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Abstract
Recently, prediction of structural/functional motifs in protein
sequences takes advantage of powerful machine learning
based approaches. Protein encoding adopts protein language
models overpassing standard procedures. Different combina-
tions of machine learning and encoding schemas are available
for predicting different structural/functional motifs. Particularly
interesting is the adoption of protein language models to
encode proteins in addition to evolution information and
physicochemical parameters. A thorough analysis of recent
predictors developed for annotating transmembrane regions,
sorting signals, lipidation and phosphorylation sites allows to
investigate the state-of-the-art focusing on the relevance of
protein language models for the different tasks. This highlights
that more experimental data are necessary to exploit available
powerful machine learning methods.
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Introduction
Protein sequence motifs are patterns of residues with
different structural and/or functional features. They
were recognized with protein multiple sequence/
structural alignment methods as typical conserved
signatures of protein families [1]. The general term
“protein motif” includes different types of signatures
ranging from short motifs (e.g., myristoylation, phos-
phorylation and glycosylation) to others which do not
rely on conserved residues (e.g., transmembrane re-
gions, signal sequences, cell sorting signals). Most of
www.sciencedirect.com
these motifs have been identified experimentally and
have been adopted in the past thirty years or so for
implementing simple statistical and machine learning
based methods, suited for protein sequence analysis.
They have provided practical tools for structurally and/
or functionally annotating entire proteomes [2]. The
increase of data alongside with the advent of deep
learning techniques, and the application of natural

language models to encode proteins (protein language
models, pLMs) promote revisiting and refreshing most
of the available predictors for protein motif recognition
[3,4]. In the following, we will review recent methods
based on deep learning and pLMs, or both, to highlight
the state of the art when addressing the problem of
finding motifs in proteins. The aim is that of stirring
new approaches to find better solutions to old problems
and to highlight those topics where improvement is
still necessary.
Classical and deep machine learning
Historically, inference methods for motif prediction
adopted statistics based on frequentist or Bayesian ap-
proaches or both. Starting from about thirty years ago,
classical machine learning (ML) helped in extracting

general rules of associations among the input (any given
protein sequence) and the output (the residue or
sequence fragment with the functional feature). In this
scenario, data were modeled mainly through supervised
ML procedures which allowed to set the model param-
eters with the goal of inferring the property at hand for
never seen before sequences [5,6]. Importantly, this type
of inference process allows to compute statistical scores
suited to measure the performance of the method [7].
The relevance of the training set
With the advent of next generation sequencing ma-
chines in molecular biology, data bases of genes and
proteins started increasing at an unprecedented rate.
Concomitantly more ML tools have been developed in
order to speed up the annotation process, including the
ones based on Deep Learning (DL, see BOX 1) [8,9].

Learning becomes deep as soon as the number of hidden
layers in a neural network exceeds two [8].

Routinely, during the annotation process, any protein
sequence, although simply translated from the corre-
sponding coding sequence, is endowed with structural
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and functional features that are often obtained on the
basis of prediction tools (e.g., the Biocuration Process at
Uniprot, https://www.uniprot.org/help/biocuration;
InterPro, https://www.ebi.ac.uk/interpro/).

Unfortunately, experiments were/are not synchronous
withpredictionoutputs thatwere/are added to theprotein
file in the databases. These include UniProt, the largest

archive of protein sequences (https://www.uniprot.org/).
In UniProt files, GO terms describe functional annotation
according to the Gene Ontology resource (GO; http://
geneontology.org/). In order to distinguish among experi-
mentally derived features (the ground truth data) and
those acquired by sequence similarity with family tem-
plates and/or by computational means, each GO term is
routinely endowed with a tag code, known as ECO code
(these codes are from the Evidence and Conclusion
Ontology, ECO codes; https://evidenceontology.org/).
Given this scenario, most authors, considered in this

review, when selecting sequences to be included in a
training set declare that annotations are selected accord-
ing to “manual assertion based on experiment,” with
ECO:0000269 and related ones.

When searching in a data base, such as UniProt, for se-
quences with specific protein motifs, we are basically
facing two kinds of problems. One is that experiments
probing motif functionality are costly and difficult to
perform, and this often constrains the number of
experimentally annotated sequences (with ECO:

0000269 and related ones). The other is that inference
of computed functionalities cannot be properly vali-
dated. This is so, rather independently of the perfor-
mance of the computational method adopted, which is
routinely scored on a small set of data.

