the fault development 

and system degradation (Celaya et al., 2011). Lu et al. (2012) address the drawback of the system 

downtime due to fault evolution in complex industrial process by enriching the expert knowledge 

for driving fault prognosis strategy. The proposed methodology estimates the time delay in the 

process industry. First, time-delayed mutual information (TDMI) is employed to model the fault 

causality in the form of a time-delayed signed digraph (TD-SDG) mode. Then, a general fault 

prognosis strategy is used to optimize the system’s downtime based on TD-SDG and PCA. 

Darwish, Almouahed, and de Lamotte (2017) proposed enriched fault tree analysis (FTA) approach 

for Active Assisted Living Systems. The failure of FTA basic events are ranked based on expert 

prior knowledge for defining the degree of importance for those events. Those failure distributions 

are calculated based on fuzzy and possibility theories concepts for obtaining imprecise failure 

probabilities. While, the expert prior knowledge is employed to rank the importance of the obtained 

basic event in order to construct the fault failure distribution that reflect efficiently the contribution 

of those basic events. Ragab, A. et al. (2019) combine the domain knowledge with the extract 

knowledge from data base for constructing enriched fault tree analysis (FTA). The expert first 

constructs the FTA model skeleton, which represent the main causality structure for the fault. Then, 

patterns are extracted from data in order to discover the hidden phenomena about the fault for 

enriching the FTA model. Yunkai, Bin, Ningyun, and Yang (2015) integrate the Bond graph 
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modelling technique with the Bayesian network for a fault prognosis of a high-speed train traction 

system. The Bond graph represents the system structure that mainly constructed based on expert 

prior knowledge. While, the Bayesian network enriches the expert prior knowledge represented by 

the bound graph through discovering the hidden causal relationships.  

Indeed, the model-based time causality approach able to provide interpretable and relatively 

accurate models that could build from the first principle of the system’s faults. It is mainly 

applicable on a simple system with well-known causes, for which the human knowledge about the 

faults, their occurrence and development are clear. Its limited implementation in complex system 

was overcome by enriching those models based on data-driven techniques, in which the unseen 

events are discovered and added to the model’s prior knowledge. However, forming the model 

skeleton prior knowledge by the expert in complex system is a challenging task to identify the 

principal causality structure of the faulty situation in addition combining and positioning the 

extracted hidden fault knowledge from the data in the constructed model. 

Unlike the model-based approach, The data-driven time causality explores the data using machine 

learning (ML) techniques and does not impose a model to predict the behaviour of a complex 

system (Jin, S., Zhang, Chakrabarty, & Gu, 2018). The ML data-driven methods build unbaised 

models and are able to deal with noisy and correlated variables (Niu, 2016). Khumprom, and Yodo 

(2019) employ deep neural networks (DNN) to estimate the State of Health (SoH) and predict the 

RUL of lithium-ion batteries based on the NASA dataset benchmark (Saha & Goebel, 2007). Shili, 

Dong, and Xiaoli (2018) develop a big data-driven approach that increases the efficiency of a 

prognosis and reduces maintenance costs by determining the relevant features that explain the 

model. Razavi, Najafabadi, and Mahmoodian (2018) develop an adaptive neuro-fuzzy inference 

system (ANFIS) algorithm that integrates the artificial neural network (ANN) with fuzzy rule-

based systems to predict the RUL in order to optimize the maintenance schedule for aircraft 

engines.  

Although the data-driven models offer an accurate prediction of the RUL that able to generally 

quantify the fault evolution, they suffer from a lack of interpretability (Doukovska & Vassileva, 

2013). This is because they are too shallow to understand the fault causality structure and its 

changes over time. Therefore, an expert may not be able to deeply understand the cause-effect 

relations within a complex system. With regards to this challenge, several methods have been 
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proposed to simplify and unlock the model interpretability. Su et al. (2015) propose a dynamic 

extraction knowledge method that illustrates the relationship between the environmental stresses 

and the system failure modes using a fuzzy causality diagram and a Bayesian rough set of multiple 

decision classes to weigh the extracted knowledge. Kimotho, Sondermann-Woelke, Meyer, and 

Sextro (2013) Address the challenge of recommending maintenance actions for industrial systems 

based on remote monitoring and diagnosis. Event-based decision trees were built for graphically 

identifying problems associated with particular events and conducting to evidence decision due the 

tree interpretability. Medjaher, Moya, and Zerhouni (2009) implement the Dynamic Bayesian 

Networks (DBNs) for quantifying the failure prognostic in complex systems. The fault time series 

data is divided into time slices and a Bayesian network is constructed for each time slice. Then the 

constructed networks over the time slices are connected through the temporal dependency, which 

depicts the changing in the fault causality structure over the time and quantify the fault 

developments. 

On the other hand, the achieved data-driven methods attempt to unlock the time-dependent 

relations between the system variables in an interpretable manner besides, capture the changing in 

the fault causality over the data time slices. However, building an interpretable data-driven model 

that is able to directly grasp the influence of the system aging on the fault causality structure and 

summarize the causality changing in one model still needs to be overcome.  

The main motivation is to build an interpretable time causality analysis model that characterizes, 

first, the hierarchical causality structure between the fault event, intermediate causes and root-

causes; and second, the influence of the system aging on that structure over the time. Thus, the 

proposed ITCA methodology will achieve the fault prognosis task in an efficient way through 

anticipating the fault event based on the causal relationships discovered over the time. It will be 

developed in the following section. 

6.3 The ITCA Methodology 

Figure 6.1 depicts the four-phase ITCA methodology. The main input dataset is an unlabeled 

timestamp of observations that can represent sequential data. We assume that the system undergoes 

a certain degradation trend, depicted by the sequential data, from a normal state to a failure state. 

Phase 1 prepares several labeled subsets from the input data. Each subset is formed by a sub-
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sequence of degraded observations and failures. Phase 2 iteratively builds the appropriate logic tree 

corresponding to each subset of data, and then aggregates them into one common fault tree. Phase 

3 constructs the ITCA model by going deeply through each variable in the above common fault 

tree and seeks its root-causes. Phase 4 deduces the time causality rules that the effects that the 

system aging has on the evolution of the fault occurrence over time. In what follows, each phase 

of the proposed methodology is explained in detail. 

Phase 1 Phase 2 Phase 3 Phase 4Input

Data preparation Construct one level tree ITCA construction

Derive the time 

causality rules

   Define the unlabelled (n) 

subsets

1.1

  Generate (n-1) labelled 

data sets based on time

1.2

Discover the knowledge

2.1

  Obtain the similar   

feasible solutions

2.2

 Construct the common 

logic tree

2.3

   Assign the probabilities

2.4

   Verify the common logic 

tree over the defined periods

3.1

   Connect the common 

logic trees to their 

corresponding event

3.2

 Generate new (n-1) sub-

datasets 

3.3

.

