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Abstract. The stable supply of electricity is essential for the industrial activity and economic development as well as for human
welfare. For this reason, electrical system devices are equipped with monitoring systems that facilitate their management and
ensure an uninterrupted operation. This is the case of electrical power transformers, which usually have monitoring systems that
allow early detection of anomalies in order to prevent potential malfunctions. These monitoring systems typically make use of
sensors that are in physical contact with the transformer devices and can therefore be affected by transformer problems.

In this work we demonstrate a monitoring system for electrical power transformers based on temperature measurements
obtained by means of thermal cameras. Properly positioned, the cameras provide thermal data of the transformer, the incoming and
outgoing lines and their surroundings. Subsequently, by appropriate image processing, it is possible to obtain temperature series
to monitor the transformer operation. In addition, the system stores and processes thermal data in external equipment (placed
in locations other than the transformers) and is equipped with a communications module that allows secure data transmission
independent of the power grid. This aspect, along with the fact that there is no need to have physical contact with the transformer,
make this approach safer and more reliable than standard approaches based on sensors. The proposed system has been evaluated in
14 stations belonging to the Spanish power grid, obtaining accurate and reliable temperature time series.
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1. Introduction

Electrical power transformers used in contemporary
medium and low voltage distribution networks are criti-
cal components of the electrical infrastructure in devel-
oped nations. For this reason they are one of the main
concerns of the industry and the sector’s regulators.
These transformers are intended to be working without
interruption and this involves to be able to handle peaks
demand and prevent that potential temporary changes
in the transformer workload could result in unaccept-
able voltage levels or cause any damage to the hardware
system. In order to accomplish this requirement, power
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transformation systems are equipped with a variety of
sensors and technologies that allow real-time monitor-
ing of the system’s behavior, so that a prompt action can
be taken in the event that the values of phase, intensity,
energy, etc. provided by a power transformer deviate
from those expected [1]. In addition, in recent years,
some changes in society are threatening the resilience
of the power system, which emphasizes the relevance
of these monitoring technologies [2].

On the one hand, the introduction of disruptive de-
velopments such as electric cars, which demands large
amounts of energy in a short time [3–6], or the increased
use of renewable production sources (of an intermit-
tent character in the majority of cases [7]) are making
the power transformation management more compli-
cated and challenging [8], requiring more sophisticated
monitoring systems.
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On the other hand, electric power systems are cur-
rently experiencing a digitization process, which in-
volves the integration of technologies associated with
computing, wireless communication, Internet of Things
(IoT) devices and a multitude of applications aimed at
facilitating real-time and seamless operations [9–11].
These advances have enabled the development of more
efficient semi-autonomous systems with reasonable op-
erating costs, but have also brought additional concerns,
including cyber security concerns, that should be ad-
dressed [12].

The management of electricity networks must pay
special attention to potential overloads [13,14], as they
are one of the major problem sources affecting power
transformers, whose failures represent approximately
12% of the total [15]. Transformer failures, in addi-
tion, are particularly dangerous as they can cause fires
which, taking into account the urban location of trans-
formers, can result in serious economic and personal
damages [16].

The malfunctions affecting power transformers de-
pend to a large extent on the transformer design, with
important differences depending on the type of primary
insulation [17]. In addition, the presence of certain com-
ponents that are not present in all transformers may
cause failures to be concentrated in some elements or
others. Thus, for example, in transformers equipped
with On-Load Tap Changer (OLTC), the percentage of
failures associated with bushings and terminals is 14%,
while in transformers not equipped with OLTC the per-
centage of failures of these components is more than
double (33.3%) [18].

During the last years, several authors [19–21] as well
as different international organizations have published
a number of reports analyzing the probability of fail-
ure of the components of a power transformer. One of
these organizations, the International Council on Large
Electric Systems (CIGRE) has divided the types of fail-
ures into 6 categories based on the component causing
the failure: winding, tap changer, core, tank, bushing,
auxiliary. The probability of failure for each is shown
in Fig. 1 [22].

The reason for failures depends to a large extent on
the component in which they have occurred. Thus, for
example, tank failures can occur due to corrosion, which
in turn is linked to environmental conditions (high hu-
midity, solar radiation, etc.) and can cause fissures in the
tank walls, resulting in leaks. To avoid these failures,
in addition to proper maintenance of the installations,
a number of measurements should be carried out on a
regular basis. This includes dissolved gas analysis [23],

Fig. 1. Malfunction probability in different components of a power
transformer.

insulation moisture analysis, and controlling the op-
eration temperatures [24]. The measurement of both
the transformer temperature and the room temperature
is therefore part of standard protocols for monitoring
power transformers [25–27]. These are relevant vari-
ables that should be measured accurately and uninter-
ruptedly and can also be used to forecast other variables
such as reactive power or intensity [28].