As previously reported [5,6], the choice of the training
set is therefore of critical relevance for the final output
of the method. This is particularly true for predicting
functional motifs in proteins, considering that they are
signature of protein families and that, although pointing
to the same functionality, they may have somehow

different physicochemical characteristics in different
organisms. In any case, either classical or deep machine
learning requires proper training sets, possibly of well
characterized experimental data (a larger volume of
quality data, in the case of deep learning).
Standards for ML based methods
The more the volume of data bases increases, the more
ML and DL methods have been/are adopted for their
generalization capability, flexibility and the possibility of
assessing reliability when addressing the problem of the
correctness of the annotation.

The community of tool developers and users faces the
problem of comparing different machine learning
Current Opinion in Structural Biology 2023, 81:102641
procedures for selecting the most reliable ones. For this,
sets of rules have been put forward [10,11]. Recently, with
the advent of more complicated and complex DL
schemes (see BOX 1, where only themethods at the basis
of the tools described in this review are briefly consid-
ered), it became even more necessary to set standards for
machine learning, when developing methods [10e12].

As discussed at length, method standardization requires
that available data are divided into two sets: the training
set used to train the model and the testing set used to
evaluate the model, rigorously with non-similar protein
sequences. A common variant to this procedure is the n-
fold cross validation with n splits of the training set
(routinely from 5 to 10). Training is performed over n-1
splits and testing is done on the 1. The final results are
the average values of the n training runs. The n-fold
cross validation is also run to mitigate information
leakage (similarity between training and testing sets)

and this is routinely performed by clustering all the
protein sequences with a given threshold of identity
(higher than 20%e30%) in the same split. Finally, a blind
test set is adopted to validate the method performance
and to compare it with previous tools addressing the
same problem and performing at the State-Of-The-Art
(SOTA). Validation on only the n sets of cross valida-
tion does not prevent information leakage.

In spite of this, when different methods are published a
direct comparison on the basis of scoring indexes is

impossible for different reasons: different training/
testing sets and different encoding schemes are adopted
even when the problem is the same, different archi-
tectures are implemented and sometimes even different
scoring indexes are computed. For this reasons, inter-
national experiments have been/are carried out to
benchmark methods on the same problem, such as
CASP (https://predictioncenter.org/index.cgi, since
1994) for the critical assessment of protein structure
prediction, CAFA (https://biofunctionprediction.org/
cafa/, since 2010) for protein functional annotation and
CAGI (https://genomeinterpretation.org/, since 2011)

for genome interpretation.
Data encoding
If the methodological procedure is somehow standard, a
particular and critical issue for ML/DL tools is how to

encode input data for training. Different strategies have
been/are adopted. By considering the tools quoted in
this review, we may classify encoding procedures into
classical and protein language-based ones (Figure 1).
Classical ones include one-hot encoding, structural
derived features and/or multiple sequence alignment to
include evolutionary information [13]. Arrows between
the ENCODING and the PROCESSING boxes
emphasize the different possible combinations exploi-
ted by the methods reviewed.
www.sciencedirect.com
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Figure 1
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Schematic view of encoding procedures associated to processing algorithms adopted in the prediction of motifs in protein sequence (described in
Table 1).
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Other encoding schemes derive from Natural Language
Processing (pLMs, Figure 1). Some of them have been
applied with success to the field of protein sequence and

structure analysis [3,4,14]. These models take advantage
of unifying all the possible information learned by filtering
hundred million of protein sequences from all species
with complex architectures of Neural Networks (see Box
1). Knowledge is casted into optimized weight values
[3,4,14]. For each residue of the protein sequence, pLMs
are also carrying residue context specific information
derived again from all the sequences in the data bases.
The different pLMs adopted when predicting sequence
motifs, are listed in Figure 1, their difference depending
on the volume of the data base they were trained on and/

or the architecture/s by which they were computed (Box
1). pLM complexity routinely requires high computa-
tional costs and researchers adopt pre-computed pLMs in
order to encode their specific training sets.
Recent results in predicting protein
sequence motifs
Needless saying that recently protein sequence analysis
has been carried out mainly by developingmethods based
on deep learning for training/testing. This improved
www.sciencedirect.com
SOTA over previous releases from the same or other
groups. In the following, we will review recent methods
based on machine learning addressing the problem of

finding functional and structural motifs starting from the
protein sequence. Out of literature, we selected methods
with three constraints: i) post-print publication in the
last five years, ii) based on DL and/or pLM embeddings,
iii) availability to the research community.