.

.

.

.

.

.

.

 

Figure 6.1 The four-phase ITCA methodology 

6.3.1 Phase 1-Data preparation  

Phase 1 splits the main input data into several subsets according to the expert’s prior knowledge 

about the process degradation trend. Each subset contains the sequential observations that represent 

the system state at a certain period of time and the observations that characterise the failure state 

or the worst deterioration condition of the system. The expert should identify the observations that 

represent the failure before splitting the rest of the data into equal or non equal sizes of subsets, 

according to his judgment about the amount of system degradation. Equal and non-equal sizes of 

subsets are suitable for linear and nonlinear degradation processes, respectively. Hence, the original 

main data is divided into n subsets, where the last one contains the failure observations and the 

others contain degraded observations. Those n subsets will be concatenated to form (n-1) datasets. 

Each dataset will contain two classes of observations corresponding to failure and degraded data. 

Figure 6.2 depicts the data preparation procedures, in which X1 and X2 are two variables. Beginning 

from the main timestamped dataset, the observations in the last period of time n belong to the 

failure state. Then, (n-1) subsets are extracted. Each subset SSi contains the observations of the 
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period i, i=1,..,(n-1). At the end, (n-1) labeled datasets are concatenated. Each dataset Di contains 

the observations of the period i, labeled as class i and the observations of the last period n, labeled 

as class n.  

 

Figure 6.2 Data preparation phase 

6.3.2 Phase 2-Build a one level fault tree 

Phase 2 iteratively extracts all of the logic trees that differentiate the fault event (class n) from each 

class i, i = 1,…,(n-1) of the degraded observations individually. Each logic tree highlights the 

relevant variables that discriminate the observations of the failure state from the degraded ones, 

from one period to another. Then, the obtained logic trees are merged into one common fault tree, 

which identifies and isolates the variables that discriminate the failure state from the degraded ones 

over time. To do so, Waghen, and Ouali (2019) developed a four-stage methodology, named 

Interpretable Logic Tree Analysis (ILTA), to build a one level fault tree from a two-class dataset 

(i.e. normal and failure classes). The methodology discovers the knowledge from the dataset (Stage 

1); forms feasible solutions (Stage 2); constructs the fault tree (Stage 3); and finally quantifies the 

fault tree using Bayes’ theorem (Stage 4). Although such a methodology can be applied separately 

with each dataset Di, i=1,..,(n-1), the merged fault tree may be difficult to interpret due to the 

dependence of the datasets over time. To overcome this limitation, stage 2 of the ILTA 

methodology needs to be improved. Nevertheless, for the convenience of the reader, we briefly 
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recall the four stages of the ILTA methodology and highlight the improvements to stage 2 in the 

following.  

• Stage 1-Discover knowledge. Discovering knowledge from a two-class dataset can be achieved 

through different pattern generation and extraction techniques, such as logic analysis of data 

(LAD) (Hammer, Peter L & Bonates, 2006) and Prediction Rule Ensembles (PRE) (Fokkema, 

2017). The pattern is a conjunction of certain conditions that discriminate one class of 

observations from another class. Each condition includes a variable, an inequality sign and a cut 

point value. Furthermore, the percentage of observations covered by a given pattern may 

characterize the knowledge expanse caught by that pattern. However, when the observations of 

the same class are covered by more than one pattern, an overlap between those patterns may 

occur, with a certain percentage leading to redundant knowledge.  

• Stage 2-Obtain similar feasible solutions. A solution is defined as a combination of certain 

patterns that cover the observations of the same class. Each solution can be characterized 

by its coverage (Cov) and overlap (OL) percentages. The feasible solution is a solution that 

respects certain criteria. In the ILTA methodology, only the feasible solution that 

maximizes the class Cov and minimizes the class OL is selected, which leads to maximizing 

the interpretability and minimizing the redundancy of the discovered knowledge. However, 

in the ITCA methodology, we need to search for all of the feasible solutions that respect 

not only the Cov and OL threshold percentages, but also with minimal number of patterns 

to capture the fault hierarchical causality. Maximizing the coverage and minimizing the 

overlap with minimal number of patterns allows to represent the fault most generalized 

knowledge in the first levels. While, as the ITCA levels are added as the knowledge become 

more specific to depict certain causality in the tree. Therefore, by forming the feasible 

solution with minimal number of patterns, ITCA model able to represent the fault 

hierarchical knowledge through the included ILTA over its levels.  As Stage 2 aims to select 

similar feasible solutions that characterize the knowledge discovery over time, we seek the 

most frequent patterns over the predefined periods of time. In addition, the frequent pattern 

involves the same variable and inequality sign in the shared conditions, independent of the 

cut-point values. Therefore, the initial version of the burn-and-build algorithm proposed in 

(Waghen and Ouali, 2019) is improved to form a set of feasible solutions instead of only 

one for each period of time using another decision criterion, called the solution tolerance 
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selection (STS) threshold. Hence, a time-based searching algorithm is developed in the 

ITCA methodology to obtain all of the similar feasible solutions over time. It is depicted in 

the following pseudo code. 

Time-based searching algorithm: 

Search for similar feasible solutions over time 

Input.  

iii) (n-1) labelled datasets corresponding to the defined time periods (Δ) 

iv) Set of generated patterns: Pgen = {P1,P2,…., Pl}; where (l) is the number of the 

discovered patterns 

v) Overlap (OL) threshold 

vi) Solution tolerance selection (STS) threshold 

 

For each (n-1) labelled dataset that represents a defined time period (Δ) 

Step 1. Select a start pattern (Pi) and calculate its coverage 

1.4. Remove the overlapped patterns with Pi based on preset overlap threshold 

i. At number of combination (n) = 2 

ii. Select the combination with Pi  that has the maximum coverage 

1.5. Repeat (the sub-steps 1.1-i and ii) until the number of combinations (n) = number 

of the discovered patterns 

1.6. Compare the selected combinations at each n and select the combination that 

maximizes the coverage with a minimal number of patterns  

Step 2. Select another pattern (Pi) as a start point and repeat 1.1, 1.2 and 1.3. 

Step 3. Repeat 2 until considering each pattern as a start point. 

Step 4. Compare the selected combinations over the start patterns Pi and select the 

combination that includes the minimal number of patterns and its coverage value within the 

STS threshold.  

End 

Step 5. Compare the selected combinations that represent (n-1) labelled datasets and select 

the combinations that maximize the similarity over the defined periods (Δ), where each 

period (Δ) is represented by only one combination.  

