
Granger Causality-based Information Fusion Applied to
Electrical Measurements from Power Transformers
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Abstract

In the immediate future, with the increasing presence of electrical vehicles and

the large increase in the use of renewable energies, it will be crucial that distri-

bution power networks are managed, supervised and exploited in a similar way

as the transmission power systems were in previous decades. To achieve this,

the underlying infrastructure requires automated monitoring and digitization,

including smart-meters, wide-band communication systems, electronic device

based-local controllers, and the Internet of Things. All of these technologies de-

mand a huge amount of data to be curated, processed, interpreted and fused with

the aim of real-time predictive control and supervision of medium/low voltage

transformer substations. Wiener-Granger causality, a statistical notion of causal

inference based on Information Fusion could help in the prediction of electrical

behaviour arising from common causal dependencies. Originally developed in

econometrics, it has successfully been applied to several fields of research such

as the neurosciences and is applicable to time series data whereby cause pre-
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cedes effect. In this paper, we demonstrate the potential of this methodology in

the context of power measures for providing theoretical models of low/medium

power transformers. Up to our knowledge, the proposed method in this con-

text is the first attempt to build a data-driven power system model based on

G-causality. In particular, we analysed directed functional connectivity of elec-

trical measures providing a statistical description of observed responses, and

identified the causal structure within data in an exploratory analysis. Pair-wise

conditional G-causality of power transformers, their independent evolution in

time, and the joint evolution in time and frequency are discussed and analysed

in the experimental section.

Keywords: Granger causality, power transformers, functional connectivity,

SCADA measurements, time series analysis

1. Introduction

Contemporary medium and low voltage distribution networks are exploited

under the assumption that they are designed to handle any kind of peak de-

mand, avoiding rising network congestion, unacceptable voltage levels, or the

influence of disruptive developments such as the introduction of the electrical5

vehicle, self-producers or powerwall systems. In order to accomplish an efficient

predictive control of involved the electrical assets, the distribution systems have

to incorporate much more intelligence than before, involving a whole spectrum

of digital technologies: sensorization, smart meters, broadband communications,

local electronic device controllers, IoT (Internet of Things), SCADAs (Supervi-10

sion, Control and Acquisition of Data), energy management centers, advanced

data processing software (data analytics), optimal control, intelligent reporting,

and so on. The possibility to correlate and fuse information from electrical,

image and other kind of data sources, such as the dissolved gas concentrations

in transformer oil, with several simultaneous measurements, could be useful to15

distinguish the root cause of failures [1]. This is actually the main goal of the

Monica and Pastora projects [2] which are being developed by ENEL and other
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international companies, and aim to accurately determine the actual situation of

low and medium-voltage distribution grids in real-time, preventing and resolv-

ing network failures, by fusing information from several SCADA measurements.20

The operating conditions of a power system, i.e. a power transformer (PT), at

a given point in time can be determined if the network model and complex pha-

sor voltages are known [3]. The power system may be operating in one of three

possible states; that is, normal, emergency and restorative, as the operating

conditions evolve in time. Corrective control measures based on state estima-25

tors [4, 5] or pattern recognition [1, 6, 7, 8] are continuously monitoring power

systems through measurements acquired by the SCADA systems, maintaining

the operating conditions in a nominal and secure state.

On the other hand, Wiener-Granger causality (G-causality) [9, 10, 11] is

a statistical fusion information method with the aim of analyzing the flow of30

information between time series [12, 13, 14]. Originally conceptualized in [15]

and firstly analysed, in terms of autoregressive (AR) modelling of stochastic

processes, in [9], this popular method is based on the principles that (i) a cause

occurs before its effect and (ii) knowledge of a cause improves prediction of its

effect [12]. In a nutshell, a variable X is said to G-cause a variable Y if the35

past of X fused with the one of Y helps predict the future of Y more accurately

than only using the past of Y. Moreover, G-causality aims to quantify directed

functional connectivity by means of a statistical description of fused observed

responses. On the contrary, methods for identifying effective connectivity aim to

highlight “the simplest possible circuit diagram explaining observed responses”40

as shown in [16, 17, 18].