Table 1 lists methods complying with our constraints.
Researchers focused on three major groups of motifs:
transmembrane regions, protein sorting and single res-
idue Post Translational Modifications (PTMs). For each
tool, the table lists the name together with the refer-

ence article and availability (first column, Name), major
characteristics (second column, Methods), the encoding
(Standard, StE and protein language model based,
pLMs) and training procedure (classical (ML) and deep
(DL) machine learning; third column, Type), the
amplitude of the training set (fourth column, Training
set), and (fifth column, Performance) the performance
of the method as scored by the authors. When available,
we detail the composition of the testing set and its
identity to the training one. Some time, possibly due to
Current Opinion in Structural Biology 2023, 81:102641
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BOX 1. Encoding and Processing

Standard encoding

Standard encoding schemes provide numerical representations of the sequence and/or of the multiple sequence alignments (MSA) of similar
proteins (13).

One-hot encoding: a representation of the residue sequence as a L (sequence length) ×20 matrix; in each sequence position, all elements are
equal to zero, but the one corresponding to the residue type to be encoded.

Evolutionary information: a representation of the MSA as a Lx20 matrix, which contains, position by position, the frequency of each residue in
the MSA (sequence profiles), or the log-odd of the frequency of each residue in the MSA with respect to the background frequency of the same
residue in a large protein dataset (Position Specific Scoring Matrices, PSSMs).

Physicochemical properties: values characterizing each residue type (e.g., hydrophobicity) and derived from pre-compiled scales.

Predicted structural features: values derived from external tools that provide information on the putative protein structure (e.g., secondary
structure and residue solvent accessibility) on the basis of inference processes routinely based on machine-learning.

Protein Language Models (pLMs)

pLMs provide an alternative way to encode protein sequences. They are based on deep learning models trained with self-supervised learning
algorithms run on a large corpus of protein sequences. After training, pLMs are able to map a sequence into an internal representation which
provides, for each position, high-dimensional and context-sensitive vector embeddings. Different pLMs are available, differing in the underlying
deep-learning models and training datasets, which routinely include over 100 million (M) sequences [3,4].

UniRepmodel computes 64-, 256-, and 1900-dimensional embeddings of each residue in a sequence. It is based on a modified version of LSTM
networks (see below). The training set consists of 24 M protein sequences from UniRef50 [35].

SeqVec model computes a 1024-dimensional embedding of each residue in a sequence. It is based on biLSTM networks (see below). The
training set consists of 33 M protein sequences from UniRef50 [36].

ESM-1 model computes a 1280-dimensional embedding of each residue in a sequence. It is based on a biLSTM network (see below). It was
trained on 250 M sequences from the UniParc dataset [37].

ProtT5 model computes a 1024-dimensional embedding of each residue in a sequence. It is based on the T5 Transformer architecture (see
below). It was pre-trained on 2.1 B sequences of the metagenomic derived BFD database and fine-tuned on 45 M sequences from UniRef50 [38].

ProtBERTmodel computes a 1024-dimensional embedding of each residue in a sequence. It is based on a BERT Transformer architecture (see
below). It was pre-trained on 2.1 B sequences of the metagenomic derived BFD database and 216 M sequences from UniRef100 [39].

Processing
Classical machine learning

Several algorithms have been implemented, before the advent of complex Deep Learning models, to solve classification and labelling problems in
bioinformatics. Methods described in this review include the following.

Support vector machines (SVMs): binary classifiers separating two linearly separable sets, identifying an optimal separation hyperplane, and
maximizing the distance between the classes. When coupled with kernel they can solve non-linearly separable problems [6].

Conditional random fields (CRFs): Markovian models devise to sequence labelling tasks. As for Hidden Markov Models, training and inference
are based on dynamic programming algorithms [7]. A variant called Grammatical-Restrained Hidden Random Fields (GRHCRF) allows
constraining the labelling according to user-defined regular grammar rules [39].

Deep machine learning

Deep learning (DL) techniques are based on complex architectures of neural networks, comprising several processing layers [8].