In conventional approaches, temperature measure-
ment is usually carried out by sensors that are integrated
into the transformer equipment and are, to some extent,
part of the transformer system. In this regards, a vari-
ety of sensors is available, and their characteristics and
principles of operation are highly dependent on the type
of transformer whose temperatures are monitored. In
Liquid-Immersed power transformers, the temperature
of the liquid (usually oil of different natures) is used
as a estimation of the transformer temperature. In such
cases, contact probes are used to measure the liquid
temperature. The temperature of the transformer wind-
ing is also usually measured by contact sensors. This
approach is possibly the simplest and most straightfor-
ward, however, it has the disadvantage that it can be
affected by potential transformer problems, thus losing
its ability to predict transformer malfunctions [29].

In this manuscript we describe a system based on
thermal imaging to monitor the room and transformer
temperature of electrical power transformers. Thermal
imaging or thermography is a mature technology that
allows us to capture the invisible heat emitted by objects
whose absolute temperature is above zero [30]. It has
been successfully applied for monitoring purposes in
many fields, as civil structures [31,32], machinery in-
spection [33] or in the nuclear industry [34]. In addition,
this technology has been recently proposed to correct
temperature problems in electrical substations [35].

The proposed approach has been implemented and
evaluated in 14 transformation centers belonging to the
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Fig. 2. PASTORA functional blocks and their relationship with the MONICA platform.

Spanish power grid [36]. The measures obtained with
it were validated against the standard sensor-based ref-
erence scheme. Compared to the latter, the proposed
approach offers some advantages. The most important
of these is the fact that the system is completely inde-
pendent of the power transformer, and without physical
contact with it, so it is not affected by potential trans-
former failures (high temperature peaks or too frequent
temperature fluctuations may damage the sensors). It is
also a more scalable system, capable of monitoring not
only the temperature of the transformer, but also of dif-
ferent transformer components independently, or of ad-
jacent equipment. This would be possible by only mod-
ifying the thermal image processing algorithm, with-
out hardware changes. Finally, the proposed system
based on thermal cameras can be used as a security sys-
tem capable of detecting the presence of living beings
(animals or people) near the transformer, based on the
temperature changes detected.

The contributions of this work are both technical and
scientific. On the technical level, this is the first time
(to our knowledge) that electrical variables and tem-
peratures obtained from sensors and temperature data
extracted from thermal images have been analyzed to-
gether. This study, in fact, is part of a pilot project to
evaluate the usefulness of this system in order to subse-
quently extend it to the whole ENEL network in Europe.
On the scientific level, this work includes an extension
of the work presented in [37], in which Granger causal-
ity is used to characterize the state of the transformer

and its evolution. In this work, information exogenous
to the transformer (variables extracted from thermal
images) was included, demonstrating the relationship
between this information and other electrical variables.

This work is part of the PASTORA project1 (ref.
EXP – 00111351/ITC-20181102), which is being de-
veloped by ENEL and other international companies as
an extension of the MONICA project.2 Both projects
aim to develop an advanced monitoring system for the
distribution networks and the electrical transformation
system that allows operators to perform real-time mon-
itoring and preventive control of these assets. These
objectives include the use of artificial intelligence to
enable self-management between the downstream el-
ements of the network and the medium voltage sub-
stations, through intelligent electronic devices and au-
tomated control centers. Figure 2 shows a functional
diagram of the PASTORA project, as well as the main
information flows between the different subsystems and
the MONICA platform. It includes the 5 parts in which
the project objectives are divided and the companies of
the consortium in responsible for implementing each of
them.

1Official website: www.endesa.com/en/projects/all-projects/
energy-transition/smart-grids/pastora-artificial-intelligence-
distribution-grid.

2Official website: www.endesa.com/en/press/press-room/news/
energy-transition/smart-grids/monica-project-will-enable-endesa-
to-obtain-real-time-data-about-low-and-medium-voltage-lines.
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Fig. 3. Main devices required by the proposed monitoring system and connections among them.

The rest of the manuscript is organized as follows:
Section 2 contains the details about the system imple-
mentation, including hardware description, communi-
cation protocol and image processing. Section 3 shows
the comparison between the measures obtained by the
proposed system and those obtained by the standard
approach. Then, Section 4 discusses the advantages and
limitations of each solution. Finally, Section 5 contains
the conclusions and future work plans.