Time series forecasting assumes the use of an accurate model of systems,

in this case power transformers, to predict future values of the signals based

on previously observed values and/or other exogenous time series, which are

incorporated to the main signal by combining them via early, intermediate or45

late fusion [26]. In this paper, we propose to our knowledge, the first supervi-

sory data-driven system based on G-causality for early information fusion. The

proposed method is able to monitor and predict the status of the power trans-
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former by evaluating linear AR models of stochastic processes which identify

directed functional connectivity; that is, a statistical relationship among ob-50

served variables that reflects (but not unambiguously) the underlying physical

mechanisms of complex systems. In attempting to provide the determination

of vector AutoRegressive (VAR) models for power transformers, we sought to

address the following questions: (1) How effective is a G-causality paradigm at

modelling SCADA measurements? (2) Which mechanisms or connections be-55

tween variables do VAR models focus on during the normal states of a power

transformer? (3) How does the VAR model evolve over a long time period; for

example, one year? (4) Can the VAR model effectively describe the general sta-

tus of a power transformer beyond the particularities in the operational mode as

a part of a complete power system (transmission, sub-transmission, distribution60

and generation systems)?

2. Background on G-causality

Given two jointly distributed vector-valued stochastic processes X = [X1, X2, . . .];

Y = [Y1, Y2, . . .], Y is said to G-cause X if and only if X, conditional on its own

past, is dependent of the past of Y; in other words, the past values of Y yield65

information about the current value of X beyond information already contained

in its own past. This is the notion of “causality” that is used throughout this

paper and in many others [23], the Wiener-Granger sense, and is not necessarily

linked with other causal notions, such as the ones described in [19, 16, 20, 21, 22].

2.1. Multivariate VAR model70

Given a realisation u of length m of a discrete-time stationary vector stochas-

tic process U1,U2, . . ., where ut is a time-dependent n-dimensional vector with

components u1t, u2t, . . . , unt, a p-th order VAR model for the process can be

defined as:

Ut =

p∑
k=1

AkUt−k + εt (1)
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The n × n real-valued matrices Ak are the regression coefficients, and the iid75

n-dimensional stochastic process εt the error terms. The model parameters, i.e.

the coefficients Ak and the n × n error covariance matrix Σ = Cov(εt), are

assumed to be time-independent (stationarity). Once the predictive model in

equation 1 is fitted to data (realizations) by the estimation of the regression

parameters, the value of the process at time t can be computed based on the80

past values up to the lag t − p. These regression coefficients, that are usually

considered the predictable structure of the data whilst the error terms form the

unpredictable structure[23], are determined via the Yule-Walker equations on

the autocovariance sequence.

2.2. Un/conditional G-causality in the time domain85

Based on the VAR model described in the previous section, the time-domain

unconditional G-causality is illustrated as follows: Given two jointly-distributed

multivariate processes U1,t,U2,t, the G-causality from U1,t to U2,t, written

FU2,t→U1,t
, is defined by quantifying the improvement in the prediction of

U1,t when the past of U2,t is included by early information fusion in the VAR90

model, over and above the restricted model including only its own past. This

definition of causality is concerned with the comparison of different linear re-

gression models of data [24], that is, the (restricted) VAR (p) model shown in

equation 1 evaluated on the process U1,t with the following fused or extended

model:95

U1,t =

p∑
k=1

A′1,kU1,t−k +

p∑
k=1

A′21,kU2,t−k + ε′1,t (2)

with the residuals covariance matrix defined as:

Σ(ε′1,t) ≡ Cov
(
ε′1,t

)
(3)

where the dependence of U1,t on the past of U2,t, given its own past, is estab-

lished in the coefficients A21,k. If there is no conditional dependence of U1,t

on the past of U2,t then A21,k = 0 for k = 1, . . . , p. To measure the degree

to which the regression in equation 2 yields a better model than the restricted100

regression in equation 1, we make use of the Maximum likelihood (ML) theory
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[25] for the analysis of parametric data modelling. In particular, a test statistic

for the null hypothesis of no conditional dependence U1,t on the past of U2,t

based on the logarithmic likelihood ratio test (LRT) is proposed as:

FU2,t→U1,t
≡ ln

|Σ1|
|Σ′1|

(4)

where Σ1 and Σ′1 are the residual covariance matrices of the VAR models in105

equations 1 and 2, respectively.