 

Output.  

Set of similar feasible solutions: Sol = {S1, S2,…., Sk }; where (k) is the number of similar 

feasible solutions. 
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Figure 6.3 illustrates the proposed time-based searching algorithm using the above three 

concatenated datasets 𝐷1, 𝐷2 and 𝐷3 of the toy example (Figure 6.1). Applying Step 1 to Step 4, 

the algorithm finds a set of five feasible solutions that respect the STS threshold of 90%. To clearly 

understand this, we assume that each solution consists of only one pattern. From 𝐷1, 

𝑆1: 𝑃1: (𝑋1 ≤ 30) and 𝑆2: 𝑃2: (𝑋2 > 10) are obtained with 98% and 100% of Cov, respectively. 

From 𝐷2, there is only one formed solution 𝑆3: 𝑃3: (𝑋1 ≤ 20) with a Cov of 90%. From 𝐷3, the 

obtained solutions 𝑆4: 𝑃4: (𝑋1 ≤ 10) and 𝑆5: 𝑃5: (𝑋2 > 20) have 95% and 100% of Cov, 

respectively. Note that the patterns 𝑃1, 𝑃3 and 𝑃4 share the same condition on 𝑋1 except the cut-

points. Consequently, at Step 5 the algorithm selects 𝑆1, 𝑆3 and 𝑆4 as the only three similar solutions 

that characterize the evolution of the same condition through the three periods 1, 2, and 3, 

respectively. However, the algorithm does not select 𝑆2 and 𝑆5. Because there is a loss of 

information during the period 2, even though they are similar, by sharing the same condition of 

𝑋2 during 1 and 3. Hence, the algorithm evaluates all of the similar feasible solutions and selects 

the ones that dominate the maximum number of periods. 

 

Figure 6.3 Example of selecting similar feasible solutions over the periods 1, 2, and 3 
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Figure 6.4 depicts the curve of the cut-point values that reflect the evolution of similar feasible 

solutions obtained over the three periods 1, 2, and 3. Note that these periods are consecutive 

and the cut-point curve may have a positive, negative or constant trend over time depending on 

how the cut-point values change over time. 

Periods Δ1 Δ2 Δ3

Sol. S1: X1 ≤ 30 S3: X1 ≤ 20 S4: X1 ≤ 10

Similar feasible solution

 

Figure 6.4 Curve of the cut-point values of similar feasible solutions obtained over time 

• Stage 3-Construct a common logic tree over time. The similar feasible solutions obtained are 

visualized in a one level fault tree through the condition, pattern and solution layers. At the 

condition layer, all of the involved conditions are connected to their respective patterns using 

the AND gate. At the pattern layer, all of the patterns of the similar feasible solutions are 

connected to that solution using the OR gate. Similarly, at the solution layer, all of the selected 

similar feasible solutions are connected to the fault event using the OR gate.  

• Stage 4-Assign the probabilities. The common logic tree is quantified using the probabilities of 

the solutions, patterns and conditions involved in similar feasible solutions obtained from the 

concatenated dataset individually. Let 𝑁𝑘 and 𝑁𝑇 be the number of observations covered by the 

condition 𝐶𝑘 and the total number of observations in one concatenated dataset, respectively. The 

equations 1 to 4 calculate the probabilities of the fault class 𝒫(𝐶𝐿) and the involved solutions 

𝒫(𝑆𝑞) 𝑞 = 1,2, …  𝑄, patterns 𝒫(𝑃𝑗) 𝑗 = 1. . 𝐽 and conditions 𝒫(𝐶𝑘) 𝑘 = 1. . 𝐾as follows. Eq.1: 
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𝒫(𝐶𝑘) =
𝑁𝑘

𝑁𝑇
. Eq.2: 𝒫(𝑃𝑗) = ∏ 𝒫(𝐶𝑘|𝐶𝑘+1). 𝒫(𝐶𝑘+1)

𝑛𝑗−1

𝑘=1
. Eq.3: 𝒫(𝑆𝑞) = 𝒫[⋃ 𝑃𝑗

𝐽
𝑗=1 ]. Eq.4: 

𝒫(𝐶𝐿) = 𝒫[⋃ 𝑆𝑞
𝑄
𝑞=1 ].  

For a simple cause-effect relation between the fault event and its root-causes, the common one 

level logic tree is able to depict the fault causality structure at each period in time, as well as over 

time through the trend of cut-point curves of similar feasible solutions employed in the tree. For a 

complex causality structure, the one level logic tree is not sufficient to completely represent a fault 

occurrence because the variables involved at the condition layer may represent the intermediate 

causes, and not necessary the root-causes, of the fault event. Therefore, each one of those variables 

needs a second level of decomposition or more to explore the solution that will explain its causality 

structure at each period in time. Accordingly, Phase 3 constructs many logic tree levels to address 

the complex causality structure over time. 

6.3.3 Phase 3: The ITCA model construction 

Phase 3 builds, in a sequential up-bottom structure, several logic trees to depict unexplained causes 

at a given level. It includes three stages: verify the common logic trees’ construction, connect those 

trees to their corresponding causes and generate new labeled sub-datasets that exclude the variables 

associated with causes already explained from the concatenated datasets.  

• Stage 1: Verify the common logic trees’ construction over the defined periods. This stage 

verifies the knowledge representability of the constructed logic tree for each defined period of 

time and decides whether further decomposition of its involved conditions is required or not. At 

each decomposition level, verification of the tree knowledge is characterized by the coverage of 

the common feasible solution, which assists in avoiding decomposing the weak information 

branches. Therefore, the model construction is verified to sustain the tree at a non-redundant 

knowledge level based on the pre-set coverage threshold. Meanwhile, the construction phase 

can be interpreted if there is no common tree that is able to provide sufficient knowledge 

representability, or if there are no more variables in the dataset for any further root-cause 

explorations. 

• Stage 2: Connect the common logic trees to their corresponding causes. The applied relaxation 

in selecting a common feasible solution over the defined periods is very useful in constructing 

a common logic tree that easily demonstrates the change in the causality at a given level of 
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decomposition in the ITCA model. However, it could happen if the time-based searching 

algorithm fails to form only one common logic tree that dominates all of the defined periods at 

a certain decomposition level. This case could happen if there is a lack of extracted knowledge 

or a tight range in the solution tolerance selection (STS). To solve this situation, different 

common logic trees may be found by the algorithm, but each period of time is dominated by 

only one common feasible solution. Therefore, if such a situation rises, a time-OR gate is 

proposed to connect the different common logic trees to represent the change in the event 

causality knowledge over all of the defined periods at a given decomposition level. The time-

OR gate acts as a time switch that shifts between the common logic trees according to their 

corresponding periods. Hence, an expert could observe the fault behavior over time based on 

the proposed common similar solution trees at a certain decomposition level of the ITCA model.  