2. Material and methods

2.1. System requirements

A temperature monitoring system for electrical trans-
formers based on thermal imaging must satisfy the fol-
lowing minimum requirements:

– Uninterrupted operation. Since the electrical
transformation system operates 24 hours a day,
365 days a year, the monitoring system must also
be able to operate uninterruptedly.

– Acquisition frequency of at least one thermal im-
age per minute. In order to provide a promptly
respond to temperature changes, the acquisition
system must be able to take at least one thermal
image per minute.

– Coverage of an area of at least 1.5× 1.5 meters.
The acquisition instrument must cover an area of
at least 1.5× 1.5 meters when placed at a distance
of 2 meters. This area permits to include most of
the surface of the transformer, the input/output
connections and the protective fence.

– Secure external data storage. Thermal data and all
information related to temperature control must
be securely stored in a location external to the
transformation system.

– Secure communications system. Communication
for sending and storing data externally must be
done in a secure and reliable manner.

– Tolerate operating temperatures above 40 degrees

Celsius. Nevertheless, this value highly depends
on the environment in which the system is in-
stalled, including both, the climatic conditions of
the region and the size and ventilation of the room.

2.2. Thermal-imaging-based system description

The monitoring system, designed and implemented
to to meet the requirements specified in Section 2.1,
was composed by several devices placed in different
locations. The acquisition equipment (AE) is located
next to the power transformer and composed by a ther-
mal camera, single-board computer (SBC) and com-
munication module. The storage and processing server
(SPS) is located in a data center, away from the power
transformer (see scheme in Fig. 3). Further details about
the specification of these devices are given as follows:

– Thermal camera. A commercial model from Op-
tris, the Xi 80, was selected. This model provides
thermal images of 80 × 80 pixels at a frame rate
of 50 Hz. The field of view (FOV) is 80◦ at a fo-
cal length of 2.3, enough to cover the surface of
the transformer and part of the protection struc-
ture, which is used to estimate the room tempera-
ture. The purpose of this device is just to capture
the thermal data and send them through the USB
interface.

– Single-board computer. This device controls the
thermal camera (which is connected via a USB
port) and temporally stores the thermal images on
a memory card, which works as a small buffer. In
addition, it periodically submits the images stored
on the memory card to the SPS using the com-
munication module described bellow. This SBC is
based on a Raspberry Pi 4 equipped with a 32 GB
SD card.

– Communication module. A Teltonika industrial
cellular router (RUT240 model) was used to en-
able the SBC to access the storage server via In-
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Fig. 4. Device scheme showing the integration of several AEs and communication between AEs and SPS by means of an intermediate server.

ternet. This model can access to Internet using
commercial mobile networks, by means of a SIM
card of any carrier. This communication module
is connected to the single-board computer through
its Ethernet interface.

– Storage and processing server. This equipment
is used to store and analyze the thermal data re-
ceived from the AE located in power transformers
(it can serve to several AEs located in different
power transformers). Its main task is to convert
thermal images into a series of values representing
the room and transformer temperature, and storing
them. Due to security concerns, the SPS is logi-
cally located behind an additional device that op-
erates as intermediary, therefore in practice two
servers are needed for this task. More details are
given in Section 2.3.

It is worth noting that, if the temperature of several
power transformer should be monitored, several AEs
(one per power transformer) are required, but only one
SPS.

This selection of components was carried out on the
basis of both functional and economic criteria. First,
a selection of components was made with those that
met the required characteristics. Subsequently, the low-
est cost component was selected from among those se-
lected. Special attention was paid to the economic crite-
ria since the system is intended to be an alternative the
cheaper sensor-based monitoring system and, to that
end, the price increase compared to the latter must not
be excessive. In this regard, the most critical element
of the system in terms of price was the thermal camera,
which represented the majority of the hardware cost.
Thus, an exhaustive search was carried out for this com-
ponent and several quotations from the main manufac-
turers (including Infratec, Fluke, Flir and Optris) were

collected. After analysis them, the Optris Xi 80 model
was selected due to its cost, which was substantially
lower than other proposals, while maintaining the main
requirements in terms of resolution, frame rate and field
of view.