The aforementioned unconditional G-causality statistic is limited in the de-

scription of statistical dependencies in the following sense: if there are joint

dependencies between U1,t and U2,t and a third set of variables, i.e. {Ud,t} for

d = 3, . . . , D, then spurious causalities may be reported [23]. Fortunately, they110

may be eliminated by “conditioning out’ the common dependencies available in

the data. In this case, the null hypothesis to be tested by the LRT is still the one

previously defined and the causality U2,t → U1,t conditioned on {Ud,t}, which

we write FU2,t→U1,t|Ud,t
, is again as in equation 4, but with the inclusion of

{Ud,t} in both regressions (restricted and fused regressions), accounting for its115

joint effect; that is, we redefine:

Û1,t =

 U1,t

{Ud,t}

 (5)

2.3. G-causality in the frequency domain

The spectral decomposition of G-causality is a powerful tool that provides

additional information in the frequency domain [10]. Via the Yule-Walker equa-

tions and using the definition of the cross-power spectral density (cpsd) of the120

two-jointly distributed multivariate processes U1,t,U2,t, we define the (uncon-

ditional) spectral G-causality as:

fU2,t→U1,t
≡ ln

|S1(w)|
|S1(w)−H21(w)Σ2H

∗
21(w)|

(6)

where S1(w) ←→ Cov(U1,t,U1,t−k) is the cpsd of U1,t; that is, the Fourier

transform of the n×nmatrix covariance sequence, H21(w) =
(
I−

∑p
k=1 A21e

−jkw)−1
and Σ2 = Cov(ε2,t). Again we evaluated, but in the frequency domain, the “best125

model” between the restricted and the fused VAR (p) regressions.
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3. Materials and preprocessing for WSS processes

The database used in this paper was acquired during 2018 during the ex-

ecution of the above mentioned projects [2] which were developed by ENEL

(Endesa) and collaborators. The set consisted of electrical variables measured130

from a collection of 17 power transformers, a total of 42 variables were recorded

mainly at a sample rate of 12 samples/hour for the whole calendar year of 2018.

Subsequently, the data was resynchronized at this sample rate by linear inter-

polation. Most of these signals include the ’Phase Imbalance’, ’Active Energy

Exported’, ’Active Energy Imported’, ’Capacitive Reactive Energy Exported’,135

’Capacitive Reactive Energy Imported’, ’Inductive Reactive Energy Exported’,

’Inductive Reactive Energy Imported’, ’Intensity R’, ’Intensity S’, ’Intensity T’

2, ’Active Power R’, ’Active Power S’, ’Active Power T’, ’Active Power’, ’Reac-

tive Power R’, ’Reactive Power S’, ’Reactive Power T’, ’Reactive Power’, ’Room

Temperature’, ’Transformer Temperature’, ’Tension R’, ’Tension S’, and ’Ten-140

sion T’ that were used to monitor the operation of the power transformer, as

well as fault diagnosis and rapid intervention. The temperature of the insu-

lating oil in the power transformer is referred to Temperature (T) (an indirect

measure of the PT temperature) and is one of principal electrical variables to

be monitored and controlled in order to prevent system failure within this time145

series prediction problem.

3.1. Preprocessing

The crucial condition for a consistent G-causality analysis is that all the vari-

ables must be covariance stationary (CS, or wide-sense stationarity). Thus, all

the preprocessing was devoted to obtaining time-independent first and second150

statistical moments (mean and variance) of each variable. Multivariate VAR

(MVAR) models would be invalid and may contain so-called “spurious regres-

sion” results [23]. Good practice when attempting to achieve this assumption is

to apply one or more of the following preprocessing steps [27]: (i) linear detrend,

2R,S,T stands for the three current phases
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Figure 1: The effect of preprocessing applied to the set of raw variables in seeking to obtain

covariance stationary processes (wide sense stationary). Observe the effect of differencing the

raw signal (second column), i.e. the constant variable (third row on the left) is not considered

in the following analyses.

