93 research outputs found

    Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discriminative models are designed to naturally address classification tasks. However, some applications require the inclusion of grammar rules, and in these cases generative models, such as Hidden Markov Models (HMMs) and Stochastic Grammars, are routinely applied.</p> <p>Results</p> <p>We introduce Grammatical-Restrained Hidden Conditional Random Fields (GRHCRFs) as an extension of Hidden Conditional Random Fields (HCRFs). GRHCRFs while preserving the discriminative character of HCRFs, can assign labels in agreement with the production rules of a defined grammar. The main GRHCRF novelty is the possibility of including in HCRFs prior knowledge of the problem by means of a defined grammar. Our current implementation allows <it>regular grammar </it>rules. We test our GRHCRF on a typical biosequence labeling problem: the prediction of the topology of Prokaryotic outer-membrane proteins.</p> <p>Conclusion</p> <p>We show that in a typical biosequence labeling problem the GRHCRF performs better than CRF models of the same complexity, indicating that GRHCRFs can be useful tools for biosequence analysis applications.</p> <p>Availability</p> <p>GRHCRF software is available under GPLv3 licence at the website</p> <p><url>http://www.biocomp.unibo.it/~savojard/biocrf-0.9.tar.gz.</url></p

    DeepSig: Deep learning improves signal peptide detection in proteins

    Get PDF
    Motivation: The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Results: Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. Availability and implementation: DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website

    Large-scale annotation of proteins with labelling methods

    Get PDF
    We revise a major important problem in bioinformatics: how to annotate protein sequences in the genomic era and all the solutions that have been described by implementing tools based on labelling methods. In this paper we mainly focus on our own work and the theoretical methods that are popular in the field of biosequence analysis in modern molecular biology. We will also review a recent application from our group that largely improves on the topology prediction of disulfide bonds in proteins from Eukaryotic organisms

    ISPRED4: interaction sites PREDiction in protein structures with a refining grammar model

    Get PDF
    The identification of protein-protein interaction (PPI) sites is an important step towards the characterization of protein functional integration in the cell complexity. Experimental methods are costly and time-consuming and computational tools for predicting PPI sites can fill the gaps of PPI present knowledge. We present ISPRED4, an improved structure-based predictor of PPI sites on unbound monomer surfaces. ISPRED4 relies on machine-learning methods and it incorporates features extracted from protein sequence and structure. Cross-validation experiments are carried out on a new dataset that includes 151 high-resolution protein complexes and indicate that ISPRED4 achieves a per-residue Matthew Correlation Coefficient of 0.48 and an overall accuracy of 0.85. Benchmarking results show that ISPRED4 is one of the top-performing PPI site predictors developed so far

    Machine-learning methods for structure prediction of β-barrel membrane proteins

    Get PDF
    Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction

    Computational methods for genome and proteome annotation

    Get PDF
    Il progresso tecnologico nel campo della biologia molecolare, pone la comunità scientifica di fronte all’esigenza di dare un’interpretazione all’enormità di sequenze biologiche che a mano a mano vanno a costituire le banche dati, siano esse proteine o acidi nucleici. In questo contesto la bioinformatica gioca un ruolo di primaria importanza. Un nuovo livello di possibilità conoscitive è stato introdotto con le tecnologie di Next Generation Sequencing (NGS), per mezzo delle quali è possibile ottenere interi genomi o trascrittomi in poco tempo e con bassi costi. Tra le applicazioni del NGS più rilevanti ci sono senza dubbio quelle oncologiche che prevedono la caratterizzazione genomica di tessuti tumorali e lo sviluppo di nuovi approcci diagnostici e terapeutici per il trattamento del cancro. Con l’analisi NGS è possibile individuare il set completo di variazioni che esistono nel genoma tumorale come varianti a singolo nucleotide, riarrangiamenti cromosomici, inserzioni e delezioni. Va però sottolineato che le variazioni trovate nei geni vanno in ultima battuta osservate dal punto di vista degli effetti a livello delle proteine in quanto esse sono le responsabili più dirette dei fenotipi alterati riscontrabili nella cellula tumorale. L’expertise bioinformatica va quindi collocata sia a livello dell’analisi del dato prodotto per mezzo di NGS ma anche nelle fasi successive ove è necessario effettuare l’annotazione dei geni contenuti nel genoma sequenziato e delle relative strutture proteiche che da esso sono espresse, o, come nel caso dello studio mutazionale, la valutazione dell’effetto della variazione genomica. È in questo contesto che si colloca il lavoro presentato: da un lato lo sviluppo di metodologie computazionali per l’annotazione di sequenze proteiche e dall’altro la messa a punto di una pipeline di analisi di dati prodotti con tecnologie NGS in applicazioni oncologiche avente come scopo finale quello della individuazione e caratterizzazione delle mutazioni genetiche tumorali a livello proteico.The technological advancement in the molecular biology field is strongly dependent from the availability of bioinformatics support in order to manage and to interpret the very large amount of biological sequences produced. A new level of knowledge is derivable from the Next Generation Sequencing technology (NGS), that allows to obtain whole genomes and transcriptomes in few days and with low costs. Cancer research is one of the most relevant applications of NGS technology. With the NGS analysis is possible to perform the genomic characterization of tumors highlighting all the detectable mutations such as single nucleotide variants, chromosomal rearrangements, insertions and deletions, in order to develop new diagnostic, prognostic and therapeutic approaches in the cancer treatment. However, the genetic variation found in the samples must be analyzed at protein level since they directly alter the tumor cell phenotype. The bioinformatic expertise is essential to implement the NGS data analysis and also to perform the annotation of the genes emerging from the sequenced genome and of the protein expressed by it. In this work of thesis two computational methods for protein annotation have been developed (prediction of targeting and signal peptides); moreover we will introduce a bioinformatic pipeline to analyze NGS data and to annotate the genetic variants in the cancer genomic research