Multilayer perceptron (MLPs): the most basic DL model consisting of multiple layers of neurons, consecutively connected in a feed-forward
architecture elaborating information from the input to the output layers [8,9].

4 Sequences and Topology (2023)
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Convolutional neural network (CNNs): DL architecture devised to pattern recognition (in images, time series, or sequences). Pattern detection
is performed using a series of filters scanning the input and providing a feature mapping to be further elaborated by the cascading layers of the
network [8,9].

Long-short termmemory (LSTM) network: a neural network mapping input sequences to output sequences maintaining an internal state which
aggregates information from the sequence following the processing direction. This allows keeping track of long- and short–range correlations
along the input sequence. When the processing is bidirectional (begin-to-end and end-to-begin), the model is referred to as bidirectional LSTM
(BiLSTM) [8,9].

Attention mechanism: a technique which allows enhancing important regions in the input and depressing less relevant parts, with respect to a
specific prediction task. Different implementations of attention mechanisms have been devised. Light Attention is based on CNN architec-
tures [24].

Transformer: a neural network model that transforms a sequence into another (e.g., language translation), based on self-attention mechanisms.
Combinations of Transformer building blocks defines different architectures, such as T5 and BERT [9].

Scoring indexes
The performance of binary classifiers is routinely scored with different indexes based on the number of correct (true, T) or wrong (false, F)
predictions in either the positive (P) or negative (N) classes [6].

Recall (REC) estimates the classifier ability to recognize the positive examples.

REC ¼ TP

TP þ FN

Precision (PRE) estimates the rate of success of the classifier when predicting the positive class.

PRE ¼ TP

TP þ FP

F1-score (F1) [40] combines precision and recall in a single number by computing their harmonic mean.

F1 ¼ 2� PRE� REC

PREþ REC

Matthews correlation coefficient (MCC) provides a balanced measure accounting for true and false predictions in both classes.

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

It ranges between −1 and 1, being 1, 0, and −1 the scores obtained by perfect, random, and totally wrong predictions, respectively.

Predicting protein sequence motifs Savojardo et al. 5
the limited size of training sets, only cross validation
results are available. For each group of predictors, we
report only one type of scoring index with the aim of

giving a general overview of the performance in relation
to the same problem. One should be aware that in each
article the authors are benchmarking their method to-
wards other ones, often including classical learning-
approaches, from the same or other groups. From these
data we can generally conclude that apparently the
introduction of DL based methods helps in making a
step forward in the prediction scores [11].
www.sciencedirect.com
If this is so, then one open question is to which extent
can we highlight the effect of the encoding scheme, and
to which extent pLMs are relevant for making progress

in the solution of the problem at hand.

We should keep in mind that the comparison among
methods addressing the same problem cannot ground
only on the direct comparison of scoring index values,
and that these can only give an estimate of the different
real performances unless an external benchmarking
is done.
Current Opinion in Structural Biology 2023, 81:102641
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Table 1

Recent deep-learning and/or pLM embedding based prediction tools for discriminating various types of functional motifs.

Name Methods Typea Training set Performance

TransMembrane Regions (TMR)

TMbed [15]
(a-helix and b-barrel TMRs) (2022)
https://github.com/BernhoferM/TMbed

ProtT5; CNN + Viterbi decoding pLM
DL

593 a-helical TMPs
65 b-barrel TMPs
3-D structures

F1 (segment-level, a-helix) = 0.83
F1 (segment-level, b-barrel) = 0.93
Blind set: 86 a-helical TMPs, 14 b-barrel

TMPs; I � 20%
DeepTMpred [16]
(a-helix TMRs)
(2022)
https://github.com/ISYSLAB-HUST/

DeepTMpred

ESM; CNN + CRF pLM
DL

582 a-helical TMPs
3-D structures

F1 (segment-level, a-helix) = 0.87
Blind set: 40 a-helical TMPs; I � 30%

BetAware-Deep [17]
(b-barrel TMRs) (2021)
https://busca.biocomp.unibo.it/betaware2

Evolutionary information + profile-weighted
hydrophobic moments; BiLSTM + GRHCRF

StE
DL

58 b-barrel TMPs
3-D structures

F1 (segment-level, b-barrel) = 0.82
Blind set: 15 b-barrel TMPs; I � 25%

MemBrain [18]
(a-helix TMRs) (2020)
http://www.csbio.sjtu.edu.cn/bioinf/

MemBrain/

Evolutionary information + predicted structural
features + physicochemical properties;
CNN