2.3. Logical control and security aspects

The logical control of the proposed monitoring sys-
tem is carried out by three processes that are run in
the SBC and the SPS using a structure focused on re-
liability and security (note that thermal data is trans-
mitted via the Internet and special attention should be
paid to the communication security). On the one hand,
two processes running on the SBC are responsible for
thermal data acquisition and temporal storage. The first
one captures thermal images at a rate of one image per
minute and stores them on the temporal storage of the
SBC. The second one submits the thermal data acquired
in last minutes to the SPS for processing and perma-
nent storage. The destination of this submission is in-
deed an intermediate server that work as firewall for
the SPS. Both, data acquisition and sending rates are
parameterized, so they can be easily adapted to future
requirements. On the other hand, a process running on
the SPS periodically collects the thermal data that has
been placed on the intermediate server. The connec-
tion scheme is shown in Fig. 4. This structure, with
an intermediate server and two processes to move data
between the temporary storage in the SBC and the SPS,
allows the SBC to not have access to the SPS, which
improves the security of the entire system by preventing
the SPS from being accessed if the security of any AE
is compromised.

2.4. Image processing

After storage in the SPS, the thermal images were
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Fig. 5. Thermal image (left) and visible image (right) of a power transformer currently serving a residential area in southern Spain. Note that both
images were acquired with different cameras as thermal camera used in this work only provide thermal images.

processed to extract temperature information. Both,
room and transformer temperatures, were estimated as
the average temperature of pixels at specific locations
in thermal images. Transformer temperature was ob-
tained from pixels containing the surface of the power
transformer while room temperature was obtained from
the pixels of the fence that is part of the metallic struc-
ture that protect the power transformer. Figure 5 shows
a thermal image (left) and its visible-range equivalent
(right) of a power transformer currently serving a resi-
dential area in southern Spain. The blue T-shape region
in the lower half correspond to the protection fence
and was used to estimate the room temperature. The
transformer temperature was estimated from the pixels
containing the transformer surface, placed on lower left
and right corners.

In order to efficiently process the time series of ther-
mal data, the calculation of room and transformer tem-
peratures was carried out into two phases. First, a ref-
erence made-up thermal image (representing tempera-
tures independent of time) was segmented in order to
obtain two masks, one for selecting pixels of the fence
and other one for selecting pixels of the power trans-
former surface. Then, both masks were applied to all
the images in the time series to extract the pixels of the
fence and the pixels of the transformer surface sepa-
rately and, from them, obtain the two target temperature
series.

For the first phase, two segmentation approaches
were evaluated. The first one carried out the process in
3 steps: i) downsampling by means of the SLIC super-
pixel method proposed by Achanta et al. [38], ii) re-
quantization using several thresholds computed accord-
ing to [39] and iii) separation of the regions of equal
intensity by applying the Maximally Stable Extremal
Regions algorithm [40]. The second approach used a

Gaussian Mixture Model to model the image. Pixels
belonging to each component (Gaussian) were treated
as different regions and, finally, spatially separated re-
gions of equal intensity are considered independently
by applying the MSER algorithm. All these algorithms
are briefly described below.

2.4.1. SLIC superpixel method
Simple linear iterative clustering (SLIC) is a clus-

tering method proposed by [38]. It is a variant of k-
means [41] that makes more efficient use of memory
and achieves higher speed. The main differences from
k-means are as follows [38]:

– SLIC significantly reduces the number of calcula-
tions and complexity by limiting the search region
to the size of a superpixel.

– It uses an adaptive distance measurement that com-
bines spatial proximity and color, allowing both
size and compactness of superpixels to be con-
trolled.

The algorithm begins by establishing the center of k
clusters, uniformly distributed in the image. The param-
eter k represents the number of superpixels and is the
only parameter of the model. Each pixel is then associ-
ated to the closest cluster center within its search area,
defined as a square centered on the pixel and of side
equal to 2

√
N/k, being N the total number of pixels.

Next, cluster centers are recalculated so that they are
centered on the region they cover. The assignment and
update steps are repeated iteratively until the error (dif-
ference between cluster centers in successive iterations)
converges.

2.4.2. The Otsu’s method
The Otsu’s method [39] is a non-parametric algo-

rithm frequently used for threshold selection in image
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segmentation problems. Its main idea is to select the
threshold that maximizes the separability of the result-
ing classes in gray levels [42].

The procedure uses the zeroth- and the first-order
cumulative moments of the gray-level histogram and
reduce the problem to an optimization problem that
maximizes the class separability. Formally, in a problem
with two classes the threshold, k∗, is selected as:

σ2
B(k∗) = max

1<k<L
σ2
B(k) (1)

where σ2
B represents the class separability and can be

computed as ω0ω1(µ1−µ0)2, being ωi and µi the prob-
ability and mean of class i.