    Finding functional motifs in protein sequences with deep learning and natural language models

    Get PDF
    Recently, prediction of structural/functional motifs in protein sequences takes advantage of powerful machine learning based approaches. Protein encoding adopts protein language models overpassing standard procedures. Different combinations of machine learning and encoding schemas are available for predicting different structural/functional motifs. Particularly interesting is the adoption of protein language models to encode proteins in addition to evolution information and physicochemical parameters. A thorough analysis of recent predictors developed for annotating transmembrane regions, sorting signals, lipidation and phosphorylation sites allows to investigate the state-of-the-art focusing on the relevance of protein language models for the different tasks. This highlights that more experimental data are necessary to exploit available powerful machine learning methods

    Machine learning tools for protein annotation: the cases of transmembrane β-barrel and myristoylated proteins

    Get PDF
    Biology is now a “Big Data Science” thanks to technological advancements allowing the characterization of the whole macromolecular content of a cell or a collection of cells. This opens interesting perspectives, but only a small portion of this data may be experimentally characterized. From this derives the demand of accurate and efficient computational tools for automatic annotation of biological molecules. This is even more true when dealing with membrane proteins, on which my research project is focused leading to the development of two machine learning-based methods: BetAware-Deep and SVMyr. BetAware-Deep is a tool for the detection and topology prediction of transmembrane beta-barrel proteins found in Gram-negative bacteria. These proteins are involved in many biological processes and primary candidates as drug targets. BetAware-Deep exploits the combination of a deep learning framework (bidirectional long short-term memory) and a probabilistic graphical model (grammatical-restrained hidden conditional random field). Moreover, it introduced a modified formulation of the hydrophobic moment, designed to include the evolutionary information. BetAware-Deep outperformed all the available methods in topology prediction and reported high scores in the detection task. Glycine myristoylation in Eukaryotes is the binding of a myristic acid on an N-terminal glycine. SVMyr is a fast method based on support vector machines designed to predict this modification in dataset of proteomic scale. It uses as input octapeptides and exploits computational scores derived from experimental examples and mean physicochemical features. SVMyr outperformed all the available methods for co-translational myristoylation prediction. In addition, it allows (as a unique feature) the prediction of post-translational myristoylation. Both the tools here described are designed having in mind best practices for the development of machine learning-based tools outlined by the bioinformatics community. Moreover, they are made available via user-friendly web servers. All this make them valuable tools for filling the gap between sequential and annotated data

    A glance into mthfr deficiency at a molecular level

    Get PDF
    MTHFR deficiency still deserves an investigation to associate the phenotype to protein structure variations. To this aim, considering the MTHFR wild type protein structure, with a catalytic and a regulatory domain and taking advantage of state‐of‐the‐art computational tools, we explore the properties of 72 missense variations known to be disease associated. By computing the thermodynamic ΔΔG change according to a consensus method that we recently introduced, we find that 61% of the disease‐related variations destabilize the protein, are present both in the catalytic and regulatory domain and correspond to known biochemical deficiencies. The propensity of solvent accessible residues to be involved in protein‐protein interaction sites indicates that most of the interacting residues are located in the regulatory domain, and that only three of them, located at the interface of the functional protein homodimer, are both disease‐related and destabilizing. Finally, we compute the protein architecture with Hidden Markov Models, one from Pfam for the catalytic domain and the second computed in house for the regulatory domain. We show that patterns of disease‐associated, physicochemical variation types, both in the catalytic and regulatory domains, are unique for the MTHFR deficiency when mapped into the protein architecture

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen
    corecore