StE
DL

318 a-helical TMPs
3-D structures

F1 (segment-level, a-helix TMR) = 0.81
Blind set: 40 a-helical TMPs; I � 20%

Protein sorting

Subcellular localization: 2-class discrimination

SCLpred-MEM [19]
(Secretory pathway membrane proteins

localization) (2021)
http://distilldeep.ucd.ie/SCLpred-MEM

Evolutionary information; CNN StE
DL

SCLpred-MEM:
6988 proteins
Exp. evidence

MCC = 0.62
Blind set: 240 proteins; I � 30%

SCLpred-EMS [20]
(Secretory pathway localization) (2020)
http://distilldeep.ucd.ie/SCLpred2

Evolutionary information; CNN StE
DL

SCLpred-EMS:
19,579 proteins
Exp. evidence

MCC = 0.82
Blind set: 593 proteins; I � 30%

In-Pero [21]
(2 peroxisomal localizations) (2021)
https://organelx.hpc.rug.nl/fasta/

Concatenated UniRep and SeqVec; SVM pLMs
ML

160 proteins
Literature evidence

MCC = 0.72 ± 0.06
10-fold cross-validation; I � 40%

Subcellular localization: 4-class discrimination

In-Mito [21]
(4 mitochondrial SLs) (2021)
https://organelx.hpc.rug.nl/fasta/

Concatenated UniRep and SeqVec; SVM pLMs
ML

424 proteins
Exp. evidence

MCC (outer membrane) = 0.64
MCC (inner membrane) = 0.69
MCC (intermembrane) = 0.62
MCC (matrix) = 0.80
10-fold cross-validation; I � 40%

DeepMito [22]
(4 mitochondrial SLs) (2020)
http://busca.biocomp.unibo.it/deepmito/

Position specific scoring matrices; CNN StE
DL

424 proteins
Exp. evidence

MCC (outer membrane) = 0.46
MCC (inner membrane) = 0.47
MCC (intermembrane) = 0.53
MCC (matrix) = 0.65
10-fold cross-validation; I � 40%
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Subcellular localization: 10-class discrimination

DeepLoc2.0 [23]
(10 SL compartments) (2022)
https://services.healthtech.dtu.dk/service.

php?DeepLoc-2.0

ProtT5; attention mechanism + MLP pLM
DL

28,303 proteins
(6684 multilocalized)
Exp. evidence

See Table 2

LAProtT5 [24]
(10 SL compartments)
(2021)
https://github.com/HannesStark/protein-

localization https://embed.protein.
properties/

ProtT5; light-attention mechanisms (based on
CNN) + MLP

pLM
DL

13,858 proteins
(single localized)
Exp. evidence

See Table 2

Signal peptides (SP)

SignalP 6.0 [25] (2022)
https://services.healthtech.dtu.dk/service.

php?SignalP

Five types of SPs, SP detection and cleavage-
site prediction (CSpred): ProtBERT
embedding; CRF

pLM
ML

4665 proteins with SP
15,625 proteins without SP
Exp. evidence, manually

reannotated

Euk: MCCdetection = 0.87, RECCSpred = 0.75
Blind set: 146 SP and 5581 non-SP proteins
Gram+: MCCdetection = 0.81, RECCSpred = 0.80
Blind set: 156 SP and 81 non-SP proteins
Gram-: MCCdetection = 0.88, RECCSpred = 0.64
Blind set: 374 SP and 133 non-SP proteins
I � 30%

Signal-3L 3.0 [26]
(2020)
http://www.csbio.sjtu.edu.cn/bioinf/Signal-

3L/

SP detection: Evolutionary information;
BiLSTM + Attention layer.