2.4.3. Maximally stable extremal regions algorithm
SLIC and Otsu’s methods allow us to group the pix-

els of an image according to their intensity level but
do not take into account the distance between pixels.
The Maximally Stable Extremal Regions Algorithm
(MSER) algorithm [40] includes this information in the
segmentation procedure thus, areas of the image whose
pixels have similar intensity levels but are not connected
(are separated by pixels with different intensity levels)
are considered different regions.

The algorithm was designed to address the stereo
problem in image analysis, i.e. the problem of estab-
lishing the correspondence between several images of
the same scene taken from different viewpoints, but it
can be used for other image analyses as tracking color
objects [43] or detecting regions based on color [44].

The general idea of MSER can be explained as fol-
lows: Let us imagine a grayscale image as a 3D struc-
ture in which each point has a height corresponding
to its intensity level. If we drop a fluid on a point, it
will spread out, occupying a wider and wider area with
the points (pixels) that have less height (intensity). If
this process is done simultaneously at different points,
regions will appear and as the fluid level rises, they
will be connected to each other. The process ends when
the stability criterion is reached, which is continuously
checked as the fluid falls.

2.5. Gaussian mixture models

Gaussian mixture models (GMMs) are probabilistic
models that allow the identification of subpopulations
within the same heterogeneous population [45]. They
use the density estimation of the data set to define sub-
sets and thus delimit several groups. GMM algorithms
suppose that the data, x = x1, x2, . . . , xN are sam-
ples drawn from a probability distribution p(x) that is

modeled by a sum of k Gaussians:

p(x) =

k∑
i=1

ωifi(x|µi,Σi) (2)

where ωi, µi and Σi are respectively the weight (within
the mixture), mean and standard deviation of each of k
Gaussians. Therefore, by finding these parameters we
can model each of the underlying groups of our data.

GMM parameters can be accurately estimated using
an iterative Expectation-Maximization (EM) approach.
This algorithm starts by initializing the ωi, µi and Σi

with the values provided by a k-means algorithm and
proceeds by iteratively applying two steps:

– For each of the samples in our data set, the poste-
rior probability of belonging to each component
(Gaussian) is calculated.

– Using the maximum likelihood, component means,
covariance matrices, and mixing ratios are com-
puted. Posterior probabilities of component mem-
bership calculated in the previous step are used as
weights.

2.6. Background on Wiener-Granger causality

Wiener-Granger causality (a.k.a. G-causality) is a sta-
tistical test intended to analyze the relationship between
two time series. Originally introduced by Wiener [46]
and subsequently adapted to the analysis of economic
studies by Granger [47], G-causality allows us to de-
termine weather a time series can be used to forecast
another time series or, more precisely, weather a time
series X , conditional on its own past, also depend on
the past of another time series Y . In such case, it is said
Y G-cause X [37,48].

The conditional dependence of one time series on
another can also be quantified by a statistic, F, which
measures how much better the adjustment (lower error
variance) of the conditional model is compared to the
non-conditional model. Let’s suppose two time series,
X and Y , can be described as follows:

X(t) =

p∑
k=1

A11,kX(t− k) +

p∑
k=1

A12,kY (t− k) + εX(t) (3)

Y (t) =

p∑
k=1

A21,kX(t− k) +

p∑
k=1

A22,kY (t− k) + εY (t) (4)
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Fig. 6. Top row: Reference images obtained by computing respectively the minimum, mean and maximum (pixel wise) of 1440 thermal images
captured along 24 hours at a rate of 1 per minute. Bottom row: Histogram of images in the top row.

where Aij,k are the regression coefficients, p is the
model order (maximum number of previous observa-
tions, which implies p < T ) and εX and εY are the
prediction errors. The dependence of X on Y can be
expressed as:

FY→X = ln
ΣX

ΣY→X
(5)

where ΣY→X is the residual covariance matrix defined
as:

ΣY→X = Cov(εX) (6)

and ΣX is the residual covariance matrix for the as-
sumption that X does not depend on the past of Y . It
can be derived from Eq. (3) omitting the A12,k coeffi-
cients.

3. Experiments and results

The proposed thermal imaging-based monitoring sys-
tem was installed at 14 transformer stations of the Span-
ish power grid. They were configured to capture ther-
mal data at a rate of one image per minute and data was
stored and processed on a remote server as described
in Sections 2.2 and 2.3. All equipment was configured
in our laboratory prior to installation in the transformer
centers. This configuration included the calibration of

the thermal cameras, which was carried out by setting
the factory calibration through the library provided by
the manufacturer to configure and control the device.
In our case, this factory calibration was adequate since
we did not focus on absolute temperature values, but
on temperature changes. Beside calibration, some envi-
ronmental factors, as camera positioning, can affect the
temperature measurements. This influence is small (less
than 1% at distances between 0.5 and 2.5 meters) for the
camera model used, however, in order to avoid differ-
ences between the operating temperatures assumed to
be normal from one transformer substation to another,
all the cameras were installed at a distance of approxi-
mately 2 meters from the surface of the transformer.