(ii) removal of temporal mean and division by temporal standard deviation, (iii)155

for multi-trial data, removal of ensemble mean and division by ensemble stan-

dard deviation, and (iv) differencing and/or windowing as necessary to achieve

CS. In particular, the variables analysed in this scenario required the applica-

tion of i), z-zcore computation for artefact rejection (replacing outliers by the

ensemble mean), null or negligible variables/trials removal after differencing and160

the application of iv) by the definition of a number of observation of 500 per

trial and at least 40 trials at each analysed period (up to 4 segments in the

whole yearly time period, see figure 1). To achieve such data collection and

the following ensemble comparisons, we selected only the variables that were

jointly available in all the power transformers (see figure 2). This led us to165

discard several variables from collections and a complete set of measures (power

transformer #8) where only three variables fulfilled the above mentioned CS

preconditions.
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Figure 2: Variable selection process applied to the set of PTs. The variables displayed in

black were discarded for the subsequent G-casuality based analysis.

4. Experimental Analysis

We carried out a complete set of experiments based on multiple equiva-170

lent representations of a VAR model (regression parameters, autocovariance

sequence, cpsd, etc. of underlying processes) for computing multivariate G-

causality from time series data in the time and frequency domains. We em-

ployed a modified version of the MVGC Matlab toolbox [23] which was mainly

designed with application to empirical neuroscience data, although G-causal in-175

ference is a statistical framework which has been productively applied in many

areas when the assumptions underpinning the method are satisfied.

First, we needed to determine the number of lags to be included in the

estimation of multivariate VAR models, i.e. the model order. To this purpose, a

criterion that balances the variance accounted by the model against the number180

of coefficients to be estimated may be selected based on the Akaike information

criterion (AIC )or the Bayesian information criterion (BIC). Usually, a selection

of a small p value produces a poor representation of the data, whereas a large

p value can lead to problems of model estimation. By computing both criteria,

9



0 2 4 6 8 10 12 14 16 18 20

Model Order

-3

-2

-1

0

1

2

3

4

5

6

A
k
a
ik

e
 I
C

10
5

0 2 4 6 8 10 12 14 16 18 20

Model Order

-3

-2

-1

0

1

2

3

4

5

6

B
a
y
e
s
ia

n
 I
C

10
5

PT: 1 per: 1

PT: 1 per: 2

PT: 1 per: 3

PT: 1 per: 4

PT: 1 per: 5

PT: 2 per: 1

PT: 3 per: 1

PT: 3 per: 2

PT: 3 per: 3

PT: 3 per: 4

PT: 3 per: 5

PT: 4 per: 1

PT: 4 per: 2

PT: 5 per: 1

PT: 6 per: 1

PT: 6 per: 2

PT: 6 per: 3

PT: 6 per: 4

PT: 7 per: 1

PT: 7 per: 2

PT: 7 per: 3

PT: 7 per: 4

PT: 9 per: 1

PT: 9 per: 2

PT: 9 per: 3

PT: 9 per: 4

PT: 9 per: 5

PT: 10 per: 1

PT: 10 per: 2

PT: 10 per: 3

PT: 10 per: 4

PT: 11 per: 1

PT: 11 per: 2

PT: 11 per: 3

PT: 12 per: 1

PT: 12 per: 2

PT: 13 per: 1

PT: 14 per: 1

PT: 14 per: 2

PT: 15 per: 1

PT: 15 per: 2

PT: 15 per: 3

PT: 15 per: 4

PT: 16 per: 1

PT: 16 per: 2

PT: 16 per: 3

PT: 16 per: 4

averaged IC

Figure 3: On the left, the AIC criterion vs model order for the complete set (50) of PTs and

operation periods. On the right the BIC criterion. Note in black solid lines the mean value

of both criteria.

we surprisingly found (see figures 3 and 4 that all the PTs (from 1 to 17) are185

modelled by almost the same number of lags (around 10 for AIC and 6 for BIC)

during different periods (per) and operating with different conditions. To be

conservative, we selected the first criterion for the rest of experiments.