Figure 6.5 presents an example of the time-OR gate functionality in a one level ITCA model. 

Two common feasible solutions, 𝑆1 and 𝑆2, are found by the time-based searching algorithm. 𝑆1 

characterizes the fault event at only 1 and 2 using the OR gate (G2) between the patterns 𝑃1 

and 𝑃2. While 𝑆2 represents the fault even only at only 3 with a one pattern 𝑃3. The time-OR 

gate (G1) enables ITCA to fully demonstrate the fault event causality over the three defined 

periods (1, 2 and 3). It switches between 𝑆1 and 𝑆2 according to the selected corresponding 

period that is dominated by the solution. For instance, at the periods 1 and 2, the time-OR gate 

(G1) enables only 𝑆1 to depict the fault event causality. On the other hand, during the period 3 

, the fault causality is explained only by 𝑆2.   
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Figure 6.5 Time-OR gate functionality in the ITCA model 

• Stage 3: Generate new (m-1) sub-datasets. In a case in which the added common logic trees 

are verified at a certain decomposition level of the ITCA model, each one of the involved 

conditions in the tree is used to generate new labeled sub-datasets based on the condition 

variable cut-point values. Figure 6.6 takes back the example of Figure 6.3. It presents the 

generation of the three two-class sub-datasets 𝐷1
(2)

, 𝐷2
(2)

 and 𝐷3
(2)

 at the second decomposition 

level using the variable X1 cut-point values 10, 20 and 30, respectively. Note that the generated 

new sub-datasets contain (m-1) columns each time when a variable is removed from the data.  

6.3.4 Phase 4-Derive the time causality rules 

Based on the calculation of the probabilities of root-causes, causes and fault events in the final 

ITCA model, Phase 4 derives the time causality rules that represent the change in occurrence 

probabilities from one period to another. Each time causality rule summarizes a specific structure 

of the cause-effect relations over the time between the root-causes, causes and fault events within 

the ITCA model in the form of an algebraic formula based on the above equations 1 to 4 (Stage 4, 

Phase 2). The obtained time causality rules allow the fault event occurrence to be controlled based 

only on its root-causes. Moreover, those rules enable managing the fault occurrence over the 
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defined time horizon, which makes them more suitable and appropriate for the task of making a 

prognosis. 

 

Figure 6.6 Generate new labeled data subsets in the ITCA methodology 

6.4 Case study  

Most aging systems that include bearings, seals, glands, shafts and couplings are more likely suffer 

from several degradation processes due to harsh operating constraints such as high temperatures, 
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vibration and dynamic load, and likely the deficiency of the maintenance plan as well. In this 

section, the ITCA methodology is deployed on simulated data that reproduce the degradation of a 

turbofan engine proposed by NASA. It is known as the PHM08 challenge dataset. The dataset is 

generated by the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) simulator 

based on MATLAD® and Simulink® (May, Csank, Litt, & Guo, 2010). The simulator uses the 

combination of three specific operation variables to generate different degradation profiles. The 

high-pressure compressor (HPC) degradation fault mode is selected as an illustrative example. 

Based on the C-MAPSS user guide, the engine consists of several interconnected subsystems (inlet, 

bypass nozzle, fan, low-pressure compressor (LPC), high-pressure compressor (HPC), combustor, 

high-pressure turbine (HPT), low-pressure turbine (LPT) and core nozzle). The fuel valve controls 

the fuel flow into the combustor that turns the HPT. The HPT rotates the HPC, LPT, LPC and the 

inlet fan. The turbofan engine has two state variables, the fan speed and the core speed (Liu, Yuan, 

Frederick, DeCastro, Litt, & Chan, 2012) as shown in Figure 6.7.A. Based on the thermodynamic 

cycle, the air is compressed and combusted by the engine to produce propelling. Figure 6.7.B 

describes the ambient airflow to the engine. First, the air enters the engine through the inlet and the 

fan. Then, it is divided by the splitter into two portions. One portion passes through the compressor 

and then the burner to mix with fuel and produces combustion. The hot exhaust passes through the 

core and fan turbines to the nozzle, while the other portion is bypassed to the back of the engine. 

The airflow is controlled by the bypass ratio, which is the ratio of the bypassed mass airflow to the 

mass airflow that goes through an engine core (National Aeronautics and Space Administration 

NASA, 2015). The HPC’s main functionality drives the airflow to higher pressure and temperature 

states to prepare it for combustion by using its spinning blades. Therefore, the change in the bypass 

ratio is the main control element for controlling the HPC outlet air pressure and its temperature for 

the burning phase.  



116 

 

 

 

 

(A) (B) 

Figure 6.7 The simulated turbofan engine based on C-MAPSS (Frederick, DeCastro, & Litt, 

2007) 

The challenge addressed by the ITCA methodology is to model the HPC fault causality structure 

in a dynamic manner, so that the model can demonstrate the effect of the root-cause changes over 

time on the main HPC degradation curve. 

6.4.1 Dataset description 

The dataset consists of 21 measurement variables that describe the HPC fault mode (Table 6.1) and 

465 timestamp observations. The generated data is divided into training and testing sets with 258 

(60%) and 207 observations (40%), respectively. The constant (⎯), increasing () or decreasing 

() trend that depicts each variable over time is mentioned in Table 6.1.  
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Table 6.1 Variable descriptions of the HPC fault mode 

Variable Description (Unit) 
Trend 

(⎯,,) 
Variable Description (Unit) 

Trend 

(⎯,,) 

T2 
Total temperature at fan 

inlet (R) 
⎯ phi 

Ratio of fuel flow to Ps30 

(pps/psi) 
 

T24 
Total temperature at LPC 

outlet (R) 
 NRf Corrected fan speed (rpm)  

T30 
Total temperature at HPC 

outlet (R) 
 NRc 

Corrected core speed 

(rpm) 
 

T50 
Total temperature at LPT 

outlet (R) 
 BPR Bypass Ratio (rpm)  

P2 Pressure at fan inlet (psia) ⎯ farB 
Burner fuel-air ratio 

(without unit) 
⎯ 

P15 
Total pressure in bypass-

duct (psia) 
⎯ htBleed 

Bleed Enthalpy (without 

unit) 
 

P30 
Total pressure at HPC 

outlet (psia) 
 Nf_dmd 

Demanded fan speed 

(rpm) 
⎯ 

Nf Physical fan speed (rpm)  W31 
HPT coolant bleed 

(lbm/s) 
 

Nc Physical core speed (rpm)  W32 LPT coolant bleed (lbm/s)  

epr Engine pressure ratio ⎯ Ps30 
Static pressure at HPC 

outlet (psia) 
 

PCNfR_

dmd 

Demanded corrected fan 

speed (rpm) 
⎯  

Note that the majority of the variables have an increasing or a decreasing trend over the time, except 

T2, P2, P15, epr, farB, Nf_dmd and PCNfR_dmd, which are constant no matter the fault mode.  