As mentioned in Section 2.4 the image processing
carried out to extract two temperatures from each ther-
mal image required a previous stage of segmentation of
a reference image representing the temperature profile
of each transformer. In order to build this image, 1440
thermal images taken over 24 consecutive hours were
used, and three aggregation measures (mean, minimum
and maximum) were considered. This way, the image is
independent of the time of day and the whole method is
able to deal with images captured at any time. Figure 6
compares the result of these three options. Note that all
the three have a similar temperature profile and can be
used indifferently for this purpose. For simplicity we
selected the last one, where each pixel was calculated
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Fig. 7. Variation of the average temperature measured from thermal images throughout the day.

Fig. 8. Segmentation procedure based on SLIC superpixel, Otsu’s and MSER methods

as the maximum number of pixels in the same position
in all images.

Two segmentation approaches were evaluated. The
first one, based on Otsu’s method for thresholds selec-
tion, carried out the segmentation into three step:

– First, the image was downsampled using the SLIC
superpixel method proposed by Achanta et al. [38].
The parameter k was set to 500.

– Then, the resulted image was requantized using
several thresholds (multiclass version) computed
according to [39].
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Fig. 9. Intensity profile of the reference image computed as the maxi-
mum.

– Finally, spatially separated regions of equal in-
tensity are considered independently by apply-
ing the Maximally Stable Extremal Regions algo-
rithm [40].

The intermediate results of these steps are shown in
Fig. 8. Note how, after the last step (MSER applica-
tion), four clearly differentiated regions appear. The
two with the highest average intensity correspond to
the transformer and were used to select the transformer
pixels while the one with the lowest average intensity
corresponds to the protective fence used to estimate the
room temperature.

The second segmentation approach proposed in this
work modeled the reference image with a mixture of
Gaussians and then identified each region with a Gaus-
sian. After obtaining the Gaussian mixture parameters
(see Eq. (2)) using a Expectation-Maximization algo-
rithm, the MSER algorithm was also used to separate
into regions areas of equal intensity located at distant
positions. Given the shape of the intensity profile of the
reference image (see Fig. 9), a model with 3 Gaussians
was used to fit the image. This would ideally associate
one component with pixels of higher intensity (located
on the surface of the power transformer), another with
pixels of lower intensity (representing the protection
fence) and a third component with the rest of the pixels
having an intermediate temperature. In practice, some
pixels with a temperature similar to that of the protec-
tion fence were associated with the same component as
the fence, as shown in Fig. 10. In order to isolate the
pixels of the fence, we applied the MSER algorithm
as in the alternative approach based on SLIC super-
pixels and Otsu’s methods. In our experiments, both

Fig. 10. Result of segmenting the reference image computed as the
maximum using a GMM model with 3 Gaussians.

approaches for image segmentation produced almost
identical time series of temperatures.

The evaluation of these systems was carried out by
comparing the temperatures obtained by them with
those obtained by the more standard approach, based
on sensors. Figure 11 shows a comparison between the
temperatures registered by the proposed system and
those obtained by sensors. Note that, despite the offset
probably due to differences between the calibration of
the sensors and the thermal cameras, there is an almost
perfect correlation between the temperatures recorded
by the two systems. This correlation can be easily seen
if we remove the offset, as is done in Fig. 12, where
the temperature obtained from the thermal camera was
shifted so that it has the same mean as the temperature
obtained from sensors.

In order to further investigate the relationship be-
tween the temperatures obtained by the standard and the
proposed monitoring systems, and even the relationship
between temperatures and other operating variables, we
performed an additional analysis based on G-causality.
The results are shown in Figs 13 and 14. The former
figure represents the F statistic for some variables of
interest, including temperatures computed using the
standard and proposed monitoring systems. It was com-
puted using the expression (5). Figure 14 shows a cir-
cular graph with stronger connections among the same
variables.

4. Discussion

Temperature control plays a fundamental role in the
ability of electrical power transformers to operate fault-
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Fig. 11. Comparison of transformer and room temperatures obtained by the proposed system and those obtained by sensor based approach.