4.1. How effective is a G-causality paradigm at modelling SCADA measure-

ments?190

The promising behaviour observed in the determination of the model order

is not enough to state that the G-causality framework is an effective tool for

PT time series modelling, although it could be considered as a good starting

point. Given a model order, first we need to estimate the corresponding VAR

model parameters, i.e. Σ and Ak in equation 1, for the previously selected195

model order. By fitting them using the standard OLS method, we calculated

the VAR parameters from the autocovariance sequence for both, the full and the

reduced regressions, in equation 2, and finally, checked the resulting causalities

for significance at a given level (α = 0.05) in equation 4, using Geweke’s χ2 test
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Figure 4: Comparison of the AIC and BIC versus model order for the determination of the

model order using the PT #1.

[11] and a multiple hypothesis test correction based on the false discovery rate200

[30]. As an example, in figure 5 we show the error sequence, εt, obtained from

the fitted parameters for the analysed variables in PT #1, and the resulting

tests for significance. All the simulations showed a VAR spectral radius less

than 1 (stability), positive-definite residuals covariance matrices, and a set of

significant strongly connected variables which were found in almost all the PTs.205

After the computation of LRTs in time and frequency domains in equations 4

and 6 we statistically inferred properties of the underlying populations by the

standard large-sample theory [28]. In particular we applied the F-test for small

populations to establish the statistical significance of the estimated causality

against the null hypothesis (no causality). Finally, under limited samples sizes210

the theoretical asymptotic distributions may not be sufficiently accurate, thus

a non-parametric empirical based approach, such as the non-parametric boot-

strap [29] was tested. In figure 6 we show all the aforementioned analyses that

established the statistical significance of the results at a given critical value

(α = 0.05).215
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Figure 5: MSE sequence computed from the set of trials and a sample sequence within the

ensemble using the PT #1. Only the variables included in the strongest connections are

shown.

Figure 6: Statistical inference of the conditional G-causality. We show the F matrix for

relevant variables, the circular graph for strongest connections and two methods for assessing

the significance of the results at a critical significant value equal to α = 0.05.
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4.2. Which mechanisms or connections between variables do VAR models focus

on?

In addition to the individual assessment of the PTs, we analysed the ensem-

ble connectivity maps to highlight which connections were common in separate

analyses (throughout 51 periods). Then, we computed the cumulative condi-220

tional pair-wise G causalities and generated the circular graphs accordingly. In

addition, we calculated the occurrences (on the left) of the corresponding (weak

or strong) connections and represented the 5 strongest ones (on the right) by

evaluating the connection matrices F in figure 7. As shown in the latter figure,

there are persistent weak connections which are removed from the cumulative225

matrix in the circular graph due to the presence of stronger mechanisms, which

suggests the possibility of improving the prediction of some variables by in-

cluding exogenous information, i.e. Intensity S could help in the prediction of

Temperature (T)3, crucial for detecting PT failures, or the Phase Imbalance

(an important variable to be assessed for preventing costumer complaints) is230

G-caused by Reactive Power R and Active Power T 4. More important, we find

other significant weak connections (in comparison with the aforementioned triv-

ial ones), beyond the theoretical thermal and electrical model of the PT, that

arise from the same analysis as shown in the circular graphs at the bottom of the

same figure. Therefore, this empirical technique revealed the presence of mu-235

tual co-occurrences from individual analyses and partially answers the questions

raised in the introduction section about the effectiveness of the VAR model to

describe the general status of a PT, beyond its instantaneous behaviour. How-

ever, this exploratory procedure could be biased due to the presence of noise

depending on the particularities of operation in each PT, therefore an ensemble240

analysis was also mandated to highlight which generative mechanisms, extracted

from stationary and conditional analyses were producing the observed data.

3Indeed, the current explains the PT temperature except for a particular lag that depends

on the thermal inertia of the PT
4Indeed, phase imbalance is obtained from the analysed power labels R, S, T
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Figure 7: Cumulative conditional G causality matrix with connectivity graphs for all the PTs.