6.4.2 The HPC fault prognosis using the ITCA model 

In what follows, the main results of the proposed four-phase ITCA methodology applied on the 

NASA turbofan engine dataset are presented and discussed in order to perform the HPC fault 

prognosis task. As per the first phase, the training dataset is ordered according to the timestamp 

variable and divided into six equal, unlabeled subsets, where each subset 𝑆𝑆𝑖  𝑖 = 1. .6 depicts the 
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period of time 𝛥𝑖 𝑖 = 1. .6. The subsets are ordered in a timely manner, where 𝑆𝑆1 represents the 

best normal state of the turbofan while 𝑆𝑆6 depicts its worst or failure state. Consequently, five 

labeled datasets are concatenated from those 6 subsets as follows 𝐷𝑖: 𝑆𝑆𝑖 versus 𝑆𝑆6  𝑖 = 1. .5. Each 

dataset has 86 labeled observations. Note that the dataset is divided by fixed width for simplicity. 

However, the expert can assign different width thresholds to produce non-equal data subsets. 

Meanwhile, the number of subsets is important to capture the evolution of the faults over time. This 

is a trade-off between time step resolution and ITCA construction time. Phase 2 and Phase 3 are 

iteratively repeated to construct the ITCA model. The coverage tolerance selection STS threshold 

used by the time-based searching algorithm (Stage 2 of Phase 2) is set to 10%. In addition, the 

coverage threshold is set to 90% to control redundant knowledge in the common trees at Stage 1 

of Phase 3, when a new level is considered in the ITCA model.  

Figure 6.8 depicts the final ITCA model of the HPC fault mode. It includes six levels of 

decomposition to reproduce the causality structure between the HPC fault and its root-causes over 

six periods of time. Note that each level of the ITCA model consists of three layers that represent 

the solutions, patterns and conditions related to the fault event or to one of its causes. The first level 

includes only one common feasible solution 𝑆1 over the 5 defined time periods (𝛥1 to 𝛥5). 𝑆1 has 

only one pattern 𝑃1 which includes only one condition 𝐶1: 𝑃30 > 𝜆1. The plot A1 of Figure 6.8 

characterizes the degradation of the variable P30 over time. Note that the cut-point curve (blue 

line) bounds the trend of the variable P30 in time. Additionally, the plot A2 of Figure 6.8 shows 

the common feasible solution coverage and the overlap percentages over the five time periods. 

Regarding level 2 of the ITCA model, the same interpretation above can be done for the variable 

T50. It is clear that the ITCA model captures the trend of the involved variables based on the cut-

point curves.  

At level 3, two common feasible solutions, 𝑆3 and 𝑆4, are found by the time-based searching 

algorithm. These solutions respect the construction setting, 𝑆3 explains the cause (𝐶2: 𝑇50 ≤  𝜆2) 

at the time periods 𝛥1 and 𝛥2. While 𝑆4 dominates the three other periods 𝛥3 to 𝛥5. 𝑆3 and 𝑆4 each 

have one only one pattern and condition. The plots C2 and D1 of Figure 6.8 depict the bordering 

of the cut-point curves that represent the degradation trends of the variables T24 and NF, 

respectively. Meanwhile, the C1 and D2 plots show the solution coverage and overlap percentages 

over the corresponding time periods. 𝑆3 and 𝑆4 descript the full-time causality of the cause event 
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(𝐶2: 𝑇50 ≤  𝜆2) through the time-OR gate by toggling between the two feasible solutions. Hence, 

𝑆3 explains the event causality at only 𝛥1 and 𝛥2 while 𝑆4 illustrates the causality of the same event 

at 𝛥3, 𝛥4 and 𝛥5.  

At level 4, two other feasible solutions 𝑆5 and 𝑆6 are found that explain the events 𝐶3: 𝑇24 ≤ 𝜆3) 

and 𝐶4: 𝑁𝐹 > 𝜆4, respectively. At level 5, only one common feasible solution 𝑆7 is found that 

explains both events’ - 𝐶5: 𝑃𝑠30 ≤ 𝜆5 and 𝐶6: 𝑃ℎ𝑖 ≤ 𝜆6 - causality over the five periods of time. 

This solution includes one pattern 𝑃7 with only one condition 𝐶7: 𝑁𝑅𝐹 ≤ 𝜆7. The same reasoning 

can be made with the only common feasible solution 𝑆8, which explains the condition 𝐶7 at the last 

level of the ITCA model using only one pattern 𝑃8 that consists of one root-cause 𝐶8: 𝐵𝑃𝑅 ≤ 𝜆8. 

The cut-point curve of Figure 6.8.H1 bounds the trend of C8.  

From the obtained logic tree of Figure 6.8, it is clear that the ITCA model confirms the discussion 

above about the main root-cause of the HPC fault mode. Effectively, the first level of the ITCA 

model identifies the variable P30 (total pressure at HPC outlet) as the only fault indicator of the 

HPC degradation over time. Therefore, P30 can be employed to predict the remaining useful time 

of the turbofan engine according to the HPC fault mode. At the second level, the variable T50 (total 

temperature at an LPT outlet) is discovered to explain the effect of the temperature of combustion 

on the total pressure at the HPC outlet. T50 refines the knowledge discovered about P30. The same 

reasoning continues until reaching the final level, 6, where the ITCA model discovers the variable 

BPR (Bypass Ratio), which is identified by the expert as the main control element that affects the 

occurrence of the HPC fault mode over time. Therefore, the ITCA model provides the expert with 

more refined knowledge until grasping the effects of the root-causes on the fault trend over the 

time, which help him to achieve the prognosis task in an efficient way.   