SP cleavage site prediction (CSpred):
Evolutionary information; Bidirectional
CNN + CRF

StE
DL

3309 proteins with SP
15,268 proteins without SP
Exp. evidence

Euk: MCCdetection = 0.93, RECCSpred = 0.67
Blind set: 210 SP and 7247 non-SP proteins
Gram+: MCCdetection = 0.97, RECCSpred = 0.76
Blind set: 90 SP and 153 non-SP proteins
Gram-: MCCdetection = 0.97, RECCSpred = 0.67
Blind set: 25 SP and 89 non-SP proteins
I � 20%

DeepSig [27] (2018)
https://deepsig.biocomp.unibo.it

SP detection: One-hot encoding; CNN
SP cleavage-site prediction (CSpred): One-

hot encoding; Attention + GRHCRF

StE
DL

2271 proteins with SP
8032 proteins without SP
Exp. evidence

Euk: MCCdetection = 0.86, RECCSpred = 0.76
Blind set: 46 SP and 1012 non-SP prot
Gram+: MCCdetection = 0.54, RECCSpred = 0.44
Blind set: 9 SP and 429 non-SP proteins
Gram-: MCCdetection = 0.95, RECCSpred = 0.78
Blind set: 23 SP and 188 non-SP proteins
I � 25%

Transit peptides (TP)

TargetP 2.0 [28]
(2019)
https://services.healthtech.dtu.dk/service.

php?TargetP-2.0

BLOSUM62 encoding; BiLSTM + Attention StE
DL

499 proteins (mitoTP)
227 proteins (chloroTP)
45 proteins (thylakTP)
19,234 proteins without TPs
Exp. evidence

MCC (mitoTP) = 0.86
MCC (chloroTP) = 0.88
MCC (thylakTP) = 0.75
5-fold cross-validation; I<20%

Single residue post-translational modifications (PTMs)

Lipidation

NetGPI [29]
(GPI-anchor and ⍵-site prediction) (2021)
https://services.healthtech.dtu.dk/service.

php?NetGPI

One hot-encoding; BiLSTM + Attention
mechanism

StE
DL

966 GPI-anchored proteins
2573 non GPI-anchored proteins
Exp. evidence

MCCdetection = 0.90, REC⍵-site = 0.47
Blind set: 160 GPI-anchored (50 with known

⍵-site) and 2573 non GPI-anchored
proteins; I<30%

(continued on next page)
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Prediction of transmembrane regions from the
sequence
Historically the problem of predicting membrane pro-
tein topology is one of the first addressed with compu-
tational tools [31]. In Table 1, the present SOTA
methods [15e17] adopt deep learning with post pre-
diction refinements (CRF, GRHCRF, Viterbi decoding;
Box 1) and pLM encodings to improve prediction scores
[15,16]. TMBed [15] discriminates both alpha and beta
motifs, whereas the other predictors focus on either
alpha or beta regions [16e18].

Protein sorting
Protein sorting is the biological mechanism by which
proteins are transported to their appropriate destina-
tions within or outside the cell. After translation at the
ribosomes, proteins can be targeted to the inner space of
an organelle, different intracellular membranes, the
plasma membrane, or to the exterior of the cell via
secretion [32]. Apparently, information contained in the
protein sequence triggers the delivery process. In
Table 1, results on this important functional annotation
are organised depending on how many classes of sub-
cellular localisation are discriminated. Signal and transit

peptide predictors are as well included.

Subcellular localization
2-class discrimination. SCLpred-MEM [19] and SCLpred-
EMS [20] are from the same group. They adopt the
same standard encoding method and the same DL
(CNN; Box 1). The goal is different: discriminating the
membrane proteins in the secretory pathways
(SCLpred-MEM) and discriminating all the proteins in
the secretory pathways (SCLpred-EMS), respectively.
The training and testing sets are of different di-
mensions: larger in the second case. Results indicate
that the size of the data is improving the method per-
formance. In-Pero [21] adopts a concatenation of two

pLMs (UniRep and SeqVec; Box 1) and a classical
classifier (SVM; Box 1), and reports a 10-fold cross
validation MCC value for the discrimination of proteins
in the membrane and lumen localisation in peroxisomes.

Subcellular localization
4-class discrimination. In-Mito [21] and DeepMito [22]
have been trained on the same small training/testing
set (containing 424 proteins). In-Mito adopts a
concatenated pLM model (as in In-Pero) and a clas-
sical classifier, whereas DeepMito adopts a standard
encoding scheme with a deep learning architecture. It
appears that the performance, adopting a 10-fold cross
validation, is higher when pLMs are introduced.