We show the number of occurrences in the matrix on the left and the connectivity graph on

the right. Observe how, for relevant variables, non-persistent connections such as Intensity

S → Temperature T provide the strongest connections in the connectivity matrix. At the

bottom, all the connections extracted from the GC-analysis.
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4.3. The evolution of the PT VAR model in time

The main goal of any control operator is to monitor the operation of the

PT system in its normal secure state, as the operating conditions change during245

daily operation [3]. G-causality allows us to manage the PT by the identification

of its operating conditions in terms of the statistically-significant strong con-

nections between relevant variables. Subsequently, necessary preventive actions

could be taken in case the system state is found to be abnormal in the analysed

periods. In figure 8, the evolution of the significant F components is depicted250

for PT #1 during 5 periods in 2018. Again, other individual analyses allows

us to explain the global operation of the set of PTs in terms of G-connectivity,

although it could be slightly biased due to the presence of PT-dependent noise.

The complete PT-wise evolution of the entire dataset is depicted in figure 9 as a

general circular-graph analysis based on G-causality. Despite that with increas-255

ing period number the number of processed variables decreases (see in example

period #5 in the bottom of the figure), the remaining variables effectively model

the casual structure of the underlying mechanisms, as shown in the bottom fig-

ure on the right. This PT-wise analysis in time reveals a set of variables that

G-cause other relevant ones, such as Temperature T or Phase Imbalance. Thus,260

they should be considered for improving time series prediction and control.

4.4. A general status for the PT VAR model

In this section we assume that the variables acquired from different PTs

are drawn from the same unknown distribution, thus modelling the same power

system. In particular, we consider the period #1 of the whole set and preprocess265

the data in the same way as the previous sections to avoid typical problems in

this scenario such as colinearity, non-stationary, and long term memory (non-

vanishing autocorrelation). With all these preprocessing steps in mind and

fulfilling the above mentioned conditions, we may extract from this ensemble

analysis only general features characterising the set of PTs working in different270

operating conditions.
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Figure 8: Temporal evolution of the connectivity matrices in 5 operation periods for PT #1.

We show the F matrix for relevant variables (F-test at α = 0.05), and the 2D-cross correlation

coefficient, showing the strong relation between the analyzed periods.

First, we selected the variables fulfilling the aforementioned conditions in the

period from January to March in 2018. This resulted in 16 variables out of 42

from the set of SCADA measurements. We acquired 500 observations in more

than 600 available trials in that period. Second, following steps of the previous275

section we derived the time-domain pairwise-conditional causalities and checked

the significant test to obtain the results displayed in figure 10. Not surprisingly,

a similar analysis in the frequency domain carried out on the averaged DFT

coefficients (the f frequency matrix) in the range [0, fs/2], where fs = 1/300

Hz provided almost the same connectivity matrix [10] (see middle column in280

figure 10). In the last row on the right, we plot the frequency G-causality for

the two strongest conditional connections, that is, Reactive Power R and Phase

Imbalance, which are found on average in the first period (January-March) of

the whole set of transformers, as a general feature characterizing the operation

conditions for all PTs.285
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Figure 9: Temporal evolution of the connectivity matrices in 5 operation periods. We show

the F matrix for relevant variables (F-test at α = 0.05), and the % of relevant connections

presented in the periods, showing that the casual connections are almost independent of the

analysed periods.
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Figure 10: Pairwise G-causality in time and frequency domains and circular graph of connec-

tivity for period #1. We highlight the strongest connections of the relevant variables derived

from the bottom figure on the left.

4.5. Preliminary results on time series prediction

The proposed methodology monitors and predicts the status of the power

transformer by evaluating linear AR models of stochastic processes. This is au-

tomatically completed by considering the resulting Granger-causality models,

determined off-line, as an early fusion method within time series prediction sys-290

tems, similar to those based on non-linear AR neural networks with exogenous

inputs (NARX) in a closed-loop configuration [32], or the more general Re-

current Neural Networks (RNN) including Long Short-Term Memory LSTM)

Networks [31]. We considered 6 significant variables within the analysed period

for PT#1 (as shown in Figure 5) as inputs to a two-delay element NARX net-295

work consisting of a 10-neuron single MLP-based hidden layer. First, we fitted

the whole system using 18k data samples and cross validation (70% for training,

15% for validation and 15% for testing). Then, the remaining 2k samples in the

selected period were used to check the ability of the closed-loop network config-

uration for forecasting unseen new data; see figure 11. This kind of simulation300
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Figure 11: Closed-Loop performance of a NARX-based forecasting system and comparison

with the same configuration of a NAR network with a single input (Temperature). Note the

improvement of the proposed configuration, in terms of error between target and prediction,

when exogenous times series are selected by the GC model.