120 

 

Solution layer

Pattern layer

Condition layer

S8

Level
6

Solution layer

Pattern layer

Condition layer

S7

Level
5

Solution layer

Pattern layer

Condition layer

Level
4

Solution layer

Pattern layer

Condition layer

S3

Level
3

Solution layer

Pattern layer

Condition layer

S2

Level
2

Solution layer

Pattern layer

Condition layer

HPC

C1: P30 > λ1

C2: T50   λ2

C4: NF   λ4C3: T24   λ3

C6: Phi > λ6C5: Ps 30    λ5

C7: NRF   λ7

C8: BPR   λ8

P1

S1

Level
1

P2

S4

P4P3

T

S6S5

P5 P6

P7

P8

A2

B2B1

D1

A1

D2

F1 F2

C2C1

E1 E2

G1 G2

H1 H2

Δ1  Δ2  Δ3  Δ4  Δ5

Δ1  Δ2  Δ3  Δ4  Δ5

Δ1  Δ2  Δ3  Δ4  Δ5

Δ1  Δ2  Δ3  Δ4  Δ5

Δ1  Δ2  Δ3  Δ4  Δ5

Δ1  Δ2  Δ3  Δ4  Δ5

Δ1  Δ2  Δ3  Δ4  Δ5

Δ1  Δ2  Δ3  Δ4  Δ5

 

Figure 6.8 Obtained ITCA model of the HPC degradation mode 

The probabilities associated with the ITCA model are calculated using equations 1 to 4 of Stage 4, 

Phase 2. They quantify the occurrence of similar feasible solutions, patterns and associated 

conditions period after period at each level of the ITAC model. Figure 6.9 plots the probabilities 

of the 8 discovered conditions over five periods of time. Note that the occurrence of each feasible 

solution is equal to the probability of its associated conditions due to the structure of the obtained 

logic tree. For example, plot A in Figure 6.9 represents the probability curve of 𝑆1: 𝑃1: 𝐶1 over the 

periods 𝛥1 to 𝛥5. The maximum probability value is equal to 0.16 at each time period, since the 

original data is divided into six equal-size data subsets. Therefore, each subset represents 0.16 from 

the original data size. Note that each common feasible solution tries to maximize its class coverage, 
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so that the associated condition probability value may not exceed that coverage value over the five 

periods. 

Based on the ITCA model and the calculation of probabilities, only one time causality rule can be 

derived over 5 investigated periods as follows: 𝒫(𝐻𝑃𝐶(𝛥𝑖)) =  𝒫(𝐶8(𝛥𝑖)) 𝑖 = 1 … 5 (Eq.5). The 

time causality rule expresses the contribution of the root-cause on the occurrence of the HPC fault, 

period after period, according to the 𝐶8 cut-point curve. Since each cut-point value provides the 

essential knowledge to sustain the turbofan for more or less time in each defined period interval 

through the maintenance action. For instance, the turbofan can spend more time in 𝛥1 by making 

the 𝐶8 variable (BPR) value under the corresponding cut-point value for a set of time. 

 

Figure 6.9 Probabilities calculation of the HPC fault mode 

6.4.3 Validation of the ITCA model 

The accuracy of the obtained ITCA model is quantified using the testing dataset. Five concatenated 

datasets are formed to represent the five periods of time in the same manner as the data preparation 

of the training datasets. The mean and the standard error for each period are calculated using the 

time causality rule and 1000 random data samples; each has a size of 135 observations that provides 

a 95% confidence level, as shown in Figure 6.10. Based on the error in each period, an average 

error distribution is generated over the five periods. 

From another point of view, the variables T2, P2, P15, epr, farB, Nf_dmd and PCNfR_dmd are not 

considered in the ITCA model of Figure 6.8 due to the fact that they have a constant trend over 

time (see Table 6.1). However, the variables NC, NRc, htBleed, W31 and W32 have a changeable 
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trend, but are not included in the ITCA model. To investigate this situation, the correlation matrix 

between those omitted variables and those already considered in the ITCA model are measured as 

depicted in Table 6.2. In each column, the red cell shows the maximum correlation value. The 

variables NRc, htBleed, and both W31 and W32 are correlated to the variables phi, Nrf and Ps30, 

respectively, with a correlation value that is higher than 0.6. Except for the variable NC, which 

measures the physical core speed, which is correlated to P30 with the highest absolute value of 

0.17. Accordingly, it seems to be relevant for the HPC degradation. It could be overlooked by the 

ITCA model. 

 

𝑀𝑒𝑟𝑟𝑜𝑟 = 2.51 10−2 and 𝑆𝑒𝑟𝑟𝑜𝑟 = 1.29 10−2 

Figure 6.10 Accuracy of the ITCA model 
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Table 6.2 Correlation matrix 

 NC NRc htBleed W31 W32 

T24 -0.159 -0.502 0.595 -0.629 -0.614 

T30 -0.211 -0.459 0.534 -0.543 -0.582 

T50 -0.153 -0.548 0.644 -0.727 -0.699 

P15 -0.001 -0.014 0.065 -0.059 -0.107 

P30 0.175 0.588 -0.651 0.718 0.739 

Nf -0.167 -0.594 0.707 -0.750 -0.743 

Ps30 -0.171 -0.594 0.689 -0.761 -0.742 

phi 0.158 0.616 -0.688 0.722 0.721 

NRf -0.169 -0.582 0.708 -0.746 -0.715 

BPR -0.184 -0.575 0.605 -0.663 -0.714 

 

6.5 Conclusion 

This paper has proposed an interpretable time causality analysis (ITCA) methodology in aging 

systems. The ITCA model represents the fault hierarchy causality by using the logic of the fault 

tree graphical and the knowledge discovery in the dataset. The obtained tree models the effect of 

the system’s aging on the changes in the fault causality structure over time for better achieving the 

fault prognosis task. The illustrated case study demonstrates its usefulness and ability to discover 

only the relevant root-cause that impacts the fault behavior. Based on the model interpretability, 

the expert able to understand the time causality structure of the turbofan HPC degradant 

performance and support his decision through the model’s interpretability. Thus, the ITCA model 

provides the expert with the deep causality knowledge that explain the fault evolution over time. 

Unlocking the data-driven model’s complexity by providing an interpretable graphical model, in 

addition to summarizing the evolution of the fault over time in one interpretable model, are the two 

major contributions of the ITCA model over the current time causality data-driven models for fault 
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prognosis. The ITCA model takes a further step towards reinforcing the link between the experts 

and the data-driven models. Such a model will help experts elucidate and implement inside the 

maintenance decision making process.  

Our next research work will be to assist the expert by better optimizing the system performance 

through a set of control actions after understanding the problem causality. We hope to allow our 

future ITCA model demonstrate the system’s reaction regarding a set of proposed control actions 

based on its causality rules. The expert still needs to observe this system’s reaction represented by 

the new fault causality structure that reflects the system’s response for the causality rule control 

actions that were taken. Therefore, the future ITCA model has to include different scenarios for 

fault causality structures that reflect the impact of the different combination of control actions based 

on the derived causality rules. 
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 GENERAL DISCUSSION  

 

In this chapter, the three proposed models are discussed. Strengths and limitations of each tree are 

highlighted to verify the achievement of the main thesis objective, which is toward the automatic 

construction of interpretable data-driven fault tree models for fault diagnosis and prognosis in 

complex systems. The application of the data-driven models to automate risk management in 

industrial systems proves that this research domain can take the lead in the future. Moreover, the 

significant prediction accuracy of these models demonstrates that they are adequate solutions for 

predicting the different system states and recommend decisions in managing faults in complex 

systems. However, unlike the event-based models, most of the data-driven models are considered 

to be black box techniques, which misses knowledge interpretability, since the fitted models that 

predict a fault are complex to interpret by a human expert.  