Subcellular localization
10-class discrimination. The 10-class discrimination is the

forefront, being ten the number of the main compart-
ments routinely highlighted in eukaryotic cells [32].
DeepLoc2.0 [23] is a multilabel predictor that stands on
www.sciencedirect.com
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the ProtT5 pLM and on multilayer NNs endowed with
an attention mechanism (Box 1); LAProtT5 is a single
label predictor over the possible ten classes, encodes
with ProtT5 and discriminates with a mechanism
including “light attention” and multilayer NNs ([24];
Box 1). They are adopting different training/testing sets
and their respective performances are listed in Table 2.
LAProtT5 reports performances over the ten classes on a

blind test set including 2768 proteins (second column in
Table 2); DeepLoc2 reports scores in a 5-fold cross
validation. What is interesting is that when both
methods score themselves on different blind test sets (a
so called setHard including 490 internally non redun-
dant proteins in the case of LAProtT5, and a blind test
set including 1717 human proteins from the Human
Protein Atlas in the case of DeepLoc 2; third and fourth
column, respectively), their performances signifi-
cantly decrease.

Signal peptides
Three predictors are available. For SignalP, with
different releases through the last decades, we select

the last one which according to the authors is over-
performing the previous ones (SignalP 6.0) [25]. The
evolution of the methods through the last five years is
quite clear in going from DeepSig [27] to Signal-3L 3.0
[26] and SignalP 6.0 [25]. Evidently, the richer input
standard scheme of Signal-3L 3.0 together with an
increased number of proteins in the training set,
particularly for Gram positives (Gramþ) is sufficient to
overperform DeepSig in signal peptide detection, but
Table 2

LAProtT5 and DeepLoc2 predicting ten classes of eukaryotic subcel

Classes LAProtT5a

Blind:setDeepLoc
I � 30% (2768)

LAProtT
Blind: set
I � 30%

Nucleus 0.84 (806) 0.70 (99
Cytoplasm 0.69 (505) 0.49 (11
Extracellular 0.94 (393) 0.78 (92
Mitochondrion 0.87 (302) 0.75 (10
Cell membrane 0.75 (273) 0.47 (98
ER 0.62 (173) 0.47 (34
Plastid 0.92 (152) 0.85 (11
Golgi 0.55 (70) 0.10 (13
Lysosome 0.17 (64) 0.19 (13
Peroxysome 0.42 (30) 0.58 (3)

Performance is scored with Matthews correlation coefficient (MCC). Cross va
brackets the number of proteins in each set and class.
ER: Endoplasmic reticulum.
I: pairwise sequence identity among proteins in training and testing sets.
a Data from the study by Thumuluri et el. [24]: dataset extracted from Dee
b Data computed on the internally non redundant setHARD testing set wit
c Data from the study by Stärk et al. [23], dataset from the Human Proteom
d Data from the study by Stärk et al. [23]. Out 28,303 proteins, 6684 (24%

www.sciencedirect.com
not when predicting the cleavage sites (cs) (Recall cs
sites, fifth column of Table 1; Box 1). SignalP 6.0 dis-
criminates five types of signal peptides in relation to the
different cleavage mechanisms [32], and in this it is
superior to the previous two. When considering only the
performance on eukaryotes, it appears that ProtBERT
embedding associated to a classical ML classifier (CRF)
is not outperforming Signal-3L 3.0. However, the

cleavage site prediction score is comparable among the
three predictors, with the exception of DeepSig on
Gramþ, which was scarcely populated.

Transit peptides
Transit peptides are responsible for the transport of a
protein encoded by a nuclear gene to a particular
organelle. For this problem only one predictor is avail-
able, TargetP 2.0 [28] which utilises DL with a stan-
dard encoding.

Single residue post translational modifications
For this particular type of motifs, requiring a one residue
modification, only predictors implementing deep
learning with standard encoding are presently available.

Lipidation
Several eukaryotic proteins associated to the extracel-

lular leaflet of the plasma membrane carry a glyco-
sylphosphatidylinositol (GPI) anchor, which is linked to
the C-terminal residue after a proteolytic cleavage
occurring at the so called u-site [34]. NetGPI [29]
predicts whether a protein undergoes a GPI
lular localization.