Fig. 12. Transformer temperature obtained by the proposed system based on thermal cameras (red) and by sensors (blue). The former temperature
has been shifted so that both have the same mean and in order to the correlation between them can be easily appreciated.

lessly [49]. Room and transformer temperatures are
variables of great relevance in the analysis of trans-
former operation and has a clear relationship with other
electrical variables. In [37], a methodology based on
Granger causality is used to study the ability of some
electrical variables to predict others. The results show
that there is a clear relationship between the transformer
temperature and other relevant variables such as cur-
rent, active power, reactive power and voltage. The last
experiment carried out in this work has shown that
this relationship between the temperatures obtained by
the proposed system and other electrical variables is
also present. The relationship between transformer tem-
perature and active power has also been corroborated
in [50], which shows that it is possible to predict the
transformer temperature in the near future from the ac-
tive power of the three transformer lines together with
the ambient temperature using long short-term memory
(LSTM) networks. A similar approach was also demon-
strated in [28]. In this case, a non-linear autoregressive
neural network with exogenous inputs (NARX) was
used to predict the temperature of the transformer as

a function of past values of outputs and exogenous in-
puts. This scenario is also supported by the result of
the analysis based on G-causality carried out in this
work (figures 13 and 14). This analysis, similar to the
one carried out in [37], but including the temperatures
obtained by the thermal imaging-based system, meets
two objectives: i) to confirm the dependence of some
electrical variables on temperature and ii) to corrobo-
rate the relationship between the temperatures obtained
by the proposed system and the sensor-based system.

The experiments carried out demonstrate that it is
possible to obtain reliable information on the operating
temperature of an electrical power transformer using a
system based on thermal imaging. It could improve the
temperature monitoring of electrical power transform-
ers and, that way, reduce the probability of errors that
affect the quality of the power supply and shorten the
transformer lifetime.

After data acquisition, thermal images were ana-
lyzed in order to extract room and transformer tempera-
tures. This analysis included the image segmentation by
means for classical algorithms, however the use of these
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Fig. 13. F matrix based on conditional G-causality (see Eq. (5)) and containing a measure of the dependence of some electrical variables on others.

Fig. 14. Circular graph with the stronger relations between electrical
variables.

algorithms is not strictly necessarily. Given the fixed
position of the thermal cameras and the limited number
of locations where they have been installed, a manual
segmentation would have been feasible. However, the
automation of this task has the advantage of facilitating
the extension of the proposed monitoring system to the
entire power grid (manual segmentation can be tedious

and time-consuming). In addition, it has all the advan-
tages of eliminating the human factor, as subjectivity
and error-proneness [51,52]. In this work two proposals
based on classical methods for automatic segmentation
of the thermal images have been presented. Both pro-
vided a correct separation of the regions that allow us to
calculate the transformer and room temperatures. Thus,
there was no reason to opt for a manual segmentation.

Figures 11 and 12 show that the thermal camera-
based system provides accurate temperatures, similar
to the those obtained by the standard sensor-based sys-
tem. A close examination of the figures shows, how-
ever, that there are some small differences, beyond the
offset (possibly due to calibration differences). On the
one hand, the data from the sensors have lower tem-
poral resolution, which is closely related to sampling
frequency of each system. Moreover, temperature peaks
are slightly higher in sensor data probably due to sensor
inertia. Larger differences at specific instants may be
due to inhomogeneous heat distribution that causes heat
to be detected earlier by one system than by another.
On the other hand, differences in room temperature are
more noticeable. These are due to the malfunctioning
of the room temperature sensors, which were blocked
for hours at a time. In any case, the proposed thermal
imaging-based approach provides some interesting ad-
vantages:
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– It has been set up as an external system that is not
coupled to the transformer, i.e. there is no physical
contact between the devices of both systems and
no data transfer through the electrical network,
which guarantees that errors in the transformer
will not affect the monitoring system.

– Furthermore, the proposed approach is easily scal-
able to obtain a higher temperature granularity,
i.e. to obtain not only the room and transformer
temperatures but also those of other elements such
as the connection terminals or the input and output
lines. This would only require changing the image
processing and eventually the camera orientation,
but no hardware changes (additional cameras, etc.)
would be necessary.

– Finally, the proposed system based on thermal
imaging can also serve as a security system since
it allows monitoring the transformer environment.
Thus, for example, it would be possible to detect
temperature changes in devices close to the trans-
former but external to it, which could end up af-
fecting the transformer’s operation. Furthermore,
it would be possible to detect the presence of per-
sons attempting to tamper with the transformer.