Therefore, extracting interpretable knowledge that characterizes a fault’s occurrence and its 

causality structure contributes to the strength of CBM decision making. The data-driven 

interpretability limitation is addressed by several techniques, such as the Granger causality 

analysis, Bayesian network, decision tree and the rules-based model, all of which are able to 

discover the possible causes of a fault in the form of interpretable patterns. However, those 

techniques lack representation of a full, understandable graphical representation of a fault causality, 

which is one of the advantages of event-based models.  

The proposed ILTA, MILTA and ITCA models provide a compromise for fault diagnosis and 

prognosis. The novelty is the linking of data-driven and event-based models to solve the fault 

diagnosis and prognosis problems. The need for prior information and specialist training in the 

event-based models is overcome by extracting interpretable knowledge directly from the system’s 

database. The need to unlock a data-driven black box and understand their structures is addressed 

using the fault tree representation, which drives direct, understandable knowledge to the expert 

without the need for other, prior analyses. 

The proposed ILTA-model (Chapter 4) introduced the main concepts of linking the model-based 

causality analysis method (FTA) with the knowledge discovery in database (KDD). The extract 

knowledge from the system database represents causality regarding fault occurrence. Unlike the 

model-based model, the discovered knowledge quantifies the fault causality more precisely when 



126 

 

compared with the assigned causes by an expert. In addition, the discovered causes based on KDD 

offer unbiased knowledge about the fault causality, which is a major limitation in the classic FTA, 

in addition to exploring the hidden fault causality phenomena that might otherwise be overlooked 

by an expert. The ILTA methodology boosts the advantages of the discovered causality knowledge 

from the system database by removing the redundant knowledge by introducing the concept of 

feasible solutions. Therefore, it is a hybrid model that is able to automatically construct the 

causality structure directly from the database with minimum involvement from human experts. 

Meanwhile, representing this non-redundant knowledge in a graphical model leads to easy 

understanding. 

However, using the database to perform an analysis through the ILTA-model takes into account 

only the events that have occurred in the past, which leads to the absence of potential scenarios that 

might still occur, but have not been observed previously. This is one of the major drawbacks of the 

data-driven models. To overcome this limitation in the ILTA-model, the experts can enrich the 

obtained tree by removing some redundant scenarios (i.e. feasible solutions) or adding unobserved 

scenarios due to the limitation of the sample’s representability. In addition, the represented fault 

causality events and their occurrence probabilities are very useful when the used dataset is known 

to be representative, complete and accurate. The quality of available data and its representability 

are the major challenges facing the data-driven model. The ILTA-model is similar to any data-

driven model that needs reliable and representative data to provide relevant results. The entire effort 

of this thesis focuses on constructing relevant and accurate new fault trees for fault diagnosis and 

prognosis. Therefore, the challenges related to the quality of the available data and the effort made 

to acquire and prepare them, with adequate quality, could be addressed in our future research. 

The proposed MILTA-model (Chapter 5) presented the concept of building a multi-level graphical 

tree that aggregates different dependant ILTA trees. The MILTA-model overcomes the limitation 

of a one level tree for fault diagnosis in complex systems. The relation structure between the root-

causes, intermediate causes and faults by connecting the dependant ILTA tree depict the causal 

relationships. The interpretability of the MILTA-model enables the expert to grasp the fault 

occurrence and its root-causes. Meanwhile, the expert has to validate the constructed tree, rather 

than to be involved in constructing the event-based causality model from scratch, such as in the 

FTA.  



127 

 

The contribution of a MILTA-model over the current data-driven models concerns the graphical 

representation that automatically decomposes the fault into its hierarchical structure. Priority is 

given to the causes that have a strong, direct relation with the occurrence of the fault. Consequently, 

the fault indicators, the intermediate causes and the root-causes are discovered level after level. 

The process of ordering and representing the different fault events provides an expert with an easy 

and familiar model to understand the fault causality in complex systems.  

Despite the advantages of the MILTA-model, the main drawback concerns the cause-and-effect of 

the fault and the correlation between its causes. This added constraint, selecting the minimal 

number of patterns that maximize the class coverage to the burn-and-build algorithm, helps capture 

the fault’s hierarchical causality. The algorithm promotes selecting the feasible solutions that have 

a strong direct relation with the main fault event at the first level. However, it could fall to 

distinguishing the differences between the cause-and-effect relationship between two causes to 

assign them to different levels. Another drawback concerns how to assure that the last levels of the 

tree include the root-causes. The solution's coverage percentage threshold is the main criterion to 

stop the fault decomposition process. Therefore, it is a trade-off between adding low solution 

coverage and obtaining root causes, which depend on the data sample’s representability. Thus, the 

expert has to validate the final constructed tree to ensure that the MILTA-model includes the fault’s 

root-causes, Otherwise, he will assign a lower threshold to overcome the lack of representability 

in the data sample. 

The proposed ITCA-model (Chapter 6) addressed the effect of system wear-out on the changes in 

the fault causality structure for the prognosis task. The ITCA-model introduces a multi-level tree 

similar to the MILTA structure to determine the fault time causality. Since the fault causality 

structure changes due to the system’s degradation, the causality knowledge represented through 

different decomposition levels will be updated over time. Therefore, the ITCA-model provides an 

expert with more sufficient knowledge regarding the changes in the fault causality structure as the 

system ages. 

However, the ITCA-model is based on unlabeled data, unlike the ILTA and MILTA models. This 

is because there is no state variable that can be used to indicate the differences between the system’s 

normal and faulty states. Paradoxically, the data used is similar to time series data, in which the 

first observations carry knowledge about the system’s normality state. Gradually, the fault and its 
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effects start to appear progressively in time though the next observations, reaching the last 

observations that represent the system failure. The ITCA-model captures those transitions over 

time by splitting the time series observations into several ordered subsets based on the assigned 

thresholds. Each subset represents a period that summarizes the fault’s evolution and its change in 

the causality structure at that period. 