5b

HARD
(490)

DeepLoc2c

Blind: HPA
I � 30% (1717)

DeepLoc2d

Cross validation
I � 30%; 5 sets

) 0.44 (893) 0.69 ± 0.02 (9720)
7) 0.36 (562) 0.62 ± 0.01 (9870)
) 0.85 ± 0.05 (3301)
) 0.56 (196) 0.76 ± 0.04 (2590)
) 0.36 (287) 0.66 ± 0.02 (4187)
) 0.17 (77) 0.56 ± 0.04 (2180)
) 0.90 ± 0.04 (1047)
) 0.31 (86) 0.31 ± 0.04 (1279)
) 0.28 ± 0.05 (1496)

0.55 ± 0.04 (304)

lidation results report the standard error over the 5 split test sets. Among

pLoc [33].

h the released LAProtT5 trained model [24].

e Atlas (HPA) [23]. Out of 1717 proteins, 350 (20%), are multilocalized.

) are multilocalized.

Current Opinion in Structural Biology 2023, 81:102641

www.sciencedirect.com/science/journal/0959440X


10 Sequences and Topology (2023)
modification at the C-terminus with a standard encod-
ing embedding and DL, scoring with a high MCC value
in detection. However, as to the u-site prediction,
scoring still deserves improvement.

Phosphorylation
Protein phosphorylation is a reversible post-translational
modification of proteins in which mainly residues such
as serine, threonine, and tyrosine in eukaryotes are
phosphorylated by protein kinases, with the addition of
a covalently bound phosphate group. This has important

and well-characterized roles in signalling pathways and
metabolism [32]. TransPhos [30] based on a standard
encoding scheme and DL discriminates the phosphor-
ylated residues, with scores that suggest improvement.
Conclusions and perspectives
Recent tools for the detection of protein sequence
motifs stand on machine learning architectures of
different complexities. The most recent ones adopt
encoding based on protein language models (Box1).

Detecting transmembrane regions is more successful for
predictors adopting pLMs and DL (TMbed, DeepT
Mpred).

Protein sorting includes different types of subcellular

localisation discrimination: 1) for the 2-class discrimi-
nation and when the strategy is the same (standard
encoding and deep learning) the score seems affected
by the volume of the training/testing set (SCLpred-
MEM vs SCLpred-EMS); when the training set is of
small dimension, the adoption of pLMs and ML im-
proves over previous versions of the same prediction
task, although results of cross validation are not
conclusive (In-Pero). 2) Both In-Mito and DeepMito
were trained on the same small data set. Evidently
pLMs and ML (In-Pero) outperform (however only in

cross validation) on a standard encoding scheme and
DL (DeepMito). 3) The prediction of subcellular
localisation is upgraded to the point that apparently
the ten different compartments of eukaryotes can be
discriminated. DeepLoc2.0 and LAProtT5 take
advantage of deep learning procedures including
attention mechanisms and pLMs. Their performance is
difficult to compare, given the multilabel vs the single
label procedure (Table 2). According to the authors
both methods poorly perform on unbiased blind
test sets.

Signal peptide detection improved in the last five years
from DeepSig (standard encoding and DL) to Signal-3L
3.0 (a richer standard encoding than DeepSig and DL)
and up to the five-type signal peptide discrimination of
Current Opinion in Structural Biology 2023, 81:102641
SignalP 6.0 (pLM and ML). Interestingly the efficiency
of the prediction of the cleavage site is not much
affected by the different methods.

Transit peptides are satisfactorily predicted with stan-
dard encoding and DL (TargetP; results are in
cross validation).

Single residue post translational modifications include
NetGPI, based on standard encoding and DL, which
discriminates GPI anchors with a high score and pre-
dicts with an ameliorable one the u-site, and Trans-
Phos that with a similar strategy predicts
phosphorylation sites.

Overall pLMs, when applied with ML and/or DL appear
to improve predictions over standard encoding mecha-
nisms for the different tasks, suggesting that pLMs are
powerful approaches to extract evolution information,

overpassing multiple sequence and/or structural align-
ments. This is particularly true in the case of trans-
membrane region predictions, which can also rely on
structural validation.

The volume of the training/testing sets is also relevant.
Indeed, tasks such as the four-class mitochondrial
discrimination, the transit peptides, the GPI-anchors,
and single residue post translation modifications lack
sufficient amount of experimental data to cope with the
recent technological advancements. This suggests that

experiments are necessary to populate the different
classes of motifs. Furthermore, for a proper comparison
of the different strategies, an external benchmarking,
like CAFA or others to come, is necessary to understand
which application among the ones available would get
realistic scores.
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