provides an effective way of evaluating the relevance of the G-causal notion in

terms of prediction ability, since in a closed-loop configuration the system pre-

dicts the target signal without using its previous values, rather with delayed

exogenous variables in combination with the previous output value. Moreover,

these recurrent architectures allow us to process sequences of inputs at a given305

time, thus making it possible to discover trends towards anomalous temperature

values.

5. Conclusion

Beyond single voltage measurements and isolated case studies for back-office

monitoring and predicting failures of conspicuous components, e.g. bushings in310

PTs [1], we propose a general methodology based on G-causality to explore the

conditional correlations between variables which could be integrated in compre-

hensive monitoring systems. Inspection of the proposed circular graph-based

analyses reveals the generative mechanisms underlying the observed data. The

proposed analysis is two-fold: a static analysis considering the set of PTs and315
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then averaging; and a time-dependent analysis describing the evolution of the

connectivity matrix in time and assessing the ratio of the relevant/processed

variables for all the evaluated periods. All these analyses were conducted under

a strongly-grounded statistical framework to check for significance at a given

level of confidence.320

The big differences found between ensemble and PT-wise analysis invites

us to improve the acquisition process to obtain stable periods including WSS

processes with the same number of variables. Although the results have good

confidence from a statistical point of view, this clearly affects the conclusions

of the present work since there are missing variables in the last acquisition325

periods which could be reporting spurious causalities where there is no direct

causal influence. Moreover, the analysis includes some shifts in the operating

temporal window due to the presence of acquisition errors or almost constant

measurements, which are removed from the analysis at the differencing step, i.e.

x(t) = x(t)− x(t− 1), for obtaining covariance stationary variables.330

Key to the proposed methodology is the use of SCADA measurements, em-

ployed throughout the paper and previously acquired within the Pastora and

Monica projects [2]. This study focused on the modelling of power substations,

including PT and the power elements (i.e. LV circuits) to which they are con-

nected. We analysed up to 42 electrical variables that are claimed to accurately335

model PT operation. These variables were measured at the input and output

of the PT, and it could be argued that other circuit elements should be incor-

porated into the model. However, this is generally not the case in the extant

literature. Recalling that G-causality does not correspond with physical notions

of causality [18], only pair-wise effects between input and output variables were340

considered, whilst controlling for all other variables. Clearly, this is not a novel

concept in signal processing and modelling; indeed, there are several examples

in different research fields where this approach provides additional information

about the underlying processes, including: spectral smoothing, functional inter-

polation, speech synthesis, and information-based approaches. This exploratory345

analysis moves beyond the physical notion of causality determining the opera-
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tion of the PT by examining the forward and backward variables (i.e. prediction

errors) and their G-connections or mechanisms, ensuring that they satisfy the

assumptions underpinning the inference method.

Finally, it is worth mentioning that the connectivity measure in terms of the350

LRTs, as defined herein, may be interpreted as a predictive model. In fact, the

generalised variance of a regression model in equations 4 and 6 may be viewed

as a quantification of the reduction in the prediction error, when the past of

the process U2 is included in the explanatory variables of a VAR model for U1.

Thus, whenever a strong G-causality mechanism is found, a reduction in the355

error of the prediction model is achieved. This could be useful when considering

complex prediction models and the set of variables to be included, as exogeneous

variables, to predict the target or desired signal.

Once these exploratory analyses have been conducted on this moderate-sized

dataset, future investigations will investigate the problem of pattern recognition.360

We will collect larger datasets to avoid the typical limitations of the papers in

this field, that is, the use of insufficient test data in cross-validation experiments

causing over-fitting and worse generalization performance on the holdout sample

set. In this way, we plan to apply this novel methodology to publicly available

datasets to boost the performance of well-known, simple and representative365

statistical learning algorithms [8].
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