One of the challenges in the ITCA-model construction concerns the sizing of the data subsets, 

which affect the final tree result. The number of assigned thresholds controls the number of the 

generated datasets that have a consequence on the tree’s resolution in capturing the fault’s causality 

changes. For instance, if the dataset number is too small, large periods are defined and, 

consequently, some fault development stages can be omitted. On the other hand, if the data subset 

number is too big, it affects the processing and the tree’s construction time. Therefore, the 

involvement of the expert to choose reasonable thresholds that define the datasets size is required. 

In addition, the same MILTA challenges are considered in the ITCA-model, such as distinguishing 

between the cause-and-effect relationship and event correlations, besides assuring the discovery of 

the fault root-causes through the tuning of a feasible solution coverage threshold. 
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 CONCLUSION AND RECOMMENDATIONS  

 

The three trees take a further step to graphically model the fault causality structure and its time 

evolution in order to provide the expert with a better understanding of the fault cause and effect 

relationships. However, the implementation of those trees in order to conduct an automatic control 

framework that manages the complex fault through maintenance actions still needs to be developed.  

Our future research will focus on linking the trees with the system control to automate the fault 

management. The time causality rules, based on the Bayesian theorem, are very useful to quantify 

the importance of the discovered root-causes by ranking the root causes according to their 

contribution to fault occurrence. However, there is a lack of application of time causality rules, 

since they are not linked with the system performance quantification measurement such as its 

reliability curve. This link is very crucial, since it helps the expert optimizing the timing of 

maintenance decision actions. The time causality rules with its associated tree is able to provide 

the expert with all the needed information regarding the fault causality at a certain time period. 

While, the system performance quantification measurement will depict the degradation in the 

system performance at that time period for better grasping the fault consequences with the system 

performance.      

In addition, the proposed ITCA model that dominates the MILTA and the ILTA models for 

achieving the fault diagnosis and prognosis is able to capture the effect of the system aging on the 

changes of the fault causality structure. However, it cannot depict the effect of minimal repairs on 

changing the fault causality structure besides the system aging. Therefore, new data has to be 

collected to capture those new changes in the system and the faults. The proposed ITCA model 

have to include different fault causality structure scenarios that link the fault causality rules with 

the system’s responses. Therefore, control can be performed in a dynamic manner, where an expert 

can understand the system’s response and limitations toward assigning more optimal procedures. 

By achieving this crucial point, the system fault causality becomes fully modeled. In a sense, the 

fault causality structure is well-depicted, aside from the system’s response and the changes in the 

fault causality. 
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APPENDIX A   DISCOVERED PATTERNS 

 

Normal 
Pattern Pattern description 

P1 F ≤ 0.228 

P2 F > 0.228 AND T1≤ 0.219 

P3 
CV > 0.334 AND CV ≤ 0.539 

AND T1 ≤ 0.607 

P4 CV > 0.460 AND T1 ≤ 0.607 

P5 CV > 0.386 AND T1 ≤ 0.607 

P6 T1 ≤ 0.607 

P7 CV > 0.302 AND T1 ≤ 0.607 

P8 CV ≤ 0.523 AND T1 ≤ 0.607 

P9 CV > 0.492 AND T1 ≤ 0.607 

P10 
CV > 0.302 AND CV ≤ 0.539 

AND T1 ≤ 0.607 

P11 CV ≤ 0.539 AND T1 ≤ 0.607 
 

Fault 
Pattern Pattern description 

P12 T1 > 0.607 

P13 CV ≤ 0.492 AND T1 > 0.607 

P14 
CV ≤ 0.476 AND CV ≤ 0.554 AND 

T1 > 0.607 

P15 
CV ≤ 0.492 AND CV ≤ 0.554 AND 

T1 > 0.607 

P16 

CV ≤ 0.492 AND CV ≤ 0.523 AND 

CV ≤ 0.476 AND CV ≤ 0.507 AND 

T1 > 0.607 

P17 

CV ≤ 0.415 AND CV ≤ 0.372 AND 

CV ≤ 0.554 AND CV ≤ 0.400 AND 

CV ≤ 0.430 

P18 
CV > 0.507 AND CV > 0.250 AND 

CV > 0.346 AND T1 > 0.607 

P19 
CV ≤ 0.492 AND CV > 0.250 AND 

T1 > 0.607 

P20 CV ≤ 0.460 AND T1 > 0.607 

P21 
CV ≤ 0.400 AND CV ≤ 0.554 AND 

T1 > 0.607 

P22 
CV > 0.539 AND CV > 0.359 AND 

CV > 0.430 AND T1 > 0.607 

P23 

CV ≤ 0.492 AND CV ≤ 0.507 AND 

CV ≤ 0.523 AND CV ≤ 0.539 AND 

CV ≤ 0.476 

P24 

CV ≤ 0.445 AND CV ≤ 0.476 AND 

CV ≤ 0.554 AND CV ≤ 0.523 AND 

T1 > 0.607 

P25 

CV ≤ 0.492 AND CV ≤ 0.539 AND 

CV > 0.250 AND CV ≤ 0.476 AND 

CV ≤ 0.445 

P26 CV ≤ 0.430 AND T1 > 0.607 

P27 CV ≤ 0.415 AND T1 > 0.607 

P28 
CV ≤ 0.460 AND CV ≤ 0.554 AND 

CV ≤ 0.539 AND T1 > 0.607 

P29 
CV ≤ 0.492 AND CV ≤ 0.523 AND 

T1 > 0.607 

P30 
CV ≤ 0.492 AND CV ≤ 0.476 AND 

CV > 0.256 AND T1 > 0.607 

P31 CV ≤ 0.346 AND T1 > 0.607 

P32 
CV > 0.507848815 AND T1 > 

0.6073358625 



150 

 

P33 
CV > 0.5545089005 AND T1 > 

0.6073358625 

P34 

CV ≤ 0.460 AND CV > 0.253 AND 

CV > 0.250 AND CV > 0.260 AND 

CV > 0.293885 AND CV ≤ 0.539 

AND T1 > 0.607 

P35 CV > 0.523 AND T1 > 0.607 

P36 

CV ≤ 0.492 AND CV ≤ 0.554 AND 

CV ≤ 0.507 AND CV ≤ 0.539 AND 

CV > 0.264 AND CV > 0.253 AND 

CV > 0.250 

P37 

CV ≤ 0.492 AND CV ≤ 0.507 AND 

CV ≤ 0.460 AND CV ≤ 0.445 AND 

CV ≤ 0.554 AND CV ≤ 0.476 

P38 
CV ≤ 0.400 AND CV ≤ 0.415 AND 

CV ≤ 0.445 AND T1 > 0.607 

P39 
CV ≤ 0.415 AND CV ≤ 0.507 AND 

CV ≤ 0.554 AND T1 > 0.607 

P40 
CV ≤ 0.492 AND CV > 0.256 AND 

T1 > 0.607 
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