The comparison between the temperatures obtained
by sensors and those obtained by the proposed system
(Figs 11 and 12) also shows the differences between the
sampling frequencies of each system, which is much
higher in the case of the thermal imaging-based system.
This difference may lead to lower reaction times of one
system versus the other, however, it is important to note
that it is not so much due to the technology itself, but
rather, to the configuration of the system. The reaction
time of the system to a failure resulting in overheating
also depends on the element in which the failure occurs.
Thus, an increase in temperature of an element that is
not visible from the position of the thermal camera will
not be detected by the camera-based system until the
heat has been transferred to the air or other elements that
can be captured by the camera. Similarly, a temperature
sensor immersed in the oil will not be able to detect a
temperature rise in the windings until that temperature
rise has caused a temperature rise in the oil as well.
For this reason, the safest and most reliable monitoring
strategy would be one that includes sensors of different
types, including thermal cameras.

Regardless of the system used for data acquisition,
data must be permanently stored in a database that al-
lows later analyses [24]. Ideally this permanent storage
is carried out externally to the transformer, i.e. in lo-
cations other than the transformer whose operation is

being monitored. A communication system is therefore
required between the acquisition equipment and the
servers external to the transformer. Possibly, the most
direct application is to use the power grid itself to trans-
mit the monitoring data, but this makes the monitoring
system vulnerable to failures in the distribution net-
work and its implementation entails substantial costs.
In order for the monitoring system to be completely
autonomous from the power grid, it is necessary that
the data transmission is carried out independently from
the grid. However, implementing an independent data
network from scratch (whether wired or wireless), in-
volves high costs. In the proposed approach, a commer-
cial mobile phone network was used for this purpose.
This allows significantly lower implementation costs by
using already deployed infrastructure, while allowing
data transmission to be carried out independently of
the power grid. A similar approach was previously de-
scribed in [53]. Unlike the approach proposed by Jalil-
ian et al. the communication system proposed in this
paper is unidirectional. The transmission is made only
from the equipment installed next to the transformer to
the external database. This facilitates the system to have
a certain resilience since synchronous communication
is not required and in case of connection error the data
are temporarily stored in a buffer memory to be sent
later in a new connection attempt.

The main limitations of this work can be divided
into two aspects. On the one hand, the proposed system
suffers from the limitations implicit in the collection
equipment used, i.e., thermal cameras. Therefore, it is
not possible to directly obtain other variables of inter-
est, such as input or output line currents or voltages. Al-
though, as mentioned above, it is theoretically possible
to estimate these variables from the temperatures, this
estimation would not be free of error and would pos-
sibly not be as accurate as the direct measurement by
means of specific devices. In addition, thermal camera
are substantially more expensive than the sensors used
in the standard approach. However, despite the high
value of the thermal cameras, their price is insignificant
compared to that of the monitored equipment. More-
over, a malfunction of the equipment can result in in-
calculable damage (from hundreds of citizens deprived
of a basic good such as electricity to a fire in an urban
area with unpredictable consequences), which justifies
any investment in the prevention of these events.

On the other hand, the use of commercial mobile net-
works for data transmission between the AE equipment
and the SPS can be a concern when installing the moni-
toring system in power transformers placed in locations
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where there is little or no mobile network coverage.
This can be stated at least for the climatic conditions
of the locations in which our experiments were carried
out, i.e., average temperatures between 9 (night) and
30 (day) degrees Celsius, as is typical in autumn on the
southern coast of Spain. Although additional experi-
ments in other regions with different climates would
be desirable, the results shown can be, in our opinion,
reliably extrapolated to other regions with similar or
colder climates.

5. Conclusions

In this work we have described a system for monitor-
ing electrical power transformers using thermal cam-
eras. The proposed system allows the monitoring of
transformer temperatures, which are critical variables
to anticipate potential failures in the system operation.
Using thermal cameras, we collected information on
the temperature of the transformer and its surroundings
at a rate of 1 image per minute. Subsequently, by ap-
propriate thermal image processing, we obtained two
temperature values from each image, representing the
room and transformer temperature, and resulting in two
temperature time series (after processing of a series of
images).

This approach has been implemented and evaluated
in 14 transformer stations belonging to the Spanish
electricity system. The experiments carried out showed
that the temperatures obtained by the proposed system
are as good as those obtained by widely used sensor-
based systems. In addition, the system based on thermal
imaging provides some advantages such as greater reli-
ability as it is a system totally independent of the trans-
formation system and therefore not affected by the pos-
sible errors of the latter, as well as certain surveillance
capabilities.

As future work, we plan to develop time series analy-
sis methods to predict possible anomalies in transformer
operation from the registered temperature